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Abstract: We compute the N = 2 Rényi entanglement entropy of two intervals at equal

time in a circle, for the theory of a 2D compact complex free scalar at finite temperature.

This is carried out by performing functional integral on a genus 3 ramified cover of the

torus, wherein the quantum part of the integral is captured by the four point function

of twist fields on the worldsheet torus, and the classical piece is given by summing over

winding modes of the genus 3 surface onto the target space torus. The final result is given

in terms of a product of theta functions and certain multi-dimensional theta functions. We

demonstrate the T-duality invariance of the result. We also study its low temperature limit.

In the case in which the size of the intervals and of their separation are much smaller than

the whole system, our result is in exact agreement with the known result for two intervals

on an infinite system at zero temperature [5]. In the case in which the separation between

the two intervals is much smaller than the interval length, the leading thermal corrections

take the same universal form as proposed in [9, 10] for Rényi entanglement entropy of a
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1 Introduction

Entanglement entropy is one the most unique quantity in quantum field theory and quan-

tum many body systems. It is defined as the von Neumann entropy of the reduced density

matrix of the subsystem. For dimension D = 2, one can use the tools of CFT, see [1] for

a review. Essentially, to obtain the entanglement entropy is equivalent to calculate the

partition function of certain CFTs on the higher genus Riemann surface. It is also known

as the replica trick [2]: consider now the system is in a pure state with density matrix

ρ = |Φ〉 〈Φ|, for the subsystem A consisted of one or more intervals, the reduced density
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matrix of is defined by ρA = TrB(ρ), where B is the complement of A. Then one can define

the N -th Rényi entropy

SN =
1

1−N
ln TrρNA (1.1)

The entanglement entropy is easily obtained by taking the limit

SEE = lim
N→1

SN . (1.2)

From the path integral point of view, the calculation of TrρNA is equivalent to find the

partition function on a N -sheet Riemann surface which glued together along B but leave

A cut open [1]

TrρNA =
ZN (A)

ZN
, (1.3)

where ZN (A) is the partition function on the N -sheeted Riemann surface and the normal-

ization factor Z is just the original partition function

Z = Tre−βH .

In the simplest context of non-compact free boson, the convenient way to calculate

TrρNA is by employing the twist fields, which reduce the problem of how to find the higher

genus partition function to the problem of calculation the correlation function of the twist

fields [1]

TrρNA =

N−1∏
k=0

〈σk(u1, ū1)σ−k(v1, v̄1) · · ·〉 , (1.4)

where k = {0, 1, · · · , N − 1}. Noted that the twist field σk and the anti-twist field σ−k
always appear in pairs to create the correct branch cuts. By using the twist fields, the

complexity of the world sheet is transferred to the target orbifold space, and one can used

the technique from orbifold theory [3, 4] to calculate the correlators of the twist fields.

For now, the entanglement entropy of two disjoint intervals on an infinite system at zero

temperature has been studied in [5, 6], and one interval on a circle at finite temperature

has been studied in [8, 10].

In this paper, we consider the compactified complex free boson on a circle at finite

temperature, and study the N = 2 Rényi entanglement entropy of two disjoint intervals. We

should remark that, in case of compactified boson, one should not use (1.4) directly, since

the different k-modes are actually correlated because of the compactification condition.

Thus we will take the strategy used in [3]: we separate the fundamental field into a classical

part and a quantum part, and require that only the classical part see the winding. Therefore

one can safely regard (1.4) as the quantum part, in that case we can borrow the results

in [4] to get the quantum part.

The classical part are obtained by summing over the independent winding modes.

Since for different k, the winding numbers are correlated, as a result, the independent

winding numbers should be summed are actually fewer than we have defined. For N = 2

and two intervals, there are only six independent integers. To be noticed, our method is

a little different from [5], in which there are zero modes because of double counting, but
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after eliminating the zero mode divergence, they are actually the same. The summation

can be expressed as two Siegel theta functions, where for each one we have defined a 3× 3

matrix (see equation (3.30)). We have to say, it is not obvious at all that the two matrix

are strictly positive definite and the relation Γ−1 = 4Γ′ holds, so that we can represent the

results nicely as the product of Siegel theta functions. These properties of the two matrix

are highly non-trivial and they indeed represent the T-duality.

We further study the low temperature expansion. In order to check the consistency

with other’s results, we consider the large system limit, i.e., the subsystem is much smaller

than other scale of the system, and we find that the leading term is agreed with the Rényi

entanglement entropy of two disjoint intervals in an infinite system at zero temperature [5].

Further, by considering the separation is much smaller than the length of two intervals, we

show that the leading thermal correction is also in consistent with the result in [9, 10].

The organization of the paper is as follows. In section 2, we briefly review the method

how to calculate correlation function of twist fields. In section 3.1, we derive the N = 2

Rényi entropy. In section 4, we obtain the low temperature expansion. Finally, in section 5

we give our conclusions.

2 Conformal field theory of orbifold and twist fields

Following [4], we consider a free compactified complex boson living on a Euclidean torus

L =
1

8π

∫
dz dz̄(∂X∂̄X̄ + ∂̄X∂X̄), X(z + πp+ iβπq) = X + 2πR(m+ in) (2.1)

where p, q and m,n are integers, we also have set α′ = 2 in the convention of string

theory [7]. For simplicity, we assume the two compact radii are equal length. Suppose

that there are two disjoint intervals on the real axis, the replica method is essentially doing

the path integral on a N -sheeted Riemann surface which are glued together along the two

intervals. If in each sheet labeled by i there lives a replica field X̃i, the gluing simply means

that there is a symmetry among these replica fields

Xi(ze2πi, z̄e−2πi) = Xi−1(z, z̄), (2.2)

where we have assumed that z = 0 is an end point of the intervals. After a redefinition of

the replica fields [5]

X̃i =
N∑
j=1

e2πi
ki
N
jX̃j , 0 ≤ ki < N, (2.3)

the new fields X̃i satisfy the monodromy condition

X̃i(ze2πi, z̄e−2πi) = e2πi
ki
N X̃i(z, z̄). (2.4)

Note that the new field X̃i indeed lives on the original worldsheet torus with the presence

of twist fields, while the field Xj , which will also be referred to as the replica field, lives on

the covering genus 3 Riemann surface.
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As it was suggested in [1], this configuration is equivalent to put twist/antiwist pairs on

the original worldsheet at the ends of the intervals. For example, if we have two intervals la-

beled by [z1, z2] and [z3, z4], then there are four insertions {σk(z1), σ−k(z2), σk(z3), σ−k(z4)}.
We also have the OPEs known as local monodromy condition given by [3]

∂zX̃(z, z̄)σk(ω, ω̄) ∼ (z − ω)−(1− k
N

)τk(ω, ω̄),

∂z
¯̃X(z, z̄)σk(ω, ω̄) ∼ (z − ω)−

k
N τ ′k(ω, ω̄),

∂z̄X̃(z, z̄)σk(ω, ω̄) ∼ (z̄ − ω̄)−
k
N τ̃k(ω, ω̄),

∂z̄
¯̃X(z, z̄)σk(ω, ω̄) ∼ (z̄ − ω̄)−(1− k

N
)τ̃ ′k(ω, ω̄),

(2.5)

where the various fields τ on the right hand side are the exited twist operator which create

exited states in the twisted sector and 0 ≤ k < N is an integer.

Because the insertions of twist fields, the net-twist-zero loops surrounding different

subsets of insertions may not be equivalent. Actually, in the most general cases, the

number of independent closed loops is L − 2 + 2g, where L is the number of twist fields

and g is genus of the Riemann surface [4]. The shifts of X along each loop give the global

monodromy condition

∆γaX̃ ≡
∮
γa

dz∂zX̃ +

∮
γa

dz̄∂z̄X̃ = va, (2.6)

where γa label the closed loops and νa are the shifts which encode the winding number.

2.1 Quantum part of the correlation function

As mentioned earlier, it is convenient to separate X̃ into a classical part and a quantum part

X̃ = X̃qu + X̃cl,

requiring that only the classical part can see the winding

∆γX̃qu ≡
∮
dz∂zX̃qu(z, z̄) +

∮
dz̄∂z̄X̃qu(z, z̄) = 0,

∆γX̃cl ≡
∮
dz∂zX̃cl(z, z̄) +

∮
dz̄∂z̄X̃cl(z, z̄) = v.

(2.7)

We first calculate the quantum part of the partition function by inserting a stress tensor

in the correlation function of twist fields. It is known that the twist fields is primary and

its OPEs with stress tensor is given by

T (z)σi(ω) ∼ hi
(z − ω)2

σi +
1

z − ω
∂ωσi. (2.8)

From the Ward identity, one can derive a differential equation of Zqu

∂zi lnZqu = lim
z→zi

[
(z − zi) 〈〈T (z)〉〉 − hi

z − zi

]
. (2.9)

where hi = 1
2
ki
N (1 − ki

N ) is the conformal dimension of the twist operator and 〈〈T (z)〉〉 is

defined as one point function of stress tensor in the presence of twist fields.
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So the main problem now is how to construct T (z). We start with the Green’s function:

g(z, ω; zi) ≡
〈−∂zX̃∂ω ¯̃X

∏
σi(zi)〉

〈
∏
σi(zi)〉

. (2.10)

Taking into account the global monodromy condition (2.6), one should introduce another

auxiliary Green’s function

h(z̄, ω; zi) ≡
〈−∂z̄X̃∂ω ¯̃X

∏
σi(zi)〉

〈
∏
σi(zi)〉

, (2.11)

which is non-singular as w → z. Then 〈T (z; zi)〉 can be obtained by taking a limit

〈〈T (z; zi)〉〉 = lim
ω→z

[
g(z, ω; zi)−

1

(z − ω)2

]
. (2.12)

These Green’s functions can be constructed by the so called cut abelian differentials [4].

On the torus, it is enough to use the local monodromy and the double period condition to

construct the basis of cut abelian differentials. The local monodromy is given by

g(z, ω; zi) ∝


(z − ω)−2 if z → ω,

(z − zi)−(1−ki/N) if z → zi,

(ω − zi)−ki/N if ω,→ zi.

(2.13)

and

h(z̄, ω; zi) ∝

{
(z̄ − z̄i)−ki/N if z̄ → z̄i,

(ω − zi)−ki/N if ω,→ zi.
(2.14)

In case of two pairs of twist/antitwist insertions on the torus, such as

{σk(z1), σ−k(z2), σk(z3), σ−k(z4)}, one can define the four cut abelian differentials:

w1(z) =
4∏
i=1

ϑ1(z − zi)−(1− ki
N

)ϑ1(z − zα1 − Y1)ϑ1(z − zα2),

w2(z) =

4∏
i=1

ϑ1(z − zi)−(1− ki
N

)ϑ1(z − zα2 − Y1)ϑ1(z − zα1),

w3(z) =

4∏
i=1

ϑ1(z − zi)−
ki
N ϑ1(z − zβ1 − Y2)ϑ1(z − zβ2),

w4(z) =
4∏
i=1

ϑ1(z − zi)−
ki
N ϑ1(z − zβ2 − Y2)ϑ1(z − zβ1).

(2.15)

where 0 ≤ ki < N are integers. Y1 and Y2 can be determined by requiring that wi(z) are

doubly periodic. Their values are given by

Y1 =

4∑
i=1

(
1− ki

N

)
zi −

2∑
i=1

zαi , Y2 =

4∑
i=1

ki
N
zi −

2∑
i=1

zβi . (2.16)
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The points {zα1 , zα2} is a subset of the four twist insertions. To make the first two cut

differentials linear independent, one need to be careful not to choose the subset in which

Y1 = 0. This is the only constrains for choosing {zα1 , zα2}. Indeed the first two functions

span the space of cut differentials [4], which can be used to construct 〈∂zX̃〉 and 〈∂z̄ ¯̃X〉. For

the similar reason, 〈∂z̄X̃〉 and 〈∂z ¯̃X〉 can be represented by the linear combinations of w̄3(z̄)

and w̄4(z̄). Generally, there are no constraints of how to choose kis. However, in order to

create the correct branch cuts, one should fix {k1, k2, k3, k4} to be {k,N − k, k,N − k} for

any 0 ≤ k < N , i.e., the twist and antitwist fields should appear in pairs.

By using the cut abelian differentials (2.15), one can fix the Green’s function up to

some non-singular functions:

g(z, ω) = gs(z, ω)−
2∑
i=1

Aijw
j(ω)wi(z),

h(z̄, ω) = −
4∑
j=3

Bjiw
i(ω)w̄j(z̄).

(2.17)

The four function Aijw
j(ω), Bjiw

i(ω) can be determined up to normalization by imposing

the global monodromy conditions∮
γa

dzg(z, ω) +

∮
γa

dz̄h(z̄, ω) = 0. (2.18)

These equations (2.18) can be solved by introducing the cut period matrix W i
a defined by

W i
a ≡

∮
γa

dzwi(z), i = 1, 2

W j
a ≡

∮
γa

dz̄w̄j(z̄), j = 3, 4,

(2.19)

where γa represent the independent closed loops. In this paper, we consider four twist

insertions on the worldsheet torus. Thus there are four independent net-twist-zero loops,

we can chosen them as described in figure 1.

After solving the equations (2.18), the Green’s function can be written as

g(z, ω) = gs(z, ω)−
2∑
i=1

wi(z)

4∑
a=1

(W−1)ai

∮
γa

dygs(y, ω),

h(z̄, ω) = −
4∑
j=3

w̄j(z̄)

4∑
a=1

(W−1)aj

∮
γa

dygs(y, ω),

(2.20)

where the singular part gs(z, w) is given by [4]

gs(z, ω) =

4∏
i=1

ϑ1(z − zi)−(1− ki
N

)
4∏
i=1

ϑ1(w − zi)−
ki
N

[
ϑ′1(0)

ϑ1(z − ω)

]2

P (z, ω). (2.21)

However the exact form of P (z, ω) turns out to be irrelevant in the end.
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γ1

γ3
γ4 γ2

Figure 1. Four independent closed loops.

In general, the period matrix W is a 4×4 matrix. As long as the two twist fields don’t

coincide, W should be non-degenerate. Therefore, by using equation (2.9) and integrat-

ing (2.12), one can get the quantum part [4]

Zqu(k,N) = f(τ, k)| detW |−1ϑ1(Y1)ϑ̄1(Y2)ϑ34ϑ̄12

× [ϑ12ϑ14ϑ23ϑ34]−
k
N

(1− k
N

) (ϑ13)−(1− k
N

)(1− k
N

)(ϑ24)−
k
N

k
N

×
[
ϑ̄12ϑ̄14ϑ̄23ϑ̄34

]− k
N

(1− k
N

)
(ϑ̄24)−(1− k

N
)(1− k

N
)(ϑ̄13)−

k
N

k
N ,

(2.22)

where we have denote ϑ1(zi − zj) by ϑij . Note that f(τ, k) is an unfixed function came

from the integration of the differential equation.

2.2 Classical part of the correlation function

The classical contribution can be obtained by finding the normalized classical solution and

then substituting back into the action

Scl =
1

16π

∫
d2z(∂zX̃cl∂z̄

¯̃Xcl + ∂z̄X̃cl∂z
¯̃Xcl). (2.23)

The classical solutions can be written as the linear combination of the abelian differentials

∂zX̃cl(z, z̄) = aiw
i(z), i = 1, 2,

∂z̄X̃cl(z, z̄) = bjw̄
j(z̄), j = 3, 4.

(2.24)

Plugging (2.24) into the global monodromy condition (2.6), we get four linear equations

with four unknowns ∮
γa

dz∂zX̃cl +

∮
γa

dz̄∂z̄X̃cl = va, (a = 1, 2, 3, 4). (2.25)

The solutions are given by

ai = (W−1)i
a
va, bj = (W−1)j

a
va. (2.26)
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Then the action can be written as

Scl =
1

16π
vav̄b

[
(W−1)i1

a
(W̄−1)i2

b
(wi1 , wi2) + (W−1)j1

a
(W̄−1)j2

b
(wj1 , wj2)

]
, (2.27)

where i1, i2 ∈ {1, 2} and j1, j2 ∈ {3, 4}. We have also defined the inner product of the cut

differentials:

(wi, wi) ≡ i
∫
R
wi ∧ w̄i, wi = wi(z)dz. (2.28)

The inner product can be calculated by using Stokes theorem. A detailed calculation can

be found in the appendix A. The full partition function now is

Z(N) =
∑
v,v̄

(
N−1∏
k=0

Zqu(k,N)e−Scl(v,v̄)

)
(2.29)

Note that the summation has been moved out of the product because different k-modes

are correlated.

3 N = 2 Rényi entropy

In this section we calculate the N = 2 Rényi entanglement entropy of two intervals on a

circle at finite temperature, which is the most simple case one can have. Notice that in terms

of the replica fields Xi, the New field X̃ is defined for different k accordingly. For k = 0,

X̃0 = X0 +X1 (3.1)

while for k = 1

X̃1 = X0 −X1. (3.2)

The action for the new field X̃ is changed to

S(X̃, ¯̃X) =
1

16π

∫
d2z(∂zX̃cl∂z̄

¯̃Xcl + ∂z̄X̃cl∂z
¯̃Xcl) (3.3)

We calculate the contribution from different k separately and then multiply them together,

after that we sum over the winding number to get the total partition function.

3.1 k = 0

For k = 0, the twist fields are trivial, thus the quantum part can be treated as the corre-

lation function of identity operators, which is just the partition function of free boson on

the torus [15],

Z0
qu(τ) =

1

|Imτ ||η(τ)|4
. (3.4)

Now we consider the summation of winding mode. For k = 0, the classical solution of ∂X

is just a double periodic holomorphic function, so it should be a constant

∂X̃0
cl = c1, ∂̄X̃

0
cl = c2. (3.5)

– 8 –
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The solutions (3.5) should be normalized by imposing the global monodromy condition∫
γ1

∂X̃0
cl dz +

∫
γ1

∂̄X̃0
cl dz̄ = u1∫

γ3

∂X̃0
cl dz +

∫
γ3

∂̄X̃0
cl dz̄ = u3,

(3.6)

where u1 and u3 are denoted by

u1 = 2πR(m1
0 + in1

0 +m1
1 + in1

1)

u3 = 2πR(m3
0 + in3

0 +m3
1 + in3

1).
(3.7)

Noted that the superscript {1, 3} label the different loops, the subscript {0, 1} label the

different replica and {m,n} come from the real and imaginary part accordingly. These

equations can be easily solved by

c1 =
iβu1 − u3

2iπβ
, c2 =

iβu1 + u3

2iπβ
. (3.8)

Then plugging into the classical action (2.23), one can get the classical contribution

S0
cl(u1, u3) =

|iβu1 − u3|2 + |iβu1 + u3|2

32βπ

= −2πi
(
m′′

T · Ξ ·m′′ + n′′
T · Ξ · n′′

)
,

(3.9)

where m′′ ≡ {m1
0,m

1
1,m

3
0,m

3
1}, n′′ ≡ {n1

0, n
1
1, n

3
0, n

3
1} and the matrix Ξ is given by

Ξ =
iR2

8π2


β β 0 0

β β 0 0

0 0 1
β

1
β

0 0 1
β

1
β

 . (3.10)

3.2 k = 1

3.2.1 Quantum part for k = 1

Let’s now consider the case of k = 1. We assign the two intervals the same length x, the

distance between them is given by y, and all the twist operators lie on the real cycle of the

torus, as shown in figure 6. As a consequence, there are only two independent cut abelian

differentials

w1(z) =

4∏
i=1

ϑ1(z − zi)−1/2ϑ1

(
z − x− π − 2x− y

2

)
ϑ1

(
z − x− y − π − 2x− y

2

)

=
ϑ1(z − π

2 + y
2 )1/2ϑ1(z − π

2 −
y
2 )1/2

ϑ1(z − π
2 + x+ y

2 )1/2ϑ1(z − π
2 − x−

y
2 )1/2

= w3(z),

w2(z) =

4∏
i=1

ϑ1(z − zi)−1/2ϑ1

(
z − π − 2x− y

2

)
ϑ1

(
z − 2x− y − π − 2x− y

2

)

=
ϑ1(z − π

2 + x+ y
2 )1/2ϑ1(z − π

2 − x−
y
2 )1/2

ϑ1(z − π
2 + y

2 )1/2ϑ1(z − π
2 −

y
2 )1/2

= w4(z).

(3.11)
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We also define the period matrix in appendix B

The quantum part for k = 1 can be calculated directly by using (2.22)

Z1
qu = f(β)

1

| detW |
|ϑ1(x+ y)||ϑ1(x)|√
|ϑ1(2x+ y)||ϑ1(y)|

, (3.12)

where f(β) is an undetermined function came from the integration of ∂ziZqu. We will fix it

later by factorizing the total partition function on the torus partition function of compact

free boson.

3.2.2 Classical part for k = 1

Given (3.11), one can expand the cut differential as

∂zX̃
1
cl(z, z̄) = aiω

i(z), i = 1, 2

∂z̄X̃
1
cl(z, z̄) = biω̄

i(z̄), i = 1, 2.

The coefficients can be determined by solving the global monodromy condition

∆γX̃cl =

∮
dz∂zX̃cl(z, z̄) +

∮
dz̄∂z̄X̃cl(z, z̄) = va. (3.13)

Before solving the equations, we need to be sure that the cut period matrix is non-

degenerate. This is true as long as the two insertions of twist field don’t collide, i.e.,

x 6= 0 and y 6= 0, which can be checked numerically. Substituting the solutions back into

the action, we get

Scl =
1

16π
Tr
[
M ·W−1 ·G · (W̄−1)T

]
, (3.14)

where W−1 and W̄−1 is the inverse of the cut period matrix and its conjugation, M is

defined by Mab ≡ vav̄b, G is given by the inner product of ωi

Gij = (ωi, ωj), (3.15)

where i, j ∈ {1, 2, 3, 4}. Since we put all the twist insertions on the real cycle, giving the

bilinear relation A.4, one can show that G is a block diagonal matrix

G =

(
H 0

0 H

)
, (3.16)

where

H = (3.17)(
2iW1

1W3
1 + iW2

1W4
1 i(W1

2W3
1+W1

1W3
2)+ i

2 (W2
2W4

1+W2
1W4

2)

i(W1
2W3

1+W1
1W3

2)+ i
2 (W2

2W4
1+W2

1W4
2) 2iW1

2W3
2 + iW2

2W4
2

)
.

In case of N = 2, W i
a are either pure imaginary or real. This feature make it much sim-

pler for lattice summation. We introduce eight arbitrary real functions {a, b, c, d, e, f, g, h}
and denote the cut period matrix by

Wa
i =


a h a h

f g f g

ib ic −ib −ic

id ie −id −ie

 . (3.18)
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After some algebra, the (3.14) can be divided into two parts, the first half is

S1
cl(v1, v2) =

1

16π

(
A|v1|2 +B(v1v̄2 + v2v̄1) + C|v2|2

)
, (3.19)

where A,B,C are given by

A = i
−W2

2W3
1 +W2

1W3
2

W1
2W2

1 −W1
1W2

2

B = i
−2W1

2W3
1 + 2W1

1W3
2 +W2

2W4
1 −W2

1W4
2

−4W1
2W2

1 + 4W1
1W2

2

C = i
−W1

2W4
1 +W1

1W4
2

−2W1
2W2

1 + 2W1
1W2

2 .

(3.20)

The parameterization of the shifts va are given as follows. In case of N = 2, the ramified

covering surface is rather simple, see figure 2. Therefore we don’t need to introduce a

complicated target space as did in [1, 5]. Taking into account the definition (3.2), the four

shift vectors can be written as

v1 = 2πR
[
(m1

0 −m1
1) + i(n1

0 − n1
1)
]

v2 = 2πR
[
(m2

0 −m2
1) + i(n2

0 − n2
1)
]

v3 = 2πR
[
(m3

0 −m3
1) + i(n3

0 − n3
1)
]

v4 = 2πR
[
(m4

0 −m4
1) + i(n4

0 − n4
1)
] (3.21)

Notice that the superscript {1, 2, 3, 4} label the different loops and the subscript {0, 1}
label the different replica. The {m,n} represent the real and imaginary part accordingly.

However, as we mentioned before, the different winding modes of k = 0 and k = 1 are

actually correlated. In case of k = 0, the shift vectors corresponding to γ2 and γ4 are

trivial, i.e., equals to zero, this actually is a constraint condition

m2
0 = −m2

1, n2
0 = −n2

1

m4
0 = −m4

1, n4
0 = −n4

1.
(3.22)

We should impose these constraints into the summation, as a result, the number of inde-

pendent integers is reduced, which is 12 rather than 16. It is reasonable by noticing that

the covering surface exactly has genus g = 3, as show in figure 2. Therefore the inde-

pendent winding modes of a single scalar should be parameterized by 3 complex vectors,

or 6 real winding numbers. Here we have used a different approach comparing to [5], in

which they used the orbifold method: the world sheet remains simple but the target space

becomes a complicated orbifold. We reported their method in the appendix D. The only

difference between the two methods is that there is a zero mode in the orbifold approach,

after absolving the zero mode divergence into the normalization constant, the two methods

actually agree with each other. We are going to use the parameterization (3.21) and (3.22),

as we will see, there is no zero mode.

Putting (3.19), (3.21) and (3.22) all together, we find that the first half of the classical

action for the field X̃1 which only depends on v1, v2, is

S1
cl(v1, v2) = −2πi(mT · Ω ·m+ nT · Ω · n), (3.23)
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Figure 2. The N = 2 covering surface with two cuts gluing together.

where m ≡ {m1
0,m

1
1,m

2
0} ∈ Z3, n ≡ {n1

0, n
1
1, n

2
0} ∈ Z3 and Ω is a symmetry matrix

Ω =
iR2

8

 A −A 2B

−A A −2B

2B −2B 4C

 . (3.24)

The second half of the classical action for the field X̃1, which only depends on v3, v4,

can be found by the same way, and is given by

S2
cl(v3, v4) = −2πi

(
m′

T · Ω′ ·m′ + n′
T · Ω′ · n′

)
, (3.25)

where m′ ≡ {m3
0,m

3
1,m

4
0} ∈ Z3, n′ ≡ {n3

0, n
3
1, n

4
0} ∈ Z3 and

Ω′ =
iR2

8

 A′ −A′ 2B′

−A′ A′ −2B′

2B′ −2B′ 4C ′

 . (3.26)

The matrix elements A′, B′ and C ′ given below

A′ = i
W1

2W4
1 −W1

1W4
2

−W3
2W4

1 +W3
1W4

2

B′ = i
−2W1

2W3
1 + 2W1

1W3
2 +W2

2W4
1 −W2

1W4
2

−4W3
2W4

1 + 4W3
1W4

2

C ′ = i
−W2

2W3
1 +W2

1W3
2

−2W3
2W4

1 + 2W3
1W4

2 .

(3.27)

3.3 Results

3.3.1 Lattice summation

Substituting all the intermediate results into (2.29), now we can do the lattice summation

Zcl =
∑

v1,v2,v3,v4,u1,u3

e−S
0
cl(u1,u3)e−S

1
cl(v1,v2)e−S

2
cl(v3,v4) (3.28)
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After some algebra, we find

Zcl =

∑
m∈Z3

e2πimT · iR
2

4
Γ·m

2 ∑
m′∈Z3

e2πim′T · iR
2

4
Γ′·m′

2

, (3.29)

where

Γ =

 A+ β −A+ β 2B

−A+ β A+ β −2B

2B −2B 4C

 , Γ′ =

 A′ + 1
β −A

′ + 1
β 2B′

−A′ + 1
β A′ + 1

β −2B′

2B′ −2B′ 4C ′

 (3.30)

The matrix Γ and Γ′ are symmetric and real, most importantly, they are positive definite.

Although it is hard to prove analytically, it can be easily checked numerically. Thus, by

using Siegel theta function, the classical part (3.29) can be written as

Zcl = Θ

(
0| iR

2

4
Γ

)2

Θ

(
0| iR

2

4
Γ′
)2

. (3.31)

It is worth to mention that the dimension of Γ and Γ′ is 3, which is exactly the genus of

the N = 2 ramified covering surface of the torus with two cuts, see figure 2.

Given the equations (3.4), (3.12) and (3.31), one can obtain the total partition function

Z = Z0
quZ

1
quZcl

=
f(β)

β|η(iβ)|4
1

| detW |
|ϑ1(x+ y)||ϑ1(x)|√
|ϑ1(2x+ y)||ϑ1(y)|

Θ

(
0| iR

2

4
Γ

)2

Θ

(
0| iR

2

4
Γ′
)2

,
(3.32)

where f(β) need to be fixed. This can be done by analyzing the behavior of Z in the limit

of x→ 0.

We already know that the conformal dimension of the twist field for N = 2 is (1/8, 1/8).

As one pair of twist and antitwist fields come together, they should factor onto the identity

operator according to the OPE:

σ1/2(z1, z̄1)σ1/2(z2, z̄2) ∼ (z1 − z2)−1/4(z̄1 − z̄2)−1/41(zz, z̄2). (3.33)

However it is not clear that, the complete genus 3 partition function should behave the

same way at x → 0 as described by the above OPE. Here we assume that in the small x

limit, the leading singular behavior for the partition function nonetheless coincides with

that of the OPE, and fix f(β) by demanding

lim
x→0

Z ∼
Z2
b

x
, (3.34)

where Zb is the partition function of the compact complex free scalar on the torus given

by [15]

Zb =
R2

2

1

Im(τ)|η(τ)|4

∑
m,m′

exp

(
−πR

2|mτ −m′|2

2Im(τ)

)2

=
1

|η(τ)|4
ϑ3

(
0| iβR

2

2

)2

ϑ3

(
0| i2β
R2

)2

,

(3.35)
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where in the last line of (3.35) we have assumed τ = iβ is pure imaginary and resummed

over m′.

To get the leading singular term, we start by expanding the elements of period matrix

with respect to x, the general form of the contour integrals can be expressed by

W1
1 = W1

2 = π +O(x2),

W2
1 = −2y+2x(F (y, β)+G(y, β) log(x))+O(x2),

W2
2 = −2y−2x(F (y, β)+G(y, β) log(x))+O(x2),

W3
1 = −iβπ + iH(y, β)x+O(x2), W3

2 = −iβπ−iH(y, β)x+O(x2),

W4
1 = iJ(y, β)x+O(x2), W4

2 = −iJ(y, β)x+O(x2). (3.36)

where F,G,H, I are regular when x→ 0. The only subtlety of the definition (3.36) is the

logarithmic singularity in the contour integral over γ2. It should not be surprised though,

because when x→ 0, the branch cut disappear and the loop γ2 get pinched. This sudden

change implies that the derivative of the W2
1(2) with respect to x at x = 0 will not converge,

more precisely, it diverges like log(x). This behavior of divergence is studied in detail in

appendix C. One can also find similar examples in the logarithmic conformal field theory,

see for example [12, 13].

Fortunately this kind of singularity will not appear in the partition function. As it

was suggested in [4], the classical contribution will cancel the logarithmic singularity in the

quantum part if one performs Poisson resummation of the terms in Scl which vanishes like

1/ log(x). In appendix C, we show this calculation explicitly. We also find that the exact

form of F,G and H are actually irrelevant for the leading singular term. In the end f(β)

can be fixed as

f(β) = cnR
6ϑ′1(0)−1|η(iβ)|−4, (3.37)

where we have absorbed other coefficients into cn.

Finally, the partition function Z becomes

Z = cn
R6

βϑ′1(0)|η(iβ)|8
1

| detW |
|ϑ1(x+ y)||ϑ1(x)|√
|ϑ1(2x+ y)||ϑ1(y)|

Θ

(
0| iR

2

4
Γ

)2

Θ

(
0| iR

2

4
Γ′
)2

. (3.38)

Noticed that this result is only valid for the square torus with τ = iβ, for more general

moduli, one should not expect such simplification. This is the main result of the paper.

To obtain Tr(ρNA ), Z should be normalize with the original partition function

Z2 ≡ Tr(ρNA ) =
Z

Z2
b

, (3.39)

Then the N = 2 Rényi entropy is

S = − log(cn)− log

(
1

βϑ′1(0)

1

| detW |
|ϑ1(x+ y)||ϑ1(x)|√
|ϑ1(2x+ y)||ϑ1(y)|

)

− log
(
Θ(0|iR2Γ/4)2Θ(0|iR2Γ′/4)2

)
+ 4 log

(
ϑ3

(
0| i2β
R2

))
+ 4 log

(
ϑ3

(
0| iβR

2

2

))
,

(3.40)
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Figure 3. In the left we set y = 0.001. In the right we set x = 0.1.

This expression can be evaluated numerically for any x 6= 0 and y 6= 0. We plot (3.40) as

a function of x and y in figure 3

3.3.2 T-duality

It is important to check the T-duality of (3.32). Let’s first draw out the R dependent part

of the partition function

F(R) ≡ R6Θ(0|iR2Γ/4)2Θ(0|iR2Γ′/4)2, (3.41)

To condense the expression, we introduce the two functions

D12 = W1
1W2

2 −W2
1W1

2, D34 = W3
1W4

2 −W4
1W3

2. (3.42)

The key observation is that A,B,C and A′, B′, C ′ have a relation

A = −2
D34

D12
C ′, B =

D34

D12
B′, C = − D34

2D12
A′, (3.43)

and the following identity exists:

D34

2D12

1

(B2 −AC)
= 1. (3.44)

These lead to an important relation

4Γ−1 = Γ′. (3.45)

It is also known that Siegel theta function obeys the modular transformation [14]

Θ(0|Ω) = Θ(0| − Ω−1) det (−iΩ)−1/2. (3.46)

Therefore we have

Θ(0|iR2Γ′/4) = Θ

(
0| 4i

R2
Γ′
−1
)

det(R2Γ′/2)−1/2

= Θ

(
0| i

R2
Γ

)(
4

R2

)3/2

det(Γ′)−1/2.

(3.47)

Plugging into the equation (3.41)

F(R) ∼ Θ

(
0| iR

2

4
Γ

)2

Θ

(
0| i

R2
Γ

)2

det(Γ′)−1, (3.48)

which is manifestly T-dual invariant R2 ↔ 4
R2 .
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Figure 4. We have set x = 1, y = 0.1 and R = 1.5.

4 Low temperature expansion

To see the temperature dependence of the Rényi entropy more clearly, we plot it in fig-

ure 4. It shows a zero temperature limit as expected. In order to find out what the low

temperature limit is, we would like to expand the partition function (3.39) with respect to

q ≡ e−βπ. The following expansion are useful:

ϑ1(z, q) ∼ 2 sin(z)q1/4 +O(q2)

ϑ′1(z, q) ∼ 2 cos(z)q1/4 +O(q2)

ϑ3(z, q) ∼ 1 + 2 cos(z)q +O(q2).

(4.1)

In the limit β →∞, only the contour integral over the thermal cycle diverges as −iβπ, but

all the other elements of the period matrix are finite, this can be seen by numerical evalu-

ation or Taylor expansion of the integrand according to q = e−βπ. Hence we can introduce

a general form of the leading term of the period matrix in the low temperature limit

W ∼


π +O(q2) π +O(q2) π +O(q2) π +O(q2)

f1π +O(q2) f2π +O(q2) f1π +O(q2) f2π +O(q2)

π(ig1 − iβ) +O(q2) π(ig2 − iβ) +O(q2) π(−ig1 + iβ) +O(q2) π(−ig2 + iβ) +O(q2)

ih1π +O(q2) ih2π +O(q2) −ih1π +O(q2) −ih2π +O(q2)

 ,

(4.2)

where f1(2), g1(2) and h1(2) are some functions of x and y.

For convenience, we rewrite the partition function (3.39) into its manifested T-dual

invariant form

Z2 =
cn

βϑ′1(0)

1

| detW || det Γ′|
|ϑ1(x+ y)||ϑ1(x)|√
|ϑ1(2x+ y)||ϑ1(y)|

Θ(0|iR2

4 Γ)2Θ(0| i
R2 Γ)2

ϑ3(0| iβR2

2 )4ϑ3(0| i2β
R2 )4

. (4.3)

After some algebra, we get

lim
β→∞

β| detW || det Γ′| = 32π4(f1 − f2)2. (4.4)

Now we expand the Siegel theta function in the large β limit. Given the form of Γ matrix

Γ =


f2g1−f1g2
f1−f2 + 2β −f2g1+f1g2

f1−f2
−2g1+2g2+f2h1−f1h2

2(f1−f2)
−f2g1+f1g2

f1−f2
f2g1−f1g2
f1−f2 + 2β 2g1−2g2−f2h1+f1h2

2(f1−f2)
−2g1+2g2+f2h1−f1h2

2(f1−f2)
2g1−2g2−f2h1+f1h2

2(f1−f2) 22(h1−h2)
f1−f2

 , (4.5)
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one can see that the leading contribution of the summation

Θ

(
0| i

R2
Γ

)
=

∑
m1,m2,m3

e−
π
R2m.Γ.m (4.6)

comes from m1 = m2 = 0, and the next leading term comes from m2
1 + m2

2 = 1. For

simplicity, we also assuming that R2 > 2, then the expansion of Siegel theta function is

approximately

Θ

(
0| i

R2
Γ

)
∼
∑
m3

e
− 2π
R2

h2−h1
f1−f2

m2
3 +4e−

2π
R2 β
∑
m3

e
− π
R2

(
2(h2−h1)
f1−f2

m2
3+λm3+

(f2g1−f1g2)
f1−f2

)
+O(e−

4π
R2 β)

= ϑ3

(
0| 2i

R2
β̃

)1 + 4
ϑ3( λ

2R2 | 2i
R2

1
β̃

)

ϑ3(0| 2i
R2

1
β̃

)
e
− π
R2

(f2g1−f1g2)
f1−f2 e−

2π
R2 β +O(e−

4π
R2 β)

 (4.7)

where we have defined

λ ≡ 2g1 − 2g2 − f2h1 + f1h2

f1 − f2
,

h2 − h1

f1 − f2
≡ 1

β̃
. (4.8)

With these results, the partition function is approximately

Z2 =
cn

32π4(f1 − f2)2

| sin(x+ y)|| sin(x)|√
| sin(2x+ y)|| sin(y)|

ϑ3

(
0|i 2

R2

1

β̃

)2

ϑ3

(
0|iR

2

2

1

β̃

)2

×

1 + 8
ϑ3( λ

2R2 | 2i
R2

1
β̃

)

ϑ3(0| 2i
R2

1
β̃

)
e
− π
R2

(f2g1−f1g2)
f1−f2 e−

2π
R2 β +O(e−

4π
R2 β)

 ,

(4.9)

where f1, f2 and g1, g2 are given as following

πf1 = −2

∫ π−y
2

π+y
2

dz

√
cos(z + y/2)

√
cos(z + y/2)√

cos(z − x− y/2)
√

cos(z + x+ y/2)

πf2 = −2

∫ π−y
2

π−y
2

dz

√
cos(z − x− y/2)

√
cos(z + x+ y/2)√

cos(z − y/2)
√

cos(z + y/2)

πg1 =

∫ −iβπ
0

dz

[ √
cos(z − y/2)

√
cos(z + y/2)√

cos(z − x− y/2)
√

cos(z + x+ y/2)
− 1

]

πg2 =

∫ −iβπ
0

dz

[√
cos(z − x− y/2)

√
cos(z + x+ y/2)√

cos(z − y/2)
√

cos(z + y/2)
− 1

]
,

(4.10)

and h1 and h2 can be defined similarly as f1 and f2 except for different contour. It is

interesting to notice that, the contour integrals along the canonical cycles of the torus drop

out in the leading term, they however reappear in the sub-leading terms.

4.1 Large system limit

Now we focus on the leading term which only depends on f1 − f2 and h2 − h1:

f1 − f2 =
1

π

∮
γ2

dz(w1(z)− w2(z))

h1 − h2 =
1

iπ

∮
γ4

dz(w1(z)− w2(z)).

(4.11)
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To condense the notations, let’s define

w(z) = w1(z + π/2)− w2(z + π/2)

=
ϑ1(z − y

2 )ϑ1(z + y
2 )− ϑ1(z − y

2 − x)ϑ1(z + y
2 + x)

ϑ1(z − y
2 )1/2ϑ1(z + y

2 )1/2ϑ1(z − y
2 − x)1/2ϑ1(z + y

2 + x)1/2
.

(4.12)

In the large β limit, w(z) becomes

w(z) =
sin(z − y

2 ) sin(z + y
2 )− sin(z − y

2 − x) sin(z + y
2 + x)

sin(z − y
2 )1/2 sin(z + y

2 )1/2 sin(z − y
2 − x)1/2 sin(z + y

2 + x)1/2
+O(q2) (4.13)

To compare the leading term of (4.9) with the earlier results in [5], we further consider

the infinite system limit: x � π and y � π, i.e., the length of the subsystem and their

separation are much smaller than that of the whole system. In this way the contour integral

can be further simplified

f1 − f2 =
1

π

∮
γ2

dzw(z)

=
1

π

∮
γ2

dz
(x+ y)x

(z − y
2 )1/2(z + y

2 )1/2(z − y
2 − x)1/2(z + y

2 + x)1/2
.

(4.14)

This integral is easily calculated giving∮
γ2

dz
1

(z − y
2 )1/2(z + y

2 )1/2(z − y
2 − x)1/2(z + y

2 + x)1/2
=

2πiF1/2(1− r)
(x+ y)∮

γ4

dz
1

(z − y
2 )1/2(z + y

2 )1/2(z − y
2 − x)1/2(z + y

2 + x)1/2
=

2πiF1/2(r)

(x+ y)
,

(4.15)

where we have defined

r =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
, F1/2(r) = 2F1(1/2, 1/2; 1; r). (4.16)

Thus we have

f1 − f2 = 2iF1/2(1− r)x
h2 − h1 = 2iF1/2(r)x,

(4.17)

and

β̃−1 =
F1/2(r)

F1/2(1− r)
(4.18)

At last, the leading term of (4.9) can be written as

Z2 = cn

[
(x+ y)x

x2
√

(2x+ y)y

]
1

F1/2(1− r)2
ϑ3

(
0|i 2

R2

1

β̃

)2

ϑ3

(
0|iR

2

2

1

β̃

)2

= cn

[
x+ y

x
√

(2x+ y)y

]
1

F1/2(1− r)2β̃−2
ϑ3

(
0|i 2

R2
β̃

)2

ϑ3

(
0|iR

2

2
β̃

)2

= cn

[
x+ y

x
√

(2x+ y)y

]
1

F1/2(r)2
ϑ3

(
0|i 2

R2
β̃

)2

ϑ3

(
0|iR

2

2
β̃

)2

= cn

[
x+ y

x
√

(2x+ y)y

][
ϑ3(0|i 2

R2 β̃)ϑ3(0|iR2

2 β̃)

ϑ2
3(β̃)

]2

(4.19)
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where we have used the equality [5]

F1/2(r) = ϑ2
3(β̃). (4.20)

One can see that the result (4.19) is agreed with [5] for the N = 2 case.

4.2 Universal thermal corrections in the limit of small seperation

As one can see that the thermal corrections in the expansion (4.9) is very complicated. In

order to compare it with the results for a single interval case [10], we consider a special

case that the length of the two intervals are much bigger than the separation, i.e., x� y.

For further convenience, we also change the variable ω = ei2z, so the integral (4.10) can be

written as

πf1 = i

∫ −eiy
−e−iy

dω

√
1 + 2ω cos(y) + ω2

ω
√

1 + 2ω cos(2x+ y) + ω2

πf2 = i

∫ −eiy
−e−iy

dω

√
1 + 2ω cos(2x+ y) + ω2

ω
√

1 + 2ω cos(y) + ω2

πg1 =
1

2i

∫ 0

1
dω

1

ω

[ √
1 + 2ω cos(y) + ω2√

1 + 2ω cos(2x+ y) + ω2
− 1

]

πg2 =
1

2i

∫ 0

1
dω

1

ω

[√
1 + 2ω cos(2x+ y) + ω2√

1 + 2ω cos(y) + ω2
− 1

]
.

(4.21)

Since there are no pinching divergences in these integrals, we can safely Taylor expand the

integrand with respect to y, and after that we do the integration, we find

πf1 ∼ 0 +O(y2), πf2 ∼ 2y +O(y2)

πg1 = log

(
1 + cos(2x)

2

)
− tan(x)y +O(y2), πg2 = xy +O(y2).

(4.22)

Then we get
f2g1 − f1g2

f1 − f2
∼ − 1

π
log

(
1 + cos(2x)

2

)
, (4.23)

On the other hand, 1/β̃ diverges as y → 0. Using the expansion

ϑ3(z, q) ∼ 1 + 4 cos(2z)q +O(q2), (4.24)

the first oder of the thermal correction is approximately

8
ϑ3( λ

2R2 | 2i
R2

1
β̃

)

ϑ3(0| 2i
R2

1
β̃

)
e
− π
R2

(f2g1−f1g2)
f1−f2 e−

2π
R2 β ∼ 8e

1
R2 log(

1+cos(2x)
2

)e−
2π
R2 β

∼ 8

(
1 + cos(2x)

2

) 1
R2

e−
2π
R2 β .

(4.25)

By using the identity
1 + cos(2x)

2
= cos2(x) =

(
sin(2x)

2 sin(x)

)2

, (4.26)

– 19 –



J
H
E
P
0
1
(
2
0
1
6
)
0
5
8

the first order thermal correction of the partition function is just

8

(
sin(2x)

2 sin(x)

) 2
R2

e−
2π
R2 β , (4.27)

which is the same results for a single interval in case of N = 2 [9, 10], where 2x is just the

total length of the intervals.

5 Conclusion

In this paper we calculate the N = 2 Rényi entanglement entropies of two intervals on

a circle at finite temperature (3.40). We also obtain the low temperature expansion up

to the second order with respect to e−
2π
R2 β . A non-trivial check is made by taking the

large system limit and the leading term is agreed with the Rényi entanglement entropy

of two intervals in an infinite system at zero temperature [5]. Furthermore, when we take

the small separation limit y � x, the low temperature expansion also gives the correct

universal thermal corrections for a single interval.

As we have seen, the quantum part of the partition function is essentially the four point

function of twist fields. The very interesting thing about the twist fields is that they create

branch cuts on the Riemann surface. This is why we encounter some subtle logarithmic

term in the quantum part as we colliding the twist/antitwist pairs of operators. However

this logarithmic behavior doesn’t show in the two point function [8, 10], this implies that

when we calculating the four point function, there are actually two independent conformal

block depending on the choice of internal channel in the OPE, i.e., the different screening

contours which will get pinched or not. Fortunately, for compact boson this logarithmic

singularity is canceled by the classical contribution in the end. Nevertheless this logarithmic

behavior is interesting for their own sake, which deserves further study.
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A Inner products of cut abelian differentials

The inner product are defined by

(wi, wj) ≡ i

∫
R
wi ∧ w̄j , wi = wi(z)dz. (A.1)

Following the same strategy in [11], where it was used to prove Riemann bilinear relation,

one can show that the inner product can be calculated by doing contour integral along the

edges of the shadow region as depicted in figure 5. Since wl is a holomorphic one form on
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z2

z4

z3

z1

C1

C2

C3

A

BB

A-1

-1

Figure 5. We have chosen a convenient contour which encircle all the branch points and cuts.

Also the path Ca are closed related to the basis of loops γa.

the region Π, one can always find a holomorphic function f l such that ωl = df l. By Stoke’s

theorem, the inner product can be written as a contour integral on the boundaries

1

i
(wi, wj) =

∮
∂Π
f iw̄j =

∫
A
wi
∫
B
w̄j −

∫
B
wi
∫
A
w̄j

+

∫
C1

wi
∫
C2

wj +

∫
C2

wi
∫
C3

wj +

∫
C1

wi
∫
C3

wj

+
1

1− e−2πk/N

∫
C1

wi
∫
C1

wj +
1

1− e−2πk/N

∫
C2

wi
∫
C2

wj

+
1

1− e2πk/N

∫
C3

wi
∫
C3

wj

(A.2)

Given the relation
∫
C3

+
∫
C2

+
∫
C1

= 0 and∫
C1

= −
∮
γ4

,

∫
C2

= −
∮
γ2

, (A.3)

the inner product for k = 1, N = 2 can be presented by the elements of cut period matrix

(wi, wj) = −i(W i
1W̄

j
3 −W

i
3W̄

j
1 ) +

i

2

(
W i

4W̄
j
2 −W

i
2W̄

j
4

)
. (A.4)

It is easy to verify that this inner product is hermitian.

B Definition of contour integrals

The convention of theta functions we used is the same as [14]:

ϑ1(z|τ) = ϑ1(z, q)

= 2
∞∑
n=0

(−1)nq(n+1/2)2 sin((2n+ 1)z).
(B.1)
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Z1 Z3Z2 Z4

Figure 6. The two branch cuts.

where q ≡ eiπτ . The theta function are quasi-periodic

ϑ1(z + (m+ nτ)π|τ) = (−1)(m+n)q−n
2
e−2inzϑ1(z|τ). (B.2)

For simplicity, we put the branch points on the real axis, see figure 6. The contour

integral is defined as follows. Since the closed loop circling the four twist insertion is

trivial, so that the integral along (z1, z2) and (z3, z4) will cancel each other. Then W 1
1 can

be written as

W1
1(2)(x, y) =

(∫ z1

0
dz +

∫ z3

z2

dz +

∫ π

z4

dz

)
w1(2)(z). (B.3)

Since the theta function ϑ1(z) is an odd function, and if τ is pure imaginary, ϑ(z, q) is

always real on the real line, which indicate that the integral W 1
1 and W 2

1 are real.

To do the contour integral around γ2, we chose the branch to be (−π, π). Then

W
1(2)
2 =

∮
γ2

dzω1(z) = (e2πi 1
2 − 1)

∫ z3

z2

dzw1(2)(z). (B.4)

While long the B-cycle γ3, if we let τ = iβ to be pure imaginary, the contour integral

can be written as

W3
1(2) =

∮
γ3

dzw1(2)(z) =

∫ −iβπ

0
w1(2) dz (B.5)

The contour integral W
1(2)
4 are given by similarly

W4
1 =e−

iπ
2 2i sin

(
3

2
π

)
(−1)−1/2

∫ z2

z1

dzϑ1(z1 − z)−1/2ϑ1(z − z2)1/2ϑ1(z − z3)1/2ϑ1(z − z4)−1/2

W4
2 =e−

iπ
2 2i sin

(
3

2
π

)
(−1)1/2

∫ z2

z1

dzϑ1(z1−z)1/2ϑ1(z−z2)−1/2ϑ1(z−z3)−1/2ϑ1(z−z4)1/2 (B.6)

The other element of period matrix can be obtained by doing conjugation.

C x → 0 limit of contour integral

In the following we will study the behavior of the contour integral as x → 0. The most

important thing is to convince ourself that there is a logarithmic divergence of W2
1(2) when

– 22 –



J
H
E
P
0
1
(
2
0
1
6
)
0
5
8

the loop γ2 get pinched. Noted that, in the limit x→ 0, it is not helpful to expanded the

integrand of W2
1(2) with respect to x, because we expect that the derivative of the integral

is not regular at x = 0. Therefore we should change the strategy. Since the singularity

only depends on how close the two branch points get when pinching the contour, i.e.,

the singularity should not depends on y, thus it is enough to study the singularity by

considering a much simpler case that y is very small. By using the approximation that

ϑ1(z) ∼ z (C.1)

when z is small, the integral W2
1 can be simplified:

W2
1 ∼ (−2)

∫ +y/2

−y/2
dz

√
z − y

2 − x
√
z + y

2 + x√
z − y

2

√
z + y

2

= −y
∫ 1

−1
du

√
u− 2x

y − 1
√
u+ 2x

y + 1
√
u− 1

√
u+ 1

= −2y

∫ 1

0
d sin(θ)

√
sin(θ)− 2x

y − 1
√

sin(θ) + 2x
y + 1√

sin(θ)− 1
√

sin(θ) + 1

= −2(y + 2x)

∫ π/2

0
dθ

√
1− 1

(1 + 2x/y)2
sin2 θ

= −2(y + 2x)E

(
1

(1 + 2x/y)2

)

(C.2)

where E(m) is the second kind of elliptic integral defined by

E(m) ≡
∫ π/2

0
dθ
√

1−m2 sin2 θ. (C.3)

We can expand (C.2) with respect to x

W2
1 ∼ −2y + 2 (−1− 2 log(2)− log(y) + log(x))x+O(x2), (C.4)

which gives us correct leading term and also confirms the existence of log(x) in the next

leading term. For bigger y, the integral will not be so simple as (C.4). Nevertheless, giving

the fact that the pinching process only depends on x, it is reasonable to assuming that the

general form of expansion at order O(x) should be like

2(F (y, β) +G(y, β) log(x))x. (C.5)

where F (y, β) and G(y, β) can be easily evaluated numerically but we can’t find the an-

alytical form. Fortunately, F and G will not appear in the partition function, as we will

show in the following.

In [4], it was suggested that the classical contribution will cancel the logarithmic sin-

gularity in the quantum part. Given the general form of (3.36), let’s compute the classical

contribution

Zcl = Θ

(
0| iR

2

4
Γ

)2

Θ

(
0| iR

2

4
Γ′
)2

. (C.6)
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We first note that the matrix Γ looks like

Γ =


2β − Hy

πF+Gπ log(x)
Hy

πF+Gπ log(x) − 2(πH+Jy)
4πF+4Gπ log(x)

Hy
πF+Gπ log(x) 2β − Hy

πF+Gπ log(x)
2(πH+Jy)

4πF+4Gπ log(x)

− 2(πH+Jy)
4πF+4Gπ log(x)

2(πH+Jy)
4πF+4Gπ log(x) − J

F+G log(x)

 . (C.7)

One can use the formula (3.46) to do the trick of Poisson resummation

Θ

(
0| iR

2

4
Γ

)
= Θ

(
0| i4

R2
Γ−1

)
det

(
R2

4
Γ

)−1/2

. (C.8)

By using (3.45), we find

Zcl = Θ

(
0| i

R2
Γ′
)2

Θ

(
0| iR

2

4
Γ′
)2

det

(
R2

4
Γ

)−1

. (C.9)

Then the only term may contain logarithmic singularity is

det(W )−1 det(Γ)−1 ∼ − F +G log(x)

32β2Jx2 (J (4π2βF + Jy2) + 4π2βGJ log(x) + π2H2 − 2πHJy)

∼ −1

128J2x2β3π2
(C.10)

One can see that the F,G and log(x) don’t appear in the end.

To find the residue of the leading singular term

lim
x→0

Z ∼ a

x
, (C.11)

we also need to calculate the leading contribution of

Θ

(
0| i

R2
Γ′
)2

Θ

(
0| iR

2

4
Γ′
)2

. (C.12)

Given the form of Γ′ up to the order O(x)

Γ′ =


2
β 0 −πH+Jy

Jπβ

0 2
β

πH+Jy
Jπβ

−πH+Jy
Jπβ

πH+Jy
Jπβ

4(−Hy+Fπβ+Gπβ log(x))
Jπβ

 , (C.13)

the leading contribution is

Zcl ∼

[ ∑
m1,m2

exp

(
−π
R2

2

β
(m2

1 +m2
2)

)]2 [∑
n1,n2

exp

(
−πR2

4

2

β
(n2

1 + n2
2)

)]2

. (C.14)

After doing Poisson resummation of m1 and m2, Zcl can be written as

Zcl ∼
16β2

R2

[ ∑
m1,m2

exp

(
−R2βπ

2
(m2

1 +m2
2)

)]2 [∑
n1,n2

exp

(
−πR2

2

1

β
(n2

1 + n2
2)

)]2

=
16β2

R2

[∑
m1,n1

exp

(
−R2π

2

(
βm2

1+
n2

1

β

))]2[∑
m2,n2

exp

(
−R2π

2

(
βm2

2+!
n2

2

β

))]2

. (C.15)
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Hence the most singular term of the total partition function when x→ 0 is

Z ∼ f(β)

β|η(iβ)|4
1

8J2x2R2β

|ϑ1(x+ y)||ϑ1(x)|√
|ϑ1(2x+ y)||ϑ1(y)|

[ ∑
m1,n1

exp

(
−R2π

2

(
βm2

1 +
n2

1

β

))]4

=
1

x

f(β)

β2|η(iβ)|4
ϑ′1(0)

8J2R2

[ ∑
m1,n1

exp

(
−R2π

2

(
βm2

1 +
n2

1

β

))]4

, (C.16)

where J can be easily determined by expand the integrand with respect to x

w1(z) = 1 +
1

2

(
ϑ′1(z − π

2 −
y
2 )

ϑ1(z − π
2 −

y
2 )
−
ϑ′1(z − π

2 + y
2 )

ϑ1(z − π
2 + y

2 )

)
x+O(x2)

w2(z) = 1− 1

2

(
ϑ′1(z − π

2 −
y
2 )

ϑ1(z − π
2 −

y
2 )
−
ϑ′1(z − π

2 + y
2 )

ϑ1(z − π
2 + y

2 )

)
x+O(x2).

(C.17)

then J can be found by picking up the residue∮
γ4

1

2

(
ϑ′1(z − π

2 −
y
2 )

ϑ1(z − π
2 −

y
2 )
−
ϑ′1(z − π

2 + y
2 )

ϑ1(z − π
2 + y

2 )

)
x = iJx = iπx. (C.18)

Comparing (C.16) with Z2
b /x:

Z2
b /x =

R4

4x

1

Im(τ)2|η(τ)|8

∑
m,m′

exp

(
−πR

2|mτ −m′|2

2Im(τ)

)4

, (C.19)

f(β) should be fixed by

f(β) =
2π2R6

ϑ′1(0)|η(iβ)|4
. (C.20)

D Calculate classical contribution by using orbifold

Generally, one consider the twist/antitwist pairs of insertions of twist fields for a given

k ∈ {0, 1, · · · , N − 1}. Following [3, 5], the shifts in the global monodromy condition lies

in the subset of a complicated lattice describe as

Λk/N =

q = πR
N−1∑
j=0

e2πijk/N (m+ in)

 , va ∈ (1− e2πik/N )ξa. (D.1)

where ξa ∈ Λk/N . The shift vectors v2, v4 is given by

v2 = (1− e2πik/N )ξ2, v4 = (1− e2πik/N )ξ4. (D.2)

For shift vectors v1 and v3, which are corresponding to the two cycles of the torus, should

be parameterized by

v1 = ξ1, v3 = ξ3. (D.3)
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In the case of N = 2 and k = 1,

ξa = πR [(ma
0 −ma

1) + i(na0 − na1)] , ma
0, n

a
0,m

a
1, n

a
1 ∈ Z. (D.4)

Then the first half of the classical action is given by

S1
cl(v1, v2) = −2πi(mT · Ω ·m+ nT · Ω · n), (D.5)

where m ≡ {m1
0,m

1
1,m

2
0,m

2
1} ∈ Z4, n ≡ {n1

0, n
1
1, n

2
0, n

2
1} ∈ Z4 and Ω is a symmetry matrix

Ω =
iR2

4


A −A 2B −2B

−A A −2B 2B

2B −2B 4C −4C

−2B 2B −4C 4C

 . (D.6)

Similarly, the second part of classical action can be given by

S2
cl(v3, v4) = −2πi

(
m′

T · Ω′ ·m′ + n′
T · Ω′ · n′

)
, (D.7)

where m′ ≡ {m3
0,m

3
1,m

4
0,m

4
1} ∈ Z4, n′ ≡ {n3

0, n
3
1, n

4
0, n

4
1} ∈ Z4 and

Ω′ =
iR2

4


A′ −A′ 2B′ −2B′

−A′ A′ −2B′ 2B′

2B′ −2B′ 4C ′ −4C ′

−2B′ 2B′ −4C ′ 4C ′

 . (D.8)

In the case of N = 2 and k = 0, there are no branch-point twist fields. Thus the

classical summation is the same as (3.9). Putting (D.5), (D.7) and (3.9) all together, the

instanton contribution of the partition function now is

Zcl =

∑
m∈Z4

e2πimT ·Υ·m

2 ∑
m′∈Z4

e2πim′T ·Υ′·m′

2

, (D.9)

where

Υ =
iR2

4


A+ β −A+ β 2B −2B

−A+ β A+ β −2B 2B

2B −2B 4C −4C

−2B 2B −4C 4C

 , Υ′ =
iR2

4


A′ + 1

β −A
′ + 1

β 2B′ −2B′

−A′ + 1
β A′ + 1

β −2B′ 2B′

2B′ −2B′ 4C ′ −4C ′

−2B′ 2B′ −4C ′ 4C ′


(D.10)

Clearly the third and the fourth row of Υ(Υ′) are not independent. i.e, they are degenerate.

By introducing a matrix U

U =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1

 , (D.11)
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one can show that

U ·Υ · UT =
iR2

4


A+ β −A+ β 2B 0

−A+ β A+ β −2B 0

2B −2B 4C 0

0 0 0 0

 . (D.12)

Now we can introduce a regulator ε > 0 as in [5], and define

U ·Υε · UT =
iR2

4


A+ β −A+ β 2B 0

−A+ β A+ β −2B 0

2B −2B 4C 0

0 0 0 ε

 = Ωε. (D.13)

We have the same relation for Υ′. Since the upper left 3 × 3 block of Ωε is a Riemann

matrix and U is invertible, by using the identity of Siegel theta function [14]∑
m∈Z4

e2πimT ·Υε·m = Θ(0|2Υε) = Θ(0|U · 2Υε · UT ) = Θ(0|2Ωε), (D.14)

one can easily see that

Zcl = lim
ε→0

∑
m∈Z4

e2πimT ·Υε·m

2 ∑
m′∈Z4

e2πim′T ·Υ′ε·m′

2

= lim
ε→0

∑
m∈Z4

e2πimT ·Ωε·m

2 ∑
m′∈Z4

e2πim′T ·Ω′ε·m′

2

.

(D.15)

We then divide the vector of integer m into m = m̃+K, where K is eigenvector of Ωε(Ω
′
ε)

with eigenvalue ε and m̃ is orthogonal to K. As a result, we separate out the zero mode

contribution which can be absorbed into the normalization. Thus one can see that (D.15)

is equal to (3.31) up to the normalization.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[10] B. Chen and J.-Q. Wu, Rényi entropy of a free compact boson on a torus, Phys. Rev. D 91

(2015) 105013 [arXiv:1501.00373] [INSPIRE].

[11] D. Mumford, Tata lectures on theta I, Birkhaüser, Switzerland (1983).
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