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Abstract. We study the active dynamics of single and interacting cytoskeletal
filaments in motility assays, in which immobilized motor proteins bind the
filaments to a surface and actively pull them along this surface. We present a
model which couples the overdamped dynamics of filaments, the active dynamics
of motor heads, and the elasticity of motor stalks and which can be used for
Langevin dynamics simulations. Single filaments perform a persistent random
walk, which we characterize by several simulation results. For interacting
filaments with a repulsive interaction of filaments, the motor-driven dynamics
of filaments leads to a non-equilibrium phase transition which generalizes the
isotropic-nematic phase transition of the corresponding equilibrium system, the
hard-rod fluid. Langevin dynamics simulations and analytical theory show that
the motor activity enhances the tendency for nematic ordering.

1 Introduction

The cytoskeleton of eucaryotic cells is made up by filaments, which are semiflexible polymers
[1]. The cytoskeleton of a living cell plays an important role for cell division, cell motility,
and force generation [2,3]. These processes require the cytoskeleton to be a dynamic structure,
which can constantly re-organize itself. For this reason, the dynamics of cytoskeletal filaments
involves several active processes, which are driven by the coupling to the hydrolysis of nucleotide
triphosphates (NTPs) such as ATP or GTP. Two important NTP-driven processes are the
polymerization dynamics, where NTP-hydrolysis allows for treadmilling and force generation by
polymerizing filaments, and the actuation of filaments by motor proteins, which generate small
forces in the piconewton range. Whereas the conventional dynamics of polymers is governed by
thermal fluctuations [4], such motor forces give rise to an active filament dynamics, which is
driven by a constant supply of mechanical energy through ATP-hydrolysis in motor proteins.
In order to understand the underlying principles of motor-driven filament dynamics it is

necessary to study simple model systems in vitro. One such model system, which has been inten-
sively studied, are bulk solutions of microtubules and two-headed kinesin motor proteins [5–7],
in which the formation of patterns such as asters and vortices is observed. Theoretical studies of
such patterns [8–12] have used a coarse-grained continuum description with kinetic equations for
filament density and orientation fields and a motor-density field. In these approaches it is inher-
ently difficult to relate the macroscopic transport coefficients to the experimentally accessible
microscopic parameters of the system. Based on experimental work on actin solutions contain-
ing myosin motor mini-filaments [13] it has also been suggested that the effect of motor activity
can be described by an increased effective temperature in the non-equilibrium system [14].
In this article, the dynamics and pattern formation by filaments in motility assays is

investigated. In a motility assay the tails of motor proteins are adsorbed and anchored to a
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Fig. 1. Snapshots of rodlike filaments with hard-core repulsion on a motor coated substrate with
randomly distributed motors and periodic boundary conditions. The filament concentration is ρ = 2/L2,
i.e., below the critical concentration of the equilibrium isotropic-nematic transition. For detachment
forces Fd = Fst, we find (a) an isotropic phase at low motor surface density σ�mL = 0.03 and (b) active
nematic ordering at high motor surface density σ�mL = 0.09.

two-dimensional surface. The filaments are pulled over this surface if the molecular motors are
active. Because of their reduced dimensionality and the quenched motor concentration field,
motility assays represent a slightly simpler model system in comparison to systems consisting
of solutions of filaments and two-headed motor proteins. Motility or gliding assays are by
now a standard tool to characterize motor proteins by analyzing the transport velocities of
single filaments gliding over the substrate [15,16]. We will first discuss the dynamics of single
filaments. One important quantity characterizing the motion of a single filament is the mean
velocity of filaments. Single filaments perform a persistent random walk [17–19], which we
characterize using our simulation model. Then we focus on the cooperative behavior of many
filaments, which have a mutual repulsive interaction [20,21]. Repulsive interactions originate
from the steric interaction of filaments, which gives rise to an additional bending energy cost
associated with each crossing of two filaments. This crossing energy cost can become large
if the filaments are effectively confined to two dimensions by decreasing the height in the
direction perpendicular to the surface below two filament diameters. In this case, a hard-core
repulsion between filaments is effective. The equilibrium system corresponding to the confined
motility assay with hard-core repulsion in the absence of motors is the two-dimensional
hard-rod fluid, which exhibits an isotropic-nematic ordering transition above a critical density
of filaments [22,23]. We show both numerically using a microscopic simulation model and by
analytical arguments that the nematic ordering is enhanced by the presence of motor activity
due to the combined effect of repulsive filament interactions and active forces exerted by the
motors; see Fig. 1. Using the results for the persistent motion of single filaments we extend
the dynamic mean-field theory for nematic ordering [24] to active systems. From the theoretical
treatment, we derive the concept of an increased effective length, which successfully explains
our simulation data for filaments with a hard-core repulsion characterized by an infinite
filament crossing energy and allows to obtain the phase behavior in terms of the experimentally
accessible microscopic model parameters. Our results show that the concept of an effective
temperature is rather subtle and does not apply in the limit of large crossing energy barriers
where the system becomes effectively athermal, i.e., is governed by steric interactions only.

2 Model

We first introduce our microscopic model for filament motion in motility assays. The model
contains filaments, motor heads, and polymeric motor tails as separate degrees of freedom, see
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Fig. 2. Schematic top view of a filament i in the motility assay with two motors attached. ri is the
filament’s center of mass, θi and ui its orientational angle and unit vector, respectively. The attached
motor α is anchored at rα0 , and its head is positioned at r

α
i . Motor stalks or tails connecting the anchor

points and the motor heads are modeled as polymeric springs.

Fig. 2. One end of the motor tail is anchored to the substrate, and the motor head on the other
end can bind to a filament. We assume that the tail flexibility allows for binding in the correct
orientation with respect to the filament polarity. Once bound, the motor head moves along the
filament thereby stretching the polymeric motor tail, which gives rise to a loading force acting
both on the motor head and the attached filament. This force feeds back onto the motion of
the bound motor head, which moves with a load-dependent motor velocity [25,26]. Filaments
follow an overdamped dynamics with external forces arising from the stretched motor tails and
from the hard-core repulsion between filaments.
To proceed, let us consider N rigid filaments of length L (with index i=1, . . . , N) on a

planar two-dimensional surface. The configuration of filament i can then be specified by the
two-dimensional vector ri for its center of mass and by the angle θi or the unit vector ui =
(cos θi, sin θi) for its orientation; see Fig. 2. The filament is subject to forces F

α
i fromNi attached

motors (with index α = 1, ..., Ni) with motor heads positioned at r
α
i . Each such force arises

from the polymeric tail of motor α, which is stretched by the directed motion of the motor head
on the filament, as described below. The motor tail is anchored at rα0 and the head position is
rαi . We model the polymeric tail of the motor as a freely jointed chain such that F

α
i is obtained

by inverting the force-extension relation of a freely jointed chain.1 In addition to motor forces,
the filaments are subject to interaction forces Fij arising from the purely repulsive interactions
between filaments i and j [28].
Under the influence of the motor forces Fαi and the interaction forces Fij each filament i

performs an overdamped translational motion, which is described by the stochastic Langevin-
type equation of motion [20]

Γ · ∂tri =
∑Ni

α=1
Fαi +

∑N

j=1
Fij + ζi, (1)

where
Γ ≡ Γ‖ui ⊗ ui + Γ⊥(I− ui ⊗ ui), (2)

is the matrix of translational friction coefficients, which contains friction coefficients Γ‖ and Γ⊥
for motion parallel and perpendicular to the filament orientation ui, respectively, and ζi(t) are
the Gaussian distributed thermal random forces [4]. In eq. (2), I is the unit matrix and ⊗ the
dyadic vector product. The thermal noise ζi(t) has correlations

〈ζi(t)⊗ ζj(t′)〉 = 2TΓ δijδ(t− t′). (3)

We measure the temperature in energy units, i.e., kB ≡ 1.
In addition to filament translation, motor and interaction forces give also rise to the torques

Mαi ≡ |(rαi −ri)×Fαi | andMij , respectively [28]. These torques lead to an overdamped rotational
dynamics, which is described by

Γθ∂tθi =
∑Ni

α=1
Mαi +

∑N

j=1
Mij + ζθ,i, (4)

1 If the motor tail is anchored at rα0 , the force −Fαi is pointing in the direction ∆rα ≡ rαi − rα0 and
|∆rα|/Lm = fFJC(|Fαi |bm/T ), where Lm is the contour and bm the monomer length of the polymeric
motor tail, kB ≡ 1, and fFJC(x) ≡ 1/ tanhx− 1/x, cf. Ref. [27].
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where Γθ is the rotational friction coefficient and ζθ,i(t) is a Gaussian distributed thermal
random torque. The thermal torque ζθ,i(t) has correlations

〈ζθ,i(t)ζθ,j(t′)〉 = 2TΓθδijδ(t− t′). (5)

Note that all friction coefficients Γ‖, Γ⊥ and Γθ are identical to those of the passive filament
dynamics, see Ref. [4].
The dynamics of motor heads is described by a deterministic equation of motion

∂tx
α
i = v(F

α
i ), (6)

where |xαi | ≤ L/2 defines the position of the motor α along the rod i, i.e., rαi = ri + xαi ui, and
the filament polarity is such that the motor head moves in the direction ui. The motor velocity
v is a function of the loading force Fαi which builds up due to stretching of the motor tail. We
use a force-velocity relation with a maximum value vmax for forces F

α
i ·ui ≥ 0 pulling the motor

forward, a linear decrease for forces Fαi · ui < 0 pulling the motor backwards, and v = 0 for
Fαi · ui < −Fst, where Fst is the stall force [25,26].
We assume that the motor binds to the filament when the distance between the anchored

end of the motor tail at rα0 and (the middle line of) the filament is smaller than a capture radius
�m. Apart from the stall force Fst the motor is also characterized by its detachment force Fd,
above which the unbinding rate of the motor head becomes large. For simplicity we assume in
our model that the motor head detaches whenever the force Fαi exceeds a threshold value Fd.
We consider the case of processive motors with a high duty ratio close to unity, i.e., motors
detach from a filament only if they reach the filament end or if the force Fαi becomes larger
than the detachment force Fd.

3 Simulation

Using the above model we performed simulations of gliding assays for a uniform random distri-
bution of motors with a surface density σ and periodic boundary conditions. At each time step
∆t, we update the motor head positions xαi and filament positions and orientations using the
discretized versions of the equations of motions described above. Each data point in the phase
diagram in Fig. 5 and Fig. 6 below corresponds to simulation runs over 106 time steps. In the
simulations we take time steps ∆t = 10−3 s such that 106 time steps correspond to 103 s.
The parameter values that we choose for the simulations are comparable with experimental

data on assays for conventional kinesin. The simulation results presented in Figs. 1 and 5
have been obtained for quadratic assays of area 25µm2 with filaments of length L=1µm and
diameter D = L/40 at room temperature T � 4 × 10−3 pNµm. The friction coefficients are
taken to be Γ⊥ = 2Γ‖ = 4πηL/ ln(L/D) and Γθ = Γ‖L2/6, where η is the viscosity of the
surrounding liquid [4]. We use a value η = 0.5 pN s/µm2 much higher than the viscosity of

water, ηwater ∼ 10−3 pN s/µm2, which allows to take larger simulation time steps. The ratio
∆t/η is chosen sufficiently small that motor forces that build up during a single time step remain
comparable to frictional forces, which makes the simulation numerically stable. We checked that
our choice of viscosity does not affect results by performing selected simulation runs also at
the viscosity of water. We use a maximum motor speed of vmax = 1µm/s and a stall force of
Fst = 5pN. The capture radius for motor proteins is chosen as �m = 22nm for the simulations
presented in section 4 and �m = 10nm for the simulations in section 5. For the length of the
fully stretched polymeric motor tail we take Lm = 50nm. For the simulations in sections 4 and
5 we use monomer lengths of bm = 10nm and bm = 4nm, respectively, in the motor tail.
Our simulation model differs from previous microscopic simulation models [17,19] in several

respects. In Ref. [17] the polymeric motor stalks are not modeled explicitly. Therefore, fila-
ment motion perpendicular to the filaments’ orientation and filament rotation are completely
suppressed while more than one motor is attached. As we will discuss in the next section this
suppresses a fluctuating component of the filament motion in the direction perpendicular to
its orientation, which is caused by the stepping of attached motors if more than one motor is
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attached, by attachment and detachment of motors, and by thermal forces. Our model differs
from the model used in Ref. [19] for the simulation of single filaments because we use a more
detailed model of the elasticity of the polymeric motor stalks. Moreover, we include additional
forces between the filaments.

4 Dynamics of single filaments

The dynamics of single filaments in the motility assay depends strongly on the number of
motors which are attached to and actively driving the filament. This directly influences the
mean velocity vF of the filament and the distance ξrot it travels between successive rotations.
The number of motors Ni which is attached to a filament i is related to the distance between

these bound motors. The mean distance between bound motors 〈dm〉 depends on the length of
the filament and the motor surface density. For long filaments or high motor density, we find
〈dm〉 ≈ 1/2σ�m. In this limit 〈dm〉 is determined by the condition that the probability to find a
motor within the area 2〈dm〉�m is equal to one because motors can attach to the filament from
a distance ≤�m. This argument is correct as long as the filament length L is much larger than
the mean motor separation 〈dm〉, i.e., for σ�mL
 1. In this regime many motors are attached
to a single filament. For short filaments or low motor density σ�mL � 1, on the other hand,
the mean distance between bound motors cannot become smaller than the filament length, and
we expect 〈dm〉 ∼ L. Both results can be combined into the approximate formula

〈dm〉 ≈ L

1 + 2σ�mL
. (7)

We consider the limit of high motor surface density σ�mL
 1, and let the filament i advance
by a distance L of its own length. Then it looses all previously attached motors and acquires a
completely new set of motors. Motors attach with a constant probability 1/〈dm〉 = 1/2σ�m per
advanced length ∆L. Then the attachment of motors is governed by a Poisson process and the
probability P (Ni) to find Ni motors on the filament after advancing the distance L is given by
the Poisson distribution

P (Ni) =
1

Ni!

(
L

〈dm〉
)Ni
e−L/〈dm〉 (8)

and the mean number of attached filaments is

〈Ni〉 ≈ L

〈dm〉 ≈ 2σ�mL. (9)

In the limit of high motor surface density σ�mL
 1 which we consider, we have 〈Ni〉 
 1, i.e.,
many motors are attached to a filament i.
One important quantity, which can be directly measured in a motility assay is the mean

filament velocity vF of a filament if it is attached to and driven by at least one motor. For a
single filament i the mean velocity is given by vF = |〈∂tri〉|. In a steady state motion where
the filament is pulled by one or several motors, the mean filament velocity can be obtained by
simultaneously equating (i) the filament friction force with the total motor driving force parallel
to the filament and (ii) the filament velocity with the motor velocity in the steady state. This
estimate will involve the mean-field-like approximation that all motors α attached to a filament
i have the same average velocity 〈∂txαi 〉 and that we can neglect correlations between different
motors. The mean number of attached motors is 〈Ni〉 ≈ L/〈dm〉 according to (9). Each motor
pulls with an average force 〈Fαi,‖〉 ≡ 〈Fαi ·ui〉 in the direction parallel to the filament. This gives
a total motor driving force 〈Ni〉〈Fαi,‖〉, where we assumed that fluctuations of both quantities
are uncorrelated. Equating this with the filament friction force in the direction parallel to the
filament, we find

Γ‖vF = 〈Ni〉〈Fαi,‖〉. (10)
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The mean velocity of a motor loaded by a mean force 〈Fαi,‖〉 in the direction parallel to the
filament is

〈∂txαi 〉 = vmax(1− 〈Fαi,‖〉/Fst), (11)

where we assumed that the non-linear regime of the force-velocity relation is not relevant in
the steady state. In the steady state the mean velocity of each attached motor has to be equal
to the mean filament velocity,

vF = 〈∂txαi 〉. (12)

Combining all three equations (10), (11), and (12) we find for the inverse average total motor
force the relation

1

〈Ni〉〈Fαi,‖〉
=

1

〈Ni〉Fst +
1

Γ‖vmax
, (13)

i.e., the average total force is the harmonic mean of the total average motor force and the
maximal friction force, which also shows that 0 < 〈Fαi,‖〉 < Fst and, indeed, the motors operate
in the regime of a linear force-velocity relation. The corresponding velocity of the filament is
given by

1

vF
=

Γ‖
〈Ni〉Fst +

1

vmax
· (14)

We can distinguish between a regime of strong motor forces for 〈Ni〉Fst 
 Γ‖vmax and
weak motor forces for 〈Ni〉Fst � Γ‖vmax. Typical values for kinesin give Γ‖vmax/Fst ∼
(L/µm)/ ln(L/D) such that filaments much longer than 1µm experience strong motor forces
if 〈Ni〉>1. This is the typical situation for motility assays of microtubules and kinesin [15]. In
the limit of strong motor forces, the velocity of the driven filament is limited by the maximal
motor velocity, vF ≈ vmax. This leads to a filament velocity which is independent of the motor
density as observed for assays of microtubules and kinesin in Ref. [15]. In the limit of weak
motor forces, on the other hand, the viscous drag dominates and the filament velocity becomes
small, vF � vmax.
The motion of a filament is characterized by stochastic switching between three modes of

motion: rotational and translational diffusion if no motors are attached, directed translation
in rotationally diffusing directions if one motor is attached, and directed translation if two or
more motors are attached. The directed translation proceeds with the velocity vF determined
by eq. (14). The relative frequency of these types of motion depends on the mean distance 〈dm〉
between bound motors and, thus, on the surface motor concentration σ, see (7). The distance ξrot
traveled by a filament between successive rotations is given by the the first passage time from a
state with two motors attached to a state with a single motor attached. The mean distance 〈ξrot〉
between rotations has been calculated in Ref. [17]. The resulting motion of a single filament
alternates between straight motion over average distances 〈ξrot〉 and rotational diffusion about
an angle 〈|∆θ|〉=3/σL2. This motion is a persistent random walk with a persistence length
[17]

ξp =
〈ξrot〉
〈|∆θ|〉2 =

L+ 2〈dm〉
L+ 3〈dm〉

L3σ2〈dm〉2
9

(
eL/〈dm〉 − 1− L

〈dm〉
)
. (15)

These theoretical predictions can be checked using our microscopic simulation model. As a first
step we can visualize the motion of a single filament in a motility assay. In Figure 3 we show
the trajectories of the center of mass of a single filament moving in two assays of high motor
density. The persistent nature of the random walk can be clearly recognized. For higher motor
density (Figure 3(b) as compared to 3(b)) the persistence length increases, and changes in
the direction of motion become less frequent.
In order to check the above predictions more quantitatively we measured the mean distance

between rotations 〈ξrot〉, as a function of the filament length. First, we determined 〈ξrot〉 by
integrating the absolute value of the filament velocity, |∂tri|, over time between successive
rotations, see Figure 4. It turns out that the simulation using the full model defined in section
2 gives much larger values for 〈ξrot〉 (red crosses in Figure 4) than the theoretical prediction
(15) (dashed lines in Figure 4). The reason for the differences lie in a stochastic motion of
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Fig. 3. Simulation trajectories (red) of a single filament of length L = 1µm (green arrow) in a gliding
assay with periodic boundaries and high motor surface density, (a) σ�mL = 0.44 and (b) σ�mL = 0.88.
The blue dots show the positions of individual motors. The size of the assays is 160µm2. The trajectories
show simulation runs for 500s, i.e., 5×105 discrete time steps. The green arrows indicate direction and
position of the filament in 50s intervals.
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Fig. 4. Data points show simulation results for the mean distance 〈ξrot〉 traveled by a filament between
successive rotations (in units of the capture radius �m) as a function of the ratio of the filament length
L (in units of �m). Red crosses are from simulations using the full model. Black crosses are results
from simulations where motor and thermal forces in the direction perpendicular to the filament are
suppressed as well as thermal and motor torques. The blue dotted line and black dotted line show the
theoretical result from eq. (15) with 〈dm〉 given by eq. (7) and 〈dm〉 ≈ 2σ�m, respectively.

the filament perpendicular to its orientation. This fluctuating component contributes to our
measurement of 〈ξrot〉 in the simulation but is not considered in the theoretical result (15). There
are three mechanism, which give rise to the stochastic motion in the direction perpendicular
to the filament: (i) The component of the thermal force ζi,⊥ perpendicular to ui. (ii) Every
time a motor attaches or detaches the force on the filament changes discontinuously. If the
filament was approximately in mechanical equilibrium before, each such force jump gives rise to
a sudden filament displacement. (iii) Every time step each motor advances by ∆xαi = v(F

α
i )∆t,

which leads to a small torque on the filament if it was in mechanical equilibrium before. These
torques lead to a swiveling motion of the filament along its path. In order to suppress all three
mechanisms motion we performed simulations where we set all motor force components Fαi,⊥
acting on a filament i in the direction perpendicular to its orientation ui and all torques M

α
i

to zero. We also set the corresponding components ζi,⊥ and ζθ,i of the thermal noise to zero.
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The resulting simulation data for 〈ξrot〉 (black crosses in Figure 4) then shows good agreement
with the theoretical result (15) (dashed lines in Figure 4).
In the next section we consider the phase behavior of interacting filaments in the motility

assay. For our arguments the fluctuating motion in the direction perpendicular to the filament
will be irrelevant because we consider time scales larger than the persistence time tp = ξp/vF of
the filament trajectory, where this noisy motion is averaged out. Therefore we use the theoretical
result (15) for the persistence length in the following.

5 Phase behavior for hard-core filament repulsion

Now we consider the phase behavior of many interacting filaments in a motility assay.
Specifically, we consider the phase behavior for a hard-core repulsion between filaments, i.e., in
the limit of a large crossing energy. In the absence of motor activity, a system of rigid filaments
of length L represents a two-dimensional hard rod fluid, which undergoes a transition into
a nematic phase at sufficiently high filament densities. Motor activity strongly modifies this
nematic ordering in a motility assay. Therefore, both the rod density ρ and the motor density
σ are essential in order to determine the phase behavior, which can be described in the plane
of the two dimensionless parameters ρL2 and σ�mL as shown in Fig. 5. Nematic ordering in a
system of N filaments can be characterized by the time averages of the order parameter

S ≡
∑
i�=j
cos(2(θi − θj))/N(N − 1). (16)

In an infinite system, we expect 〈S〉 = 0 in the isotropic phase and 〈S〉 = 1 for perfect
nematic order. In equilibrium, i.e., in the absence of motors (σ = 0) we find a continuous
isotropic-nematic transition at a critical density ρc,0 � 4.3/L2 in the simulation, which is in
good agreement with the analytic result ρc,0 = 3π/2L

2 based on Onsager’s theory for the
two-dimensional hard-rod fluid [23]. The equilibrium transition is found numerically from
the inversion point of the curve 〈S〉 = 〈S〉(ρ) for a value 〈S〉 � 0.2, which we also use as
the threshold value for active nematic ordering in the presence of motors (σ > 0), see Fig. 6.
Snapshots of the actively driven system in the isotropic and nematic phase are shown in
Figs. 1(a) and (b), respectively. In the resulting phase diagram Fig. 5, the critical density ρc
for active nematic ordering decreases with increasing motor density, i.e., nematic ordering is
favored if more energy is fed into the system. The transition is continuous also for non-zero
motor-density, see the order parameter plots in Fig. 6.
Each driven filament gives a contribution Ji = N

−1ρvFui to the filament current. In the
presence of motor activity and in the nematic phase, the contributions to the total filament
current become correlated along a preferred direction given by the unit vector n leading to a
non-vanishing expectation value

∑
i�=j
〈(Ji · Jj)2〉/N(N − 1) = N−4ρ4v4F 〈S〉. (17)

This gives rise to two macroscopic filament currents 〈J±n〉 = ±ρvFn/2 of opposite directions±n
with zero total current, 0 =

∑
i〈Ji〉 = 〈Jn〉+〈J−n〉. The existence of such macroscopic currents

is characteristic for a non-equilibrium phase. These currents vanish (i) for small motor density,
i.e., upon approaching the vertical axis σ�mL = 0 in the phase diagram Fig. 5 and (ii) upon
approaching the isotropic-nematic phase boundary in the phase diagram Fig. 5, which is given
by (19).
The single filament performs a persistent walk with a persistence length (15), which cor-

responds to a persistence time tp = ξp/vF . A coarse-graining in time by averaging over time
intervals of one persistence time tp leads to an effective random walk of a single filament. On
time scales larger than tp the dynamics of a filament is again described by a diffusion equation as
for passive dynamics. After coarse-graining to one persistence time we can adapt the mean-field
treatment of the hard-rod fluid [24] to obtain an analytical result for the phase boundary [20].
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Fig. 5. The phase diagram for the gliding assay as a function of the dimensionless filament density
ρL2 and the dimensionless surface motor density σ�mL for detachment force Fd = Fst, and filament
length L/�m = 100, and a hard-core repulsion between filaments. All data points correspond to separate
simulation runs, the two arrows (a) and (b) to the snapshots in Fig. 1. If the average order parameter
〈S〉<0.2, the system is in the isotropic phase (black squares, grey area), if 〈S〉>0.2 it is in the nematic
phase (green triangles, green area). The solid line represents the analytical result as given by (19).
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Fig. 6. Plots of the behaviour of the order parameter 〈S〉 for two trajectories in the phase diagram
of Fig. 5 crossing the isotropic-nematic transition. (Left) The order parameter as a function of the
dimensionless filament density ρL2 at zero motor density. The transition point is at ρL2 = 4.3. (Right)
The order parameter as a function of the dimensionless motor density σ�mL for a filament density
ρL2=2 and L/�m=100 (which is the same as for the snapshots in Fig. 1 of the article). The transition
point is at σ�mL = 0.047. In each plot we can identify the transition points as inflection points of the
order parameter curve. Each data point in the order parameter plots corresponds to the average value
of the order parameter taken over 106 time steps.

The effective excluded area governing the steric interaction between two motor-driven filaments
with center of masses and orientations (r,u) and (r′,u′) on the surface of the motility assay is

Aexc = |u× u′|
∫∫ L/2+ξp

−L/2
dξdηΘL(ξ − η)δ(r− r′ + uξ + u′η)

= |u× u′|L(L+ ξp), (18)

where ΘL(ξ−η) equals one if |ξ−η|<L/2 and zero otherwise. Performing an analogous stability
analysis as in Ref. [24] using this effective excluded are we finally obtain the critical filament
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density of the active isotropic-nematic transition [21],

ρc = c/L[L+ ξp(〈dm〉, �m, L)] (19)

with c = 3π/2 from the analytical mean-field calculation.2

In the absence of motors we have ξp = 0 and the result (19) reduces to the equilibrium result
of Ref. [23]. Using the result (15) for the persistence length ξp = ξp(〈dm〉, �m, L), we obtain an
explicit expression of the isotropic-nematic phase boundary in the active system in terms of the
microscopic model parameters, which is in good agreement with all simulation data, see Fig. 5.
Beyond mean-field, we expect a larger numerical prefactor c in (19) but the same parameter
dependence.
The result (19) corresponds to an effectively increased filament length Leff =

√
L(L+ ξp)

as compared to the equilibrium system, which explains that motor activity actually favors
nematic ordering. In deriving the phase boundary (19), we have established a mapping of the
non-equilibrium driven system onto an equilibrium system with larger effective filament length.
This mapping only applies within the isotropic phase as it is based on the statistical properties
of the motion of a single filament (or non-interacting filaments) but can be used to calculate
the stability boundary (19) of the isotropic phase.

6 Conclusion

We have presented a microscopic simulation model for active filament dynamics in motility
assays. First, the model is used to characterize the persistent motion of single filaments in an
assay. Then, we have presented simulations and a theoretical description of the phase behavior
of filaments in a two-dimensional motility assay. The corresponding equilibrium system is
the two-dimensional hard-rod fluid, which exhibits an isotropic-nematic phase transition.
We have found that actively driven systems undergo an analogous phase transition and the
motor activity enhances the tendency for nematic ordering. A similar enhancement is found
in three-dimensional active filament solutions [9]. For the two-dimensional motility assays we
have quantitatively determined the phase boundary (19) for active nematic ordering by motors
in terms of experimentally accessible microscopic model parameters.

This work was supported by the EC Sixth Framework Programme (as part of the STREP Active
Biomics contract No. NMP4-CT-2004-516989).
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