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1 Introduction

The Sp(2n) invariant description of massless bosonic and fermionic higher-spin fields [1–

24] is an elegant geometrical approach to study higher-spin gauge theories. The main

feature of this approach is that the theory is formulated in an extended space, sometimes

called hyperspace, which is parametrized by the n × n matrix valued coordinates Xαβ =
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Xβα. These n(n+1)
2 coordinates include, in addition to ordinary space-time coordinates xm

parameterizing either a D-dimensional Minkowski space or an anti-de-Sitter space (AdSD),

also
[
n(n+1)

2 −D
]

extra coordinates y. The fields depend on the both x- and y-coordinates

and obey free field equations [5] which are invariant under the transformations of the

Sp(2n) group. The analysis of these field equations for different n [5, 13] shows that

for n = 4, 8 and 16 they generate the field equations and the Bianchi identities for an

infinite set of free conformal higher-spin curvatures in space-times of dimension D = 4, 6

and 10, respectively.1 The D-dimensional linearized higher-spin curvatures R(s)(x) are

the components of a series expansion of hyperfields Φ(x, y) in powers of y, schematically

Φ(x, y) =
∑∞

s=0R(s)(x)ys. The main hyperfields are a scalar b(X) and a fermion fα(X)

(X = (x, y)) transforming under the linear representation of GL(n) ⊂ Sp(2n). We will

somewhat loosely call fα(X) the spinor field since it contains half-integer spin curvatures

in the corresponding D-dimensional space-time and at y = 0 reduces to a spinor field.

The group Sp(2n) is often referred to as a generalised conformal group, since its struc-

ture closely reminds the structure of the conformal group and moreover the Sp(2n) group

contains a conformal group as a subgroup. This fact not only makes the Sp(2n) formu-

lation relevant to the study of conformal properties of higher-spin fields but is also useful

for better understanding the structure of Sp(2n)-invariant systems themselves, as we shall

see below.

A natural question to ask is whether Sp(2n)-invariant higher-spin systems admit in-

teractions. An unsuccessful attempt to obtain interacting Sp(2n)-invariant models was

undertaken in [12] in the framework of a generalized supergravity in tensorial superspaces.

Recently, it was shown [24] that in D = 4 models higher-spin current interactions

necessarily break Sp(8) group down to the four-dimensional conformal group SU(2, 2).

However, this result, a priori, does not rule out other types of Sp(2n)-interactions, e.g.

of some order in higher-spin curvatures. Moreover, there might exist Sp(2n)-theories that

do not have any Lagrangian/equations of motion description at all, which is the case for

certain conventional conformal field theories.

One way of approaching the interaction problem generically is to use an analogy with

D-dimensional conformal field theories. One can make a statement whether a generic

D-dimensional conformal theory is free or interacting by looking at the structure of its

correlation functions. In this way, for instance, in [25] it was shown that under certain

assumptions about the content of D = 3 conformal theory, the presence in the theory of

a single conserved higher-spin current implies the existence of an infinite set of conserved

higher-spin currents whose correlators with the stress tensor are those of a free confor-

mal theory.

In all the examples of correlators in the Sp(2n)-invariant theories considered so far [11,

21, 22] generalized conformal weights of the fields in the correlators were not restricted to

their canonical values thus, in principle, leaving room for nontrivial interactions. In this

paper we will show that for n > 2 already the presence in the Sp(2n)-invariant theories of

1The case of n = 2 corresponds to conventional D = 3 conformal theories of scalar and spin-half fields,

with Sp(4) ∼ SO(2, 3) being the 3D conformal group.
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a conserved generalized stress tensor and/or of a conserved current associated with a rigid

internal symmetry (introduced in [6]) makes their correlators with a scalar operator to be

those of free theories. To arrive at this result, the correlation functions were constructed

solely under the requirement of their Sp(2n) invariance and current conservation properties,

without resorting to a specific form of the operators. The three-point functions turn out

to have a structure, whose generating functions were found earlier in [26–30] with the use

of a different approach.

Therefore, one concludes that for n > 2 the rigid Sp(2n) symmetry, together with the

conservation requirements, turn out to be too restrictive for the existence of the nontrivial

interactions of higher-spin fields already at the cubic level. This confirms and generalises

the result obtained in [24]. In order to allow for nontrivial interactions of these systems,

the rigid Sp(2n) invariance should be broken down to an appropriate subgroup.

Let us emphasise that our results apply to the systems with rigid Sp(2n) symmetry.

It would be very interesting to construct and study systems which posses a local Sp(2n)

invariance, and see if analogous obstructions for interactions apply also in these cases.

The paper is organised as follows. In section 2 we introduce a set up for the rest of

the paper. We review Sp(2n) transformations of the scalar field b(X) and the spinor field

fα(X) and their free field equations. We also introduce a generalised current Jαβ(X) and

a stress tensor Tαβγδ(X), and give their Sp(2n) transformations and conservation laws.

In section 3 we explain the general procedure of constructing the Sp(2n)-invariant

correlation functions and derive two-point functions of two currents and two stress tensors

using the requirement of Sp(2n) invariance and the current conservation.

In section 4 we derive three-point functions which include two scalar or spinor fields and

one current or stress tensor. The results obtained in this section are completely analogous

to those in ordinary D-dimensional CFTs in the sense that there is no restriction on the

generalised conformal dimensions of the scalar and spinor operators.

In section 5 we derive three-point functions of a scalar operator with two conserved

currents or stress tensors. Here the situation turns out to be different from the one in D-

dimensional CFTs. Namely, apart from the n = 2, D = 3 case, the values of the conformal

dimensions of the scalar operators of the Sp(2n)-invariant systems in these correlation

functions are fixed.

In section 6 we discuss the generic Sp(2n)-invariant structure of three-point correlation

functions of higher-rank tensorial fields whose three building blocks are provided by basic

two- and three-point correlators of bosonic and fermionic fields and their currents.

In Conclusion we discuss the obtained results and their implications. Some lengthy

calculations are given in the appendices.

2 Sp(2n)-invariant systems

2.1 Scalar field b(X)

The basic object in the Sp(2n)-invariant description of integer higher-spin fields is a hy-

perfield b(Xµν) (see [21] for a recent review). The hyperspace coordinates Xµν = Xνµ and

– 3 –
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the field b(X) transform under the Sp(2n) transformations as follows

δXµν = aαβ +Xµρgρ
ν +Xνρgρ

µ −XµρkρλX
λν , (2.1)

δb(X) = −(aµν∂µν + ∆ (gµ
µ−kµνXµν)+2gν

µXνρ ∂µρ−kµνXµρXνλ∂ρλ)b(X) , (2.2)

where the parameter aµν = aνµ corresponds to the translations, the parameter kµν = kνµ
corresponds to the generalised conformal boosts and the parameter gµ

ν is that of GL(n)

transformations. The latter can be split into lµ
ν = gµ

ν − 1
nδ

ν
µ gρ

ρ which parametrizes the

sl(n) subalgebra of gl(n) and its trace gµ
µ which corresponds to the dilatations. Together

these transformations generate an Sp(2n) group which contains D = n
2 + 2 dimensional

conformal group as its subgroup.2 The parameters aµν , lµ
ν and kµν contain conventional

translations, Lorentz transformations and conformal boosts respectively, whereas the pa-

rameter of dilatation is proportional to the trace gµ
µ.

The constant ∆ which is present in the equation (2.2) is a generalized conformal

weight or the Sp(2n) weight of the scalar hyperfield. It is related to the conventional

conformal weight of the scalar fields in the corresponding space-time dimensions D = n
2 +2

as follows [22]

∆D =
n

2
∆. (2.3)

This is because the D-dimensional dilatation parameter gD is gD = 2
ngµ

µ

The free field b(X) satisfies the field equations

(∂µν∂ρλ − ∂µρ∂νλ)b(X) = 0. (2.4)

These equations are invariant under the Sp(2n) transformations (2.2) provided that ∆ = 1
2 ,

which is therefore a canonical dimension of b(X) [4].

2.2 Spinor field fα(X)

The half-integer spin fields are packed in a Grassmann-odd “spinor” hyperfield fα(X) trans-

forming under the linear representation of GL(n). Under Sp(2n) it transforms as follows

δfα(X) = −(aµν∂µν + ∆ (gµ
µ − kµνXµν) + 2gν

µXνρ ∂µρ − kµνXµρXνλ∂ρλ)fα(X)

−(gβα − kναXνβ)fβ . (2.5)

fα(X) satisfies the free equations of motion

∂µ[νfα] = 0, (2.6)

where [αβ] denotes anti-symmetrization of indices, while (αβ) will indicate symmetrization.

These equations are Sp(2n) invariant provided that the field fα(X) has the generalized

conformal dimension

∆ 1
2

= ∆ +
1

n
=

1

2
+

1

n
=⇒ ∆ =

1

2
. (2.7)

2The relation D = n
2

+ 2 between the space-time dimension D and n is valid only for n = 2, 4, 8 and

16. This is related to the fact that in these dimensions the massless momentum condition PmP
m = 0

has the general twistor-like solution Pm = λ̄γmλ, where commuting spinors λα are transformed under a

fundamental representation of the D-dimensional conformal group whose subgroup is Sp(n).

– 4 –
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2.3 O(N) current Jαβ(X)

Let us assume that the fields bA(x) and fAα (X) belong to a vector representation of the

O(N) group (A = 1, . . . , N) and define a generalised current

JABαβ = bA∂αβb
B − bB∂αβbA ,

JABαβ = fAα f
B
β + fAβ f

B
α .

(2.8)

The current is symmetric with respect to its indices (α, β) and anti-symmetric in A,B.

Using (2.1), (2.2) and (2.5), one can show that the Sp(2n) transformations of the current are

δaJ
AB
αβ = −aµν∂µνJABαβ (2.9)

δgJ
AB
αβ = −

(
n+ 2

n
gµ
µ + 2gν

µXνρ∂µρ

)
JABαβ − lαµJABµβ − lβµJABαµ (2.10)

δkJ
AB
αβ = (kµνX

µν + kµνX
µρXνλ∂ρλ)JABαβ + kαµX

µνJABνβ + kβµX
µνJABαν (2.11)

As it can be seen form (2.10) (and (2.11)), the canonical conformal weight of the current is

∆1 = 1 +
2

n
, (2.12)

where the subscript of ∆1 labels the “spin” s = 1 of Jαβ (see also (2.7)). In general, the

“spin” of a symmetric tensor Tα1...αr of rank r is defined as s = r
2 . This is a natural

extension of the notion of spin of fields in D = 3, 4 described by spin-tensors.

One can show that the current (2.8) satisfies the generalized conservation conditions

introduced in [6]

∂µνJ
AB
αβ − ∂µαJABνβ − ∂βνJABαµ + ∂αβJ

AB
µν = 0 ⇐⇒ = 0 (2.13)

provided that the fields b(X) and fα(X) satisfy the free field equations (2.4) and (2.5),

respectively. On the right in (2.13) we indicated the Young symmetry in the indices (µναβ)

of the left hand side which is annihilated by the conservation condition.

Note that, in the general case, even if the current Jαβ is not composed of the matter

fields, but satisfies the conservation law (2.13), the Sp(2n) invariance of the latter requires

that its generalized conformal dimension is always canonical (2.12), which is in accord with

the usual CFTs.

2.4 Stress tensor Tαβγδ(X)

Similarly one can define a free generalised stress (or energy-momentum) tensor [6]

Tαβγδ = T̃(αβ,γδ), (2.14)

with

T̃αβ,γδ = (∂αβb)(∂γδb)−
1

3
b∂αβ∂γδb

or for the fermionic field fα
T̃αβ,γδ = fγ∂αβfδ.

– 5 –
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One can check that the totally symmetric tensor Tαβγδ transforms covariantly under

the Sp(2n) transformations (2.2) as follows

δaTαβγδ = −aµν∂µνTαβγδ, (2.15)

δgTαβγδ = −
(
n+ 4

n
gµ
µ + 2gν

µXνρ∂µρ

)
Tαβγδ − 4l(α

µTβγδ)µ , (2.16)

δkTαβγδ = (kµνX
µν + kµνX

µρXνλ∂ρλ)Tαβγδ + 4kµ(αX
µνTβγδ)ν . (2.17)

From the form of the above transformations we see that the canonical conformal dimension

of Tαβ,γδ is

∆2 = 1 +
4

n
. (2.18)

One can also check that the stress tensor (2.14) satisfies generalized conservation condi-

tions [6]

∂µνTαβγδ − ∂µαTνβγδ − ∂βνTαµγδ + ∂αβTµνγδ = 0 ⇐⇒ = 0 (2.19)

provided that the fields b(X) and fα(X) satisfy the free field equations (2.4) and (2.5),

respectively. Again, we indicated on the right hand side of (2.19) the relevant symmetry

of ∂T that is set to zero by the Sp(2n) conservation condition.

As in the case of the conserved current Jαβ(X), the Sp(2n) invariance of the con-

servation law (2.19) always requires that the conformal dimension of Tαβµν(X) is canoni-

cal (2.18).

By analogy with Jαβ and Tαβγδ one can introduce higher-spin conserved currents

Tα1...α2s (2s = 1, 2, 3, . . .) [6] which transform under Sp(2n) as follows

δaTα1...α2s = −aµν∂µνTα1...α2s , (2.20)

δgTα1...α2s = −(∆s gµ
µ + 2gν

µXνρ∂µρ)Tα1...α2s − 2sg(α1

µTα2...α2s)µ , (2.21)

δkTα1...α2s = (kµνX
µν + kµνX

µρXνλ∂ρλ)Tα1...α2s + 4kµ(α1
XµνTα2...α2s)ν , (2.22)

where

∆s = 1 +
2s

n
. (2.23)

The Sp(2n) conservation condition [6] sets to zero the most anti-symmetric component

of ∂T :

∂µνTαβγ(2s−2) − ∂µαTνβγ(2s−2)−

∂βνTαµγ(2s−2) + ∂αβTµνγ(2s−2) = 0
⇐⇒ 2s− 2 = 0 (2.24)

We will see that when applied to correlation functions these conservation conditions restrict

the structure of the former to those of free theories. Heuristically, this happens because

the Sp(2n) conservation leads to an over-determined system of equations, i.e. the number

of equations generally exceeds the number of the components of T , as it can be seen from

the Young diagram above. On the contrary, in the usual CFTs the conservation condition

∂mJma2...as = 0 ⇐⇒ s− 1 = 0 (2.25)

– 6 –
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has fewer components than the current Jm1...ms . For s = 1, 2 the conservation is not too

restrictive, while for s > 2 it requires an advanced machinery of Ward identities [25] or

higher-spin algebras [32], see also [33–35], to see that the presence of at least one higher-

spin current implies the presence of full infinite-dimensional higher-spin symmetry of the

model and makes it free.

Now we are in a position to consider various Sp(2n) invariant two-, three-, and four-

point functions. As we mentioned in the Introduction, when computing the correlation

functions we will, a priori, assume that the fields b(x) and fα(X) may have arbitrary Sp(2n)

weights ∆0 = ∆ and ∆ 1
2

= ∆+ 1
n , respectively, with anomalous (spin-independent) dimen-

sions ∆ and then see how the Sp(2n) invariance and conservation laws restrict their values.

3 Sp(2n) invariance of multi-point correlation functions

Consider a generic correlation function of k rank-ri tensor fields Φ∆(i)
(Xi) (i = 1, . . . , k)

whose spin-independent parts of the conformal weights are ∆(i)

〈Φ∆(1)

α1...αr1
(X1) . . .Φ∆(k)

β1...βrk
(Xk)〉 ≡ Gα1...αr1 ,...,β1...βrk

(X1, . . . , Xk) . (3.1)

The correlation function is invariant under the Sp(2n) transformations (2.1) if for any

values of the Sp(2n) parameters the following equation holds

k∑
i=1

[
∆i(gµ

µ − kµνXµν
i ) + δXµν

i

∂

∂Xµν
i

]
Gα1...αr1 ,...,β1...βrk

(X1, . . . , Xk)

+
1∑
j=1

(gαj
µj − kαjνX

νµj
1 )Gµ1...µj ...µr1 ,...,β1...βrk

(X1, . . . , Xk) + · · ·

+

rk∑
j=1

(gβj
µj − kβjνX

νµj
k )Gα1...αrk ,...,µ1...µj ...µrk

(X1, . . . , Xk) = 0 , (3.2)

where the variations δXµν
i are given in (2.1). The equation (3.2) plays an important role in

the further analysis, since it determines a general condition for a given multi-point function

to be Sp(2n)-invariant.

3.1 Two-point functions

3.1.1 Correlators of two scalars 〈bb〉 and two fermions 〈ff〉

Let us consider the two-point function of two scalar fields bA(X1) and bB(X2) carrying

O(N) vector indices A and B, and having weights ∆(1) and ∆(2). The condition that this

two-point function is Sp(2n)-invariant under the transformations (2.2) i.e., satisfies (3.2)

implies that it is nonzero if ∆(1) = ∆(2) = ∆, and has the following form [11]

〈bA(X1)bB(X2)〉 = Cbb(det |X12|)−∆δAB, (3.3)

where Cbb is an arbitrary constant, Xαβ
12 = Xαβ

1 −Xαβ
2 and

(X−1
12 )αβ = (Xαβ

1 −Xαβ
2 )−1 . (3.4)

– 7 –
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Analogously, for the two fermionic fields fAα (X1) and fBβ (X2) one gets [11]

〈fAα (X1)fBβ (X2)〉 = Cff (det |X12|)−∆δAB(X12)−1
αβ , (3.5)

The correlator of b(X1) with fα(X2) is zero, as are all the multi-point functions with

an odd number of fα(X), since their index structure is not even GL(n) invariant.

For further use let us also give the form of the Sp(2n) variations (2.1) of the ma-

trix (X−1
12 )αβ

δ(X−1
12 )αβ = −(X−1

12 )αγ(δX1 − δX2)γδ(X−1
12 )δβ

= −2g(α
γ(X−1

12 )β)γ + kγ(α(X1 +X2)γδ(X−1
12 )β)δ

= −2g(α
γ(X−1

12 )β)γ + kαγX
γδ
1 (X−1

12 )δβ + (X−1
12 )αδX

δγ
2 kγβ . (3.6)

Again the variations δXµν
1 and δXµν

2 are given in (2.1). From eq. (3.6) it follows that the

matrix (X−1
12 )αβ , regarded as a bi-local tensor, is Sp(2n)-invariant, i.e.

−
(
δXµν

1

∂

Xµν
1

+ δXµν
2

∂

Xµν
2

)
(X−1

12 )αβ − 2g(α
γ(X−1

12 )β)γ (3.7)

+kαγX
γδ
1 (X−1

12 )δβ + (X−1
12 )αδX

δγ
2 kγβ = 0 ,

With the help of relation (3.7) one can immediately check Sp(2n) invariance of correlation

functions away from the singularity point. Notice that the conformal boosts act effectively

on the first index of (X−1
12 )αβ with the matrix X1 and on the second index with the matrix

X2 (or vice verse). This ensures the same Sp(2n)-invariant properties of the left- and right-

hand side of (3.5) in accordance with the generic formula (3.2). The matrix (X−1
12 )αβ ,

together with its determinant, is thus one of the elementary building blocks of all the

Sp(2n)-invariant correlation functions.

3.1.2 Two current correlator 〈JJ〉

The two-point function of the conserved currents JABαβ can be derived by writing the most

general expression compatible with its index symmetries, requiring its invariance under

O(N) and Sp(2n), and imposing the current conservation condition. The Sp(2n) invariance

condition (3.2) reduces a general expression to the one constructed in terms of the matrix

X−1
12 and its determinant as follows

〈JABαβ (X1)JCDµν (X2)〉 = CJJ(det |X12|)−1(P12)αβ,µν(δACδBD − δADδBC) , (3.8)

where we defined

(Pab)αβ,µν = (X−1
ab )µα(X−1

ab )νβ + (X−1
ab )να(X−1

ab )µβ (3.9)

and

X−1
ab ≡ (Xαβ

a −X
αβ
b )−1 ≡ (pab)αβ , (3.10)

a, b = 1, 2 and a 6= b.

– 8 –
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The constant CJJ is arbitrary, while the power of the determinant is fixed to be −1, i.e.

its absolute value is equal to the canonical value ∆ = 1 of the spin independent part of the

conformal weight of Jαβ . One can easily check that (3.8) obeys the current conservation

law (2.13).3

The Sp(2n) variations of (3.9) are determined by those of X−1
12 , given in (3.7), and

have the following form

2gσ
ρ

(
Xσλ

1

∂

∂Xρλ
1

+Xσλ
2

∂

∂Xρλ
2

)
(P12)αβ,µν (3.11)

= −gασ(P12)σβ,µν − gβσ(P12)ασ,µν − gµσ(P12)αβ,σν − gνσ(P12)αβ,µσ ,

kρσ

(
Xρλ

1 Xσδ
1

∂

∂Xλδ
1

+Xρλ
2 Xσδ

2

∂

∂Xλδ
2

)
(P12)αβ,µν (3.12)

= −kασXσδ
1 (P12)δβ,µν−kβσXσδ

1 (P12)αδ,µν−kµσXσδ
2 (P12)αβ,δν−kνσXσδ

2 (P12)αβ,µδ .

It is important for the proof of the Sp(2n) invariance of (3.8) that in the right hand side

of (3.12) the first pair of the indices of (P12)αβ,γδ gets rotated with the matrix kασX
σδ
1 and

the second pair gets rotated with kµσX
σδ
2 . The bi-local tensor (3.9) is a building block of

correlation functions of higher even-rank tensors such as the stress tensor.

3.1.3 Stress tensor correlator 〈TT 〉

Following the same reasoning as above, one gets the Sp(2n)-invariant two-point function

of the two stress tensors

〈Tαβγδ(X1)Tµνρσ(X2)〉 = CTT
1

det |X12|
((P12)αβ,µν(P12)γδ,ρσ + symm.) (3.13)

where the total symmetrization of the both sets of indices (αβγδ) and (µνρσ) is assumed.

The Sp(2n) invariance (3.2) and the conservation properties of (3.13) dictated by (2.19)

can be checked with the use of the form of the variations (3.11), (3.12) and of det |X12|.

4 Three-point functions

4.1 Scalars and fermions

A three-point function for three fields b(X) with weights ∆(1),∆(2) and ∆(3) has the fol-

lowing form [11]

〈b(X1)b(X2)b(X3)〉 = (det |X12|)−k3 (det |X23|)−k1 (det |X13|)−k2 , (4.1)

where

k1 =
1

2
(∆(2)+∆(3)−∆(1)), k2 =

1

2
(∆(3)+∆(1)−∆(2)), k3 =

1

2
(∆(1)+∆(2)−∆(3)) (4.2)

3Note that for the currents of the form (2.8) one can obtain (3.8) simply using the two-point function (3.3)

of the free scalars with the canonical dimension ∆0 = 1
2

or the two-point function (3.5) of the two fermions

with the canonical dimension ∆ 1
2

= 1
2

+ 1
2
.
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Correspondingly, the correlator of two fermions and a scalar is [11]

〈fα(X1)fβ(X2)b(X3)〉 = (X−1
12 )αβ(det |X12|)−k3 (det |X23|)−k1 (det |X13|)−k2 . (4.3)

Let us mention that in a similar way one can find four-point functions which include four

scalars, four fermions and two scalars and two fermions. As in the ordinary CFTs the

Sp(2n) symmetry fixes the four-point correlators up to an arbitrary function of cross-

ratios [21].

4.2 Three-point functions 〈Jbb〉, 〈Tbb〉, 〈Jff〉 and 〈Tff〉

One more tensor structure appears in the Sp(2n)–invariant three-point correlators which

involve two scalars of dimensions ∆(1) and ∆(2), and one conserved current or stress-tensor

of the spin-independent conformal dimension ∆(3) = 1

〈bA(X1)bB(X2)JCDαβ (X3)〉 (4.4)

= CbbJ(det |X12|)−k3(det |X13|)−k2(det |X23|)−k1(Q3
12)αβ(δACδBD − δADδBC)

and

〈b(X1)b(X2)Tαβγδ(X3)〉 = CbbT (det |X12|)−k3(det |X13|)−k2(det |X23|)−k1 ×
×((Q3

12)αβ(Q3
12)γδ + (Q3

12)αγ(Q3
12)βδ + (Q3

12)αδ(Q
3
12)βγ) (4.5)

where constants ki again satisfy the conditions (4.2). In the above expressions

(Qcab)αβ = (X−1
ac )αβ − (X−1

bc )αβ , (4.6)

where a, b, c = 1, 2, 3 and a 6= b 6= c.

The quantities (Qcab)αβ are manifestly invariant under the translation of the coordinates

and transform in the following way under the GL(n) rotations and the generalized boosts

2gν
µ

(
Xνρ

1

∂

∂Xµρ
1

+Xνρ
2

∂

∂Xµρ
2

+Xνρ
3

∂

∂Xµρ
3

)
(Q3

12)αβ (4.7)

= −gβµ(Q3
12)αµ − gαµ(Q3

12)βµ ,

kµν

(
Xµρ

1 Xντ
1

∂

∂Xρτ
1

+Xµρ
2 Xντ

2

∂

∂Xρτ
2

+Xµρ
3 Xντ

3

∂

∂Xρτ
3

)
(Q3

12)αβ (4.8)

= −kαρXρτ
3 (Q3

12)τβ − kβρXρτ
3 (Q3

12)τα .

For the Sp(2n) invariance (3.2) of the correlators (4.4) and (4.5) it is important to notice

that the contraction of the indices of Q3
12 on the right hand side of the boost transforma-

tions (4.8) only involves the coordinate X3.

Using (A.1) and (A.8) one can check that (4.4) and (4.5) satisfy the current and stress-

tensor conservation laws if

k1 = k2 =
1

2
(4.9)

and k3 is arbitrary. This means that the generalized dimensions of the fields b(X1) and

b(X2) are equal to each other but otherwise unrestricted (i.e. can be anomalous).
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Correspondingly, for the correlators of two fermions of dimension ∆ 1
2

= ∆ + 1
n with

the current J and the stress tensor T we have

〈fAγ (X1)fBδ (X2)JCDαβ (X3)〉 (4.10)

= CffJ(det |X12|)
1−∆

2 (det |X13|)−
1
2 (det |X23|)−

1
2 (X12)−1

γδ (Q3
12)αβ(δACδBD−δADδBC)

and

〈fµ(X1)fν(X2)Tαβγδ(X3)〉 = CffT (det |X12|)
1−∆

2 (det |X13|)−
1
2 (det |X23|)−

1
2 ×

×(X12)−1
µν ((Q3

12)αβ(Q3
12)γδ + (Q3

12)αγ(Q3
12)βδ + (Q3

12)αδ(Q
3
12)βγ) .

(4.11)

Looking at the form of the two- and three-point correlation functions constructed above

we come to the conclusion that except for some degenerate cases4 the most general multi-

point function can be written as a sum over all possible polynomials of a required rank in

three structures pab = X−1
ab (3.10), Pab (3.9)5 and Qcab (4.6) times a pre-factor which in the

case of four-point and higher order correlators is a function of Sp(2n)-invariant cross-ratios:

〈Φ . . .Φ〉 = G(pab, Pab, Q
c
ab|Xab) (4.12)

This statement is completely analogous to the one for the usual CFTs (see [37] for a

proof). We will discuss the general structure of the three-point correlators in more detail

in section 6.

5 Three-point functions with fixed conformal dimension

We will now consider Sp(2n)-invariant three-point functions in which the requirement of

the current and stress-tensor conservation completely fixes the conformal dimension of

the scalar operator to be 1, i.e. twice that of the canonical dimension of the free scalar

hyperfield. At this point the properties of correlators in Sp(2n)-invariant systems (for

n > 2) become different from those of conventional D-dimensional CFTs where in the

analogous correlators a restriction on the dimension of the scalar operator does not occur.

The obtained restriction suggests that the Sp(2n)-invariant systems under consideration

are free, as we will discuss in more detail below.

5.1 〈JJO〉 three-point functions

The simplest three-point function of this kind is 〈JJO〉, where O(X) is a scalar operator

of dimension ∆ which, in general, can be a composite of the elementary fields b(X). From

the requirement of Sp(2n) invariance one finds that the correlator has the following form

〈Jµν(X1)O(X2)Jαβ(X3)〉 =(det |X12|)−
∆
2 (det |X13|)−

2−∆
2 (det |X23|)−

∆
2 × (5.1)

×
(
A[(Q3

12)αβ(Q1
23)µν ] + B(P13)µν,αβ

)
where A and B are some yet undetermined constants.

4Degenerate cases correspond to the situations in which additional invariants can be built with the help

of ε-symbols, as it happens in 3d [36].
5Pab is actually a square of pab = X−1

ab , but it is convenient to regard it as an independent structure in

order to separate contributions from bosons and fermions (see section 6 for more details).
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Now let us impose the current conservation condition (2.13) on the three-point func-

tion (5.1). Requiring, for example, the conservation of the current Jµν(X1) one gets (see

the appendix B for details)

A = B, ∆ = 1 (5.2)

and similarly for the conservation of the current Jαβ(X3). We thus conclude that for the

three-point function (5.1) to be non-zero the dimension of the scalar operator O must be

equal to one.

There at least two interpretations of this result. and we will soon find more examples

of the same kind. Firstly, one can start from a free theory (2.4) with a fundamental field

b(X) and see if any interactions are possible. Here we do not assume that interactions

admit any realization in terms of either Lagrangian or equations of motion. Then the

above constraint implies that 〈JJ [bk]〉 = 0 for k = 1, 3, 4, . . . in the interacting theory,

where [bk] is a quasi-primary field built of k fields b(X). The only non-zero correlator

corresponds to k = 2 and does not allow for any anomalous dimension. The property of

allowing for anomalous dimensions is the most important property of any CFT. Therefore,

we interpret our result as the fact that there are no nontrivial interactions possible for the

field b(X). Secondly, one can start with any Sp(2n) invariant CFT and assuming that it

has a scalar operator O(X) and a conserved current J1(X), one concludes that there are no

anomalous dimensions possible for the operator O(X) as well as for the operators [Ok(X)].

Moreover, if the correlator 〈JJO〉 is different from zero then the correlator looks like the

one for O(X) = b2(X), where b(X) is a free field.

This situation is different from the one in D ≥ 3 CFTs (see e.g. [37–39]) where an

analogous three-point function does not impose any condition on the dimensions of the

scalar fields. Using the same ansatz as above with the understanding that each pair of the

indices (αβ) should be replaced by one vector index of the Lorentz group SO(1, D− 1) one

gets the condition

A(D − 1−∆)− B∆ = 0 (5.3)

which relates the three parameters but does not impose any restriction on the conformal

weight ∆.

The reason for this difference is that in the Sp(2n)-invariant systems in the hyperspace

with extra coordinates the conservation conditions are more restrictive than in ordinary

CFTs. The situation does not change even if we consider weaker conservation conditions,

e.g. only an Sp(n)-invariant part of (2.13) and (2.19) obtained by contracting the latter

with the symplectic metrics CανCβµ. The exception is the case of n = 2, D = 3 in which

the Sp(4) ∼ SO(2, 3) symmetry simply coincides with the three-dimensional conformal

symmetry. In this case the condition (5.2) does not arise due to extra 2×2 matrix identities

which are present in D = 3 as it is shown in appendix B.

We can also consider a correlator which contains two currents and an antisymmetric

tensor operator O[αβ]. This operator can be constructed e.g. by taking the product of two
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fermionic fields fα(X2)fβ(X2). Such a correlator has the following structure

〈Jα1α2(X1)Jβ1β2(X2)O[γ1γ2](X3)〉 = (det |X12|)−
2−∆

2 (det |X13|)−
∆
2 (det |X23|)−

∆
2 × (5.4)

× C
[
(X−1

12 )β1(α1
(X−1

13 )α2)[γ1
(X−1

23 )γ2]β2
+ (X−1

12 )β2(α1
(X−1

13 )α2)[γ1
(X−1

23 )γ2]β1

]
.

Again the requirement of current conservation fixes the conformal dimension of O[γ1γ2] to

be ∆ = 1.

5.2 〈TJO〉 and 〈TTO〉 correlators

Other examples of correlation functions in which the conformal weights of the operators

are completely fixed by the conservation laws are 〈TJO〉, and 〈TTO〉.
The Sp(2n) invariance restricts the correlation function 〈TJO〉 to have the follow-

ing form

〈Tα(4)(X1)Jβ(2)(X2)O∆(X3)〉 = (det |X12|)−
2−∆

2 (det |X13|)−
∆
2 (det |X23|)−

∆
2 (5.5)

×
(
A[(Q1

23)αα(Q1
23)αα(Q2

13)ββ ] + B(Q1
23)αα(P12)αα,ββ

)
where the total symmetrization of the indices denoted by the same letter is implied. The

conservation of the stress-tensor ∂1(Tα(4)) and the current ∂2(Jβ(2)) require

A = −B/2 , ∆ = 1 . (5.6)

Therefore we have found again that the structure of the three-point function and the

conformal dimension of the scalar field are fixed by the conservation laws.

The same happens with the Sp(2n)-invariant correlator 〈TTO〉 which has the form

〈Tα(4)(X1)Tβ(4)(X2)O∆(X3)〉 = (det |X12|)−
2−∆

2 (det |X13|)−
∆
2 (det |X23|)−

∆
2

×
[
A (Q1

23)αα(Q1
23)αα(Q2

13)ββ(Q2
13)ββ

+B (Q1
23)αα(Q2

13)ββ(P12)αα,ββ ]

+C (P12)αα,ββ(P12)αα,ββ

]
. (5.7)

And the conservation of the stress tensor fixes the parameters as follows

A = −B/4 , C = −B/6 , ∆ = 1 . (5.8)

6 Generic structure of the three-point correlation functions of symmetric

tensor operators

The form of the Sp(2n)-invariant correlator of three currents J iαβ , where i is an internal

group index (e.g. i stands for AB in the O(N) case) manifests a general structure of the

three-point functions which include three tensor structures which we called pab, Pab and

Qcab (given in (3.10), (3.9) and (4.6), respectively)

〈J iα1α2
(X1)J jβ1β2

(X2)Jkγ1γ2
(X3)〉 =

f ijk

(det |X12|)k3(det |X13|)k2(det |X23|)k1
× (6.1)

×
[
A(Q1

23)α1α2(Q2
13)β1β2(Q3

12)γ1γ2 + B
(

(Q3
12)γ1γ2(P12)α1α2,β1β2 + perm. of 1,2,3

)
+C
(

(p12)β1(α1
(p13)α2)(γ1

(p23)γ2)β2
+ (p12)β2(α1

(p13)α2)(γ1
(p23)γ2)β1

)
)]
,
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where f ikj are structure constants of the internal group. As in the conventional CFTs, the

first two structures entering (6.1) with the parameters A and B are associated with the

currents constructed with the bosonic fields, while the third structure is associated with

the form of the fermionic currents (2.8).

The current conservation leaves the parameter C arbitrary. It fixes the parameters ka
and relates the parameters of the bosonic structures

k1 = k2 = k3 = 1/2, A = −B, (6.2)

which is consistent with the fact that the canonical spin-independent part of conformal

dimension of the current is ∆ = 1. The above correlator has the same structure as in the

ordinary CFTs, expect for the 3D case where an extra odd structure exists [36].

We are now in a position to discuss the general structure of the three-point correlators

of conserved currents which are symmetric tensors of a rank r = 2s with s being an integer

‘spin’. To this end it is convenient to hide the tensor indices away by contracting them

with auxiliary variables λαa , where a refers to the point of operator insertion:

(pab)αβ ⇒ pab = (X−1
ab )αβ λ

α
aλ

β
b no summation over a, b . (6.3)

(Pbc)αβ,γδ ⇒ Pab = 2pabpba = (Pab)αβ,γδ λ
α
aλ

β
aλ

γ
bλ

δ
b no summation over a, b , (6.4)

(Qabc)αβ ⇒ Qabc = (Qabc)αβ λ
α
aλ

β
a no summation over a . (6.5)

For instance the correlator of two scalar operators O of the same dimension ∆ with a

conserved current of an integer spin s obeying (2.24) is

〈O(X1)O(X2)Js(X3)〉 = C(det |X12|)−
2−∆

2 (det |X13|)−
1
2 (det |X23|)−

1
2 (Q3

12)s (6.6)

Imposing the current conservation condition leads to the same result as for the currents

with s = 1, 2, i.e. k1 = k2 = 1
2 , which means that the dimensions of the scalar operators

are arbitrary.

However, if we consider a three-point function of a scalar operator and two conserved

currents

Js = Jα1...α2sλ
α1 · · ·λα2s

of ranks 2s1 and 2s2 with s ≥ 1 we will again find that, up to an overall factor, all the free

parameters in the correlator are fixed. For example,

〈J3(X1)J1(X2)O(X3)〉 = C
(Q1

23)3Q2
13 − 3(Q1

23)2P12(
det |X12| det |X13| det |X23|

)1/2
(6.7)

is the unique solution of the Sp(2n) conservation conditions (2.24).

Summarizing, we have found that the restrictions imposed by the Sp(2n) conservation

laws on the correlation functions fix their structure up to an overall factor and the correla-

tors are those of free Sp(2n) invariant CFT. We studied thoroughly the correlators which

include generalised currents and stress-tensor. We can make further progress by computing

correlators involving higher-rank tensors. However the study of examples with higher-spin
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currents do not lead to any new conclusions comparing to the the study of the correlation

functions involving a rigid symmetry current J1 and the stress tensor T2. In particular, the

correlators with higher-spin currents also look like those in a free Sp(2n) invariant CFT.

This suggests that all other correlators with higher-spin currents follow the same pattern.

The generating function of correlators in free theories were already obtained [26–30]. For

example, a generating function of the three-point functions of currents built out of free

scalars b(X) is

〈JJJ〉 =
cos(p12) cos(p13) cos(p23) exp

(
1
2 [Q1

23 +Q2
13 +Q3

12]
)

(det |X12| det |X23| det |X13|)1/2
. (6.8)

It contains operators Js, s = 0, 1, 2, . . . and the correlator 〈Js1Js2Js3〉 is obtained as the

coefficient in front of (λ1)2s1(λ2)2s2(λ3)2s3 .

The generating function obtained from the currents built out of free fermions fα(X) is

〈JJJ〉 =
sin(p12) sin(p13) sin(p23) exp

(
1
2 [Q1

23 +Q2
13 +Q3

12]
)

(det |X12| det |X23| det |X13|)1/2
. (6.9)

The generating function of multi-point correlators can be found in [28–30].

The above expressions deal with the bosonic symmetric tensor currents of even rank.

The generating function which produces 3-point correlators involving two fermionic cur-

rents of odd ranks is similar, see e.g. [25].

7 Conclusion

We have studied restrictions imposed by the generalized conformal group Sp(2n) and the

conservation laws on various correlation functions involving conserved currents, stress-

tensor and higher-spin currents. The general structure of the correlators is similar to the

one in the usual conformal field theories. It is build of three conformally-invariant tensor

structures, which were found by working out the simplest two- and three-point functions.

The difference between Sp(2n)- and SO(2, D)-invariant correlation functions arises

when conserved tensor currents are involved. If we assume that the theory has a conserved

stress-tensor T and, possibly, a conserved current J , then computation shows that while the

simplest correlators 〈TOO〉 and 〈JOO〉 allow operators O to have an anomalous dimension,

their correlators with two conserved tensors, 〈TTO〉, 〈JJO〉 and 〈TJO〉, fix the conformal

dimension of O to be twice that of a free field. This is not the case in the SO(2, D) CFTs

in which similar restrictions arise only if they contain in addition to the stress tensor a

conserved higher-spin current [31–35].

The fact that the above restriction on the conformal weight of O implies that the theory

is free can also be understood as follows. If a free theory contains, e.g. elementary scalar

fields b(X) of the canonical dimension 1/2 then we can take O = bb. In the Sp(2n)-invariant

free theory we expect that 〈TTO〉 6= 0, which is already true for a free field. If a free

Sp(2n)-invariant model could be deformed by some interactions with a coupling constant

g, quantum corrections would make fields to acquire anomalous dimensions ∆(g). If so,

then as we have seen, the conservation of T requires that the correlator 〈TTO∆(g)〉 = 0.

Such a theory would not have a smooth free limit g → 0, since at g = 0 the correlator is

non-zero.

– 15 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
8

Therefore, for n > 2 the rigid Sp(2n) conservation condition turns out to be much more

restrictive than the SO(2, D) one. Only in the n = 2, D = 3 case the Sp(4) ∼ SO(2, 3)

becomes the usual three-dimensional conformal symmetry and the conservation condition

reduces to the usual current conservation which does not restrict conformal dimension of

operators in the correlators with spin-one and spin-two currents.

Assuming the presence in the Sp(2n)-invariant theory, containing a stress-tensor, of at

least one higher-spin current one can easily repeat the proof given in [31–35] and conclude

that there should be infinitely many (symmetric) higher-spin currents associated with a

unique higher-spin algebra that is generated by the corresponding charges. In this sense

our work shows that in the Sp(2n) setup with n > 2 spin-one and spin-two currents already

behave like higher-spin currents, forcing the theory to be a free one. If we do not assume the

existence of the conserved stress-tensor, like in gravity theories, then the above reasoning

does not apply. However, the possibility of introducing ‘hypergravity’ interactions of the

Sp(2n)-invariant systems is an open problem itself.

Another option that may still lead to interacting Sp(2n)-theories without contradicting

our results is the existence of certain contact terms in the Sp(2n) correlators, i.e. the terms

that have δ-like singularity when points collide.

Therefore, the main conclusion is that the generalized conformal field theories with

Sp(2n) symmetry only admit a free field realization, with the few loopholes mentioned

above. Still the Sp(2n)-invariant formulation can be useful for the study of free CFTs. In

particular, one can derive the generating functions for all the correlation functions [26–30]

and work out the operator algebra [29]. In order to allow for nontrivial interactions the

Sp(2n) symmetry should be broken, as happens for the current interactions [24].

In this paper we have mainly studied the correlation functions of scalar operators with

conserved currents that are totally-symmetric tensors of even rank from the Sp(2n) point

of view. As we have mentioned, in the theory with fermions fα one can find operators with

more complicated types of symmetry. It should be possible to generalize the classification

of the Sp(2n)-invariant correlators to the case of fields with mixed-symmetry as well as

to consider the hyperfields which are p-forms in hyperspace (see [35] for a discussion of

p-forms in SO(2, D) CFTs).

Another interesting application of the generalized conformal Sp(2n) symmetry is the

study of conformal higher-spin fields on Sp(n) group manifolds (see [7, 8, 10, 21, 22] for

details), which is a generalisation of conformal higher-spin theories on AdSD backgrounds

(see for example [40–42]). For instance, the infinite sets of bosonic and fermionic symmetric

higher-spin fields in AdS4 are packed into a scalar and a spinor field which propagate on a

10-dimensional group manifold Sp(4) and enjoy Sp(8) invariance. As was shown in [21, 22]

the correlation functions of the fields on Sp(4) can be obtained from the flat hyperspace

ones by performing a certain GL(4) transformation and rescaling of the latter. So the

results of this paper are directly generalized to Sp(2n)-invariant systems on the Sp(n)

group manifolds.

One more application of the free Sp(2n)-invariant systems is to compute partition

functions of free higher-spin theories along the lines of [43, 44] (and references therein), an

advantage being that Sp(2n)-fields encode the infinite multiplets of higher-spin fields and

therefore should evaluate the sum over the spins automatically.
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A Properties of P and Q tensor structures

The derivatives of the matrix valued coordinates and corresponding determinants have

the form

∂

∂Xµν
Xαβ =

1

2

(
δαµδ

β
ν + δβµδ

α
ν

)
(A.1)

∂

∂Xµν
X−1
αβ = −1

2

(
X−1
µαX

−1
νβ +X−1

ναX
−1
µβ

)
(A.2)

∂

∂Xµν
detX = X−1

µν detX (A.3)

These relations can be used to derive useful properties of the tensors (Pab)αβ,µν and (Qcab)αβ ,

in particular

∂

∂Xµν
3

(Q3
12)αβ =

1

2
((P13)αβ,µν − (P23)αβ,µν) (A.4)

∂

∂Xµν
2

(Q3
12)αβ =

1

2
(P23)αβ,µν (A.5)

∂

∂Xµν
1

(Q3
12)αβ = −1

2
(P13)αβ,µν (A.6)

∂

∂Xγδ
1

(P12)αβ,µν = −1

2
((P12)µα,γδ(X

−1
12 )νβ + (P12)νβ,γδ(X

−1
12 )µα (A.7)

+(P12)να,γδ(X
−1
12 )µβ + (P12)µβ,γδ(X

−1
12 )να)

The tensors P and Q have the following properties under the differentiation which

defines the conservation laws (2.13) and (2.19)

∂

∂Xµν
3

(Q3
12)αβ −

∂

∂Xµα
3

(Q3
12)νβ −

∂

∂Xνβ
3

(Q3
12)αµ +

∂

∂Xαβ
3

(Q3
12)µν (A.8)

= (P13)αβ,µν − (P13)αµ,βν − (P23)αβ,µν + (P23)αµ,βν

∂

∂Xµν
2

(Q3
12)αβ −

∂

∂Xµα
2

(Q3
12)νβ −

∂

∂Xνβ
2

(Q3
12)αµ +

∂

∂Xαβ
2

(Q3
12)µν (A.9)

= (P23)αβ,µν − (P23)αµ,βν
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∂

∂Xµν
1

(Q3
12)αβ −

∂

∂Xµα
1

(Q3
12)νβ −

∂

∂Xνβ
1

(Q3
12)αµ +

∂

∂Xαβ
1

(Q3
12)µν

= −(P13)αβ,µν + (P13)αµ,βν , (A.10)

and finally

∂

∂Xγδ
1

(P12)αβ,µν −
∂

∂Xγα
1

(P12)δβ,µν −
∂

∂Xβδ
1

(P12)αγ,µν +
∂

∂Xαβ
1

(P12)γδ,µν

=−(X−1
12 )αγ(P12)βδ,µν−(X−1

12 )βδ(P12)αγ,µν+(X−1
12 )αβ(P12)γδ,µν+(X−1

12 )γδ(P12)αβ,µν .

(A.11)

B Conservation of 〈JJO〉 in detail

In this appendix we present the calculations of the current conservation in the three-point

function (5.1). Below we omit O(N) indices, since they are not relevant for our goal.

First let us introduce the following notation

Xµν = (X13)−1
µν , Yµν = (X23)−1

µν , Zµν = (X12)−1
µν (B.1)

Therefore

(Q3
12)αβ = Xαβ − Yαβ , (Q1

23)µ̂ν̂ = −Zµ̂ν̂ +Xµ̂ν̂ (B.2)

and

(P13)αβ,µ̂ν̂ = (Xαµ̂Xβν̂ +Xαν̂Xβµ̂) (B.3)

For the derivatives with respect to the coordinate Xµν
3 one obtains

∂(3)
µν (Q3

12)αβ =
1

2
(XαµXβν +XανXβµ − YαµYβν − YανYβµ) (B.4)

∂(3)
µν (Q1

23)µ̂ν̂ =
1

2
(Xµ̂µXν̂ν +Xµ̂νXν̂µ) (B.5)

Now let us impose the conservation of the current Jαβ(X3) on the three-point function

Gαβµ̂ν̂ = 〈Jµ̂ν̂(X1)O(X2)Jαβ(X3)〉 (B.6)

= (detZ)−k3(detX)−k2(detY )−k1
(
A(Q3

12)αβ(Q1
23)µ̂ν̂ + B(P13)αβ,µ̂ν̂

)
which explicitly reads

∂(3)
µν Gαβµ̂ν̂ − ∂(3)

µαGνβµ̂ν̂ − ∂
(3)
βν Gαµµ̂ν̂ + ∂

(3)
αβGµνµ̂ν̂ = 0, (B.7)

where

∂(3)
µν Gαβµ̂ν̂ = (detZ)−k3(detX)−k2(detY )−k1 × (B.8)

×[A(∂(3)
µν (Q3

12)αβ)(Q1
23)µ̂ν̂ +A(Q3

12)αβ(∂(3)
µν (Q1

23)µ̂ν̂) + B(∂(3)
µν (P12)αβ,µ̂ν̂)

+(k2Xµν + k1Yµν)(A(Q3
12)αβ(Q1

23)µ̂ν̂ + B(P13)αβ,µ̂ν̂)]

The other three terms in the conservation law (B.7) can be obtained from (B.8) via inter-

change of the indices.
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B.1 ∂(3)
µν Gαβµ̂ν̂

The expressions which are present in (B.8) have the following explicit form

(∂(3)
µν (Q3

12)αβ)(Q1
23)µ̂ν̂ (B.9)

= +
1

2
[XαµXβνXµ̂ν̂ +XανXβµXµ̂ν̂ − YαµYβνXµ̂ν̂ − YανYβµXµ̂ν̂ ]

−1

2
[XαµXβνZµ̂ν̂ +XανXβµZµ̂ν̂ − YαµYβνZµ̂ν̂ − YανYβµZµ̂ν̂ ]

(Q3
12)αβ(∂(3)

µν (Q1
23)µ̂ν̂) (B.10)

=
1

2
[Xµ̂µXν̂νXαβ +Xµ̂νXν̂µXαβ −Xµ̂µXν̂νYαβ −Xµ̂νXν̂µYαβ ]

∂(3)
µν (P13)αβ,µ̂ν̂ (B.11)

=
1

2
[XαµXµ̂νXβν̂ +XανXµ̂µXβν̂ +Xαµ̂XβµXν̂ν +Xαµ̂XβνXν̂µ]

+
1

2
[XαµXν̂νXβµ̂ +XανXν̂µXβµ̂ +Xαν̂XβµXµ̂ν +Xαν̂XβνXµ̂µ]

(k2Xµν + k1Yµν)(Q3
12)αβ(Q1

23)µ̂ν̂ (B.12)

= k2[XµνXαβXµ̂ν̂ −XµνXαβZµ̂ν̂ −XµνYαβXµ̂ν̂ +XµνYαβZµ̂ν̂ ]

+k1[YµνXαβXµ̂ν̂ − YµνXαβZµ̂ν̂ − YµνYαβXµ̂ν̂ + YµνYαβZµ̂ν̂ ]

(k2Xµν + k1Yµν)(P13)αβ,µ̂ν̂ (B.13)

= k2[XµνXαµ̂Xβν̂ +XµνXαν̂Xβµ̂] + k1[YµνXαµ̂Xβν̂ + YµνXαν̂Xβµ̂]

Again the terms in ∂
(3)
µαGνβµ̂ν̂ , ∂

(3)
βν Gαµµ̂ν̂ and ∂

(3)
αβGµνµ̂ν̂ can be obtained from (B.9)–(B.13)

via appropriate interchanging of the indices. After doing so and collecting similar terms

one obtains the equations (5.2). Obviously the same condition (5.2) can be obtained if one

considers the conservation of the current Jµ̂ν̂(X1) instead of Jαβ(X3).

B.2 Three dimensions

In this subsection we shall explicitly show that in the case n = 2, D = 3 win which the gen-

eralised conformal group Sp(4) coincides with the three-dimensional conformal group, the

current conservation condition in the three point function with two currents and one scalar

does not impose any restriction on the scaling dimension of the later, thus reproducing a

known result from D = 3 CFT (see for example [36]).

In D = 3 the coordinates Xαβ = xmγαβm (m = 0, 1, 2) are 2 × 2 symmetric matrices

parametrising the D = 3 space-time. Taking the generalized conformal dimensions of

the current to be equal to 1 we obtain from (4.2) that k2 = 1 − k1. The conventional

conservation law is obtained by contracting expressions (B.9)–(B.13) with εανεβµ, where

– 19 –
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the convention for the spinorial metric is εµ̂ν̂εν̂ρ̂ = −δµ̂ρ̂ . Doing so one gets

−A
2

(X2 − Y 2)(Xµ̂ν̂ − Zµ̂ν̂) +A[X(X − Y )X]µ̂ν̂ (B.14)

−2B[XXX]µ̂ν̂ +A(X2 −XY )(Xµ̂ν̂ − Zµ̂ν̂)

−Ak1(X2 − 2XY + Y 2)(Xµ̂ν̂ − Zµ̂ν̂) + 2B[XXX]µ̂ν̂ − 2Bk1[X(X − Y )X]µ̂ν̂

= A
(

1

2
− k1

)
(X − Y )2(Xµ̂ν̂ − Zµ̂ν̂) + (A− 2Bk1)[X(X − Y )X]µ̂ν̂ = 0 ,

where

XY = XαβY
αβ , [X(X − Y )X]ν̂µ̂ = [X(X − Y )X]µ̂ν̂ = Xµ̂

α(X − Y )αβX
β
ν̂ .

For the expression (B.14) to be zero for an arbitrary k1 one should prove that

(X − Y )2(Xµ̂ν̂ − Zµ̂ν̂) = a[X(X − Y )X]µ̂ν̂ . (B.15)

To this end note that in vew of the definitions (B.1) the following relation holds

Z−1 = X−1 − Y −1.

Note also that for the 2× 2 symmetric matrices Xµν

X2 = 2 detX =
2

detX−1
.

Now using that

Xµ̂
βXβν̂ = −1

2
εµ̂ν̂X

2, → Xµ̂ν̂ =
1

2
X2X−1

µ̂ν̂ =
1

detX−1
X−1
µ̂ν̂ ,

we can rewrite [X(X − Y )X]nm as follows

Xµ̂
α(X − Y )αβX

β
ν̂ =

1

2
X2Xµ̂ν̂ +

1

2
X2Yµ̂ν̂ − (XY )Xµ̂ν̂ (B.16)

=
1

2
(X − Y )2Xµ̂ν̂ −

1

2
Y 2Xµ̂ν̂ +

1

2
X2Yµ̂ν̂

=
1

2
(X − Y )2Xµ̂ν̂ −

1

4
X2Y 2(X−1 − Y −1)µ̂ν̂

=
1

2
(X − Y )2Xµ̂ν̂ −

1

4
X2Y 2 det(X−1 − Y −1)

(X−1 − Y −1)µ̂ν̂
det(X−1 − Y −1)

=
1

2
(X − Y )2Xµ̂ν̂ − detX detY det(X−1 − Y −1)Zµ̂ν̂

=
1

2
(X − Y )2Xµ̂ν̂ − det(X − Y )Zµ̂ν̂

=
1

2
(X − Y )2(Xµ̂ν̂ − Zµ̂ν̂) .

We thus find that in (B.15) a = 2. Hence, from (B.14) it follows that

A(1− k1)− Bk1 = 0,

which means that in this case there is no restriction on the parameter k1 and hence on the

conformal dimension of the scalar field.
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