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Abstract Real ideals of compact operators for (complex) factors are investigated.
A description (up to isomorphisms) of real two-sided ideals of relatively compact
operators of a complex W*-factors is given. A relative weak (RW)r convergence in a
real Hilbert space is introduced. The classical Hilbert characterization of compactness
of operators is extended to the compact operators in semifinite real W*-algebras.
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1 Introduction

In the present paper we investigate the real ideals of compact operators for complex
factors and give a description (up to isomorphisms) of real two-sided ideal of relatively
compact operators of the complex W*-factors. A concept of relative weak (RW)r

convergence in a real Hilbert space is introduced. The classical Hilbert characterization
of compactness of operators is extended to the compact operators in semifinite real
W*-algebras.

2 Preliminaries

Let B(H) be the algebra of all bounded linear operators on a complex separable Hilbert
space H . A weakly closed *-subalgebra A containing the identity operator 1I in B(H)
is called a W∗-algebra. A real *-subalgebra R ⊂ B(H) is called a real W∗-algebra if it
is closed in the weak operator topology, 1I ∈ R and R∩i R = {0}. A real W∗-algebra R
is called a real factor if its center Z(R) consists of the elements {λ1I, λ ∈ R}, where R is
the field of all real numbers. We say that a real W∗-algebra R is of the type I f in , I∞, II1,

II∞, or IIIλ, (0 ≤ λ ≤ 1) if the enveloping W∗-algebra A(R) has the corresponding
type in the ordinary classification of W∗-algebras. A linear mapping α of an algebra
into itself with α(x∗) = α(x)∗ is called an *-automorphism if α(xy) = α(x)α(y); it
is called an involutive *-antiautomorphism if α(xy) = α(y)α(x) and α2(x) = x . If
α is an involutive *-antiautomorphism of a W∗-algebra M , we denote by (M, α) the
real W∗-algebra generated by α, i.e. (M, α) = {x ∈ M : α(x) = x∗}. Conversely,
every real W*-algebra R is of the form (M, α), where M is the complex envelope of
R and α is an involutive *-antiautomorphism of M (see [1,2,5,9]). Therefore we shall
identify from now on the real von Neumann algebra R with the pair (M, α).

A trace on a (complex or real) W*-algebra N is a linear function τ on the set N+
of positive elements of N with values in [0,+∞], satisfying τ(uxu∗) = τ(x), for an
arbitrary unitary u and for any x in N .

The trace τ is said to be finite, if τ(1I) < +∞; semifinite, if given any x ∈ N+ there
is a nonzero y ∈ N+, y ≤ x with τ(y) < +∞.

3 Real and complex ideals of W*-algebras

Definition 1 Let M be a W*-algebra. A real subspace I of M is called a real ideal of
M if I · M ⊂ Ic, where Ic is the smallest complex subspace of M , containing I .

It is easy to see that the subspace Ic is equal to I + i I , therefore a real subspace I
is a real ideal if and only if I · M ⊂ I + i I .

Since each complex subspace of M is a real subspace, any complex ideal is automat-
ically a real ideal of M . Let I be a real ideal of M . If there exists a real W*-subalgebra
R of M with R + i R = M , such that I ⊂ R, then I is called a pure real ideal of M .
In this case, it is obvious that we have I · R ⊂ I . Note that, the reverse is not true,
i.e. from I · R ⊂ I it does not follow I ⊂ R. But a complex subspace J = I + i I
always is a complex ideal of M . On the other hand if I ⊂ R is a real subspace of M
and I + i I is a complex ideal, then I is a pure real ideal, i.e. we obtain I · R ⊂ I .
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Let, now I and Q be pure real ideals of M . In general, the set I + i Q is not a
(complex) subspace. More precisely the set I + i Q is a complex subspace if and only
if I = Q. Therefore we consider the smallest complex subspace J of M , containing I
and Q. Obviously J is equal to (I + Q)+ i(I + Q). Thus, if I and Q are real ideals,
then J = (I + Q)+ i(I + Q) is a complex ideal.

4 Ideals of compact operators

Let (M, α) be a real factor and let τ be anα-invariant semifinite trace on M . A subspace
K ⊂ H is called τ -finite (or finite relative to τ ), if τ(PK ) < +∞, where PK is the
canonical projection of H on K with PK ∈ M .

Now, let K be a subset of H . A subset K is called τ -compact (or compact relative
to τ ), if K is approximated in the norm ‖ · ‖H by a bounded sequence of τ -finite
subspaces.

A real operator A on H (i.e. A ∈ (M, α)) is called real compact relative to τ if
it is an operator mapping bounded sets into relatively compact sets. We denote by I
(respectively, by J ) the set of all relatively compact operators of (M, α) (respectively,
of M). Let us recall the following result.

Theorem 1 ([3,10,11]) Let M be a semifinite factor and let α be an involutive
*-antiautomorphism of M. Then I (respectively, J ) is a unique (nonzero) uniformly
closed two-sided ideal of (M, α) (respectively, of M), and I + i I = J .

Now, let us recall [4] the notion of the crossed product of a W*-algebra M by a
locally compact topological group G by its *-automorphism. Let γ : G → Aut (M)
be a group homomorphism such that the map g → γg is strongly continuous. Let
L2(G, H) be the Hilbert space of all H -valued square integrable functions on G. We
consider a *-algebra N ⊂ B(L2(G, H)), generated by operators of the form: πγ (a)
and u(g), where a ∈ M , g ∈ G, and

(
πγ (a)ξ

) = γ−1
h (a)ξ(h), (u(g)ξ) (h) = ξ(g−1h),

ξ = ξ(h) ∈ L2(G, H), g, h ∈ G. The algebra N is called the crossed prod-
uct of M by G, and denoted by W ∗(M,G) or M ×γ G. Moreover, there exists a
canonical embedding πγ : M → πγ (M) ⊂ N . Each element x ∈ N has the
form: x = ∑

g∈G πγ (x(g))u(g), where x(·) is an M-valued function on G. If θ is a
*-automorphism of M , then for the action {θn} of the group Z on M we denote by
W ∗(θ,M) or M ×θ Z the crossed product of M by θ . Similarly one can define the
notion of crossed product for real W*-algebras (see [1,12–14]).

Let M be a factor of type IIIλ (λ 
= 1) and let α be an involutive *-antiautomorphism
of M . Then by [12] (see also [1]), either

– there exist a factor N of type II∞ and an α-invariant automorphism θ of N such
that (M, α) is isomorphic to the (real) crossed product (N , α)×θ Z or

– there exist a factor N of type II∞ and an antiautomorphism σ of N such that (M, α)
is isomorphic to

(
(N ⊕ N op) ×σ Z, β

)
, where N op is the opposite W*-algebra

for N and β(x, y) = (y, x), for all x, y ∈ N .
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Let’s consider the first case. Let (M, α) be isomorphic to the (real) crossed product
(N , α)×θ Z. It is known that (N , α)×θ Z + i · (N , α)×θ Z = N ×θ Z (see [12–14]).
Let E : M → N be the unique α-invariant faithful normal conditional expectation
(see [15,16]). Let us state an auxiliary lemma whose proof immediately follows from
the linearity and α-invariance of E .

Lemma 1 If S is an ideal in (M, α) and Sc = S + i S, then

E−1(S)+ i E−1(S) = E−1(Sc), E−1(S)+ ⊂ E−1(S)+,

where E−1(A) = {x : E(x) ∈ A}.
Recall that a cone K ⊂ A+ is called hereditary if x ∈ A+, y ∈ K and x ≤ y

implies x ∈ K ; a subalgebra B ⊂ A is called hereditary if the cone B+ is hereditary.
It is easy to see that any two-sided ideal is hereditary.

Lemma 2 If the cone E−1(Sc)
+ is hereditary, then the cone E−1(S)+ is also hered-

itary.

Proof If x ∈(M, α)+ ⊂ M+, y ∈ E−1(S)+ ⊂ E−1(Sc)
+ and x ≤ y, then x ∈ E−1(Sc)

+,
since E−1(Sc)

+ is hereditary. Therefore α(x)= x∗ implies x ∈ E−1(S)+. �

Proposition 1 Let M be a semifinite factor. If S ⊂ (M, α) is a two-sided ideal, then
the linear span of E−1(S)+ denoted as span(E−1(S)+) is a hereditary *-subalgebra
of (M, α) and a two-sided module over (M, α). Moreover, if S is a norm-closed, then
span(E−1(S)+) is also norm-closed.

Proof By Lemma 1 and Proposition 3.3 [6] the cone E−1(Sc)
+ is hereditary and

span(E−1(Sc)
+) is a hereditary *-subalgebra of M , where Sc = S + i S. By Lemma 2

the cone E−1(S)+ is also hereditary. Using the hereditarity of span(E−1(Sc)
+) one

can easily check the hereditarity of span(E−1(S)+).
If S is norm-closed, then S+ is also norm-closed. The continuity of E implies that

E−1(S)+ is closed. Therefore span(E−1(S)+) is also closed.
Let x ∈ E−1(S)+ and y ∈ (M, α). From x ∈ E−1(Sc)

+ and y ∈ M , by
Proposition 3.3 [6] we obtain that yx ∈ span(E−1(Sc)

+), since span(E−1(Sc)
+)

is a two-sided module over M . On the other hand yx ∈ (M, α) and {a ∈
span(E−1(Sc)

+) : α(a) = a∗} = span(E−1(S)+). Hence yx ∈ span(E−1(S)+).
Since the element x is arbitrary from E−1(S)+ by linearity we obtain yx ∈
span(E−1(S)+) for any x ∈ span(E−1(S)+). Therefore span(E−1(S)+) is a left-
sided module over (M, α). Similarly one can show, that it is a right-sided (M, α)-
module. �


Now, we put I = span{x ∈ (M, α) : E(x) ∈ I }, where I is the unique (nonzero)
uniformly closed two-sided ideal of the semifinite real factor (N , α) (see Theorem 1).
By Proposition 1, I is hereditary.

Lemma 3 The following is valid

I+ = {x ∈ (M, α)+ : x ≤ y, f or some y ∈ I +}.
Proof Let x ∈ I+ and J = I + i I , J + = {x ∈ M+ : x ≤ z, for some z ∈ J+}.
Since x ∈ J + by Proposition 3.7 d) [6], x ≤ z, for some z ∈ J+. Let z = y + i t ,
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y, t ∈ (N , α). Then y ≥ 0 (because z ≥ 0) and z − x = (y − x) + i t ≥ 0, hence
y − x ≥ 0, i.e., x ≤ y. Since I + ⊂ J+, y ∈ I +.

Conversely, if x ∈ (M, α)+ and x ≤ y, for some y ∈ I +, then again by Proposition
3.7 d) [6] we have x ∈ J +. From α(x) = x∗ we have x ∈ I+. �


From Lemma 3, in particular, it follows, that a projection from (M, α) is finite if
and only if it majorized by some finite projection of (N , α).

Let I1 be the norm closure of I. If we apply Proposition 1, Lemma 3 and the
scheme of the proofs of Propositions 4.1, 4.5 and Theorem 4.3 [6], then we can prove
the following real analogue of Halpern-Kaftal’s theorem.

Theorem 2 Let M be a factor of type IIIλ (λ 
= 1) and let α be an involutive
*-antiautomorphism of M. If the real factor (M, α) is isomorphic to the (real) crossed
product (N , α) ×θ Z, then I1 is a unique (up to an inner automorphism) smallest
hereditary real C*-subalgebra of (M, α), containing the ideal I , and it is a two-sided
module over (N , α).

Let us consider the second case. Let (M, α)be isomorphic to ((N ⊕ N op)×σ Z, β),
where N is a II∞-factor, N op is the opposite W*-algebra for N and β(x, y) = (y, x),
for all x, y ∈ N .

Recall that, a factor N is generated by the fixed point algebra of the one parameter
group {σψt : t ∈ R} of modular automorphisms, associated with some α-invariant
faithful normal semifinite weight ψ . More precisely, the W*-subalgebra Mψ = {x ∈
M : σψt (x) = x, t ∈ R} contains a central projection p such that N is isomorphic to
factor pMψ . In this case the real W*-algebra (Mψ, α) is isomorphic to (N ⊕ N op, β)

(for more details see [1,12–14]).
Let E : (M, α) → (N ⊕ N op, β) be a faithful normal conditional expectation (see

[15,16]) and let J be the unique (nonzero) uniformly closed two-sided ideal of the
semifinite (complex) factor N (see Theorem 1). Similarly to the first case, we denote
by I2 the norm closure of span{x ∈ (M, α) : E(x) ∈ (J ⊕ J op, β)}.

Applying the same reasonings, as in the first case, and the scheme of proofs of
Propositions 4.1, 4.5 and Theorem 4.3 [6], we obtain one more real analogue of
Halpern-Kaftal’s theorem.

Theorem 3 Let M be a factor of type IIIλ (λ 
= 1) and let α be an invo-
lutive *-antiautomorphism of M. If the real factor (M, α) is isomorphic to
((N ⊕ N op)×σ Z, β), then I2 is the unique (up to inner automorphism) smallest
hereditary real C*-subalgebra of (M, α), containing the ideal I and is a two-sided
module over (N , α). Here I is the unique (nonzero) uniformly closed two-sided ideal
of semifinite real factor (N , α).

Thus, summarizing all above, in the injective case, we can describe all (nonzero)
uniformly closed two-sided real ideals of semifinite and pure infinite complex factors.
Recall that [1,5], if M is an injective factor of type II, then there exists a unique conju-
gacy class of involutive *-antiautomorphisms in M ; therefore there exists a unique (up
to isomorphisms) real subfactor of M , generating M . If M is an injective factor of type
IIIλ (0 < λ < 1), then in M there exist exactly two conjugacy classes of involutive
*-antiautomorphism; therefore there exist two (up to isomorphisms) real subfactors
of M , generating M . Hence we obtain the following result.
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Theorem 4 Let M be a factor. Then the following assertions are true:

1. If M is an injective factor of type II1 or type II∞, then there exist (up to isomor-
phisms) two (nonzero) uniformly closed two-sided real ideals in M. One of them
is the complex ideal J , the other is the pure real ideal I .

2. If M is an injective factor of type IIIλ (0 < λ < 1), then there exist (up to
isomorphisms) three (nonzero) uniformly closed two-sided real ideals in M. One
of them is the complex ideal J , the two others are the pure real ideals I1 and I2.

5 Relative weak convergence in semifinite real W*-algebras

In this section, we study the relative weak (RW) convergence in a real Hilbert space.
We first recall that the elements of the two-sided closed ideal I generated by the
projections which are finite relative to a real W*-algebra (M, α) are called compact
operators of (M, α).

Let Hr be a real Hilbert space with Hr + i Hr = H . A sequence {ξn} ⊂ Hr (or
⊂ H ) is called weakly converging to ξ , if for every projection P which is finite relative

to B(Hr ) (respectively, B(H)), Pξn converges strongly to Pξ (Pξn
S−→ Pξ ). This

suggests the following generalization:

Definition 2 Let (M, α) be a real W*-algebra in B(Hr ) ⊂ B(H) = B(Hr )+i B(Hr ).
We say that a sequence {ξn} ∈ Hr converges to ξ weakly relative to (M, α) and briefly

say (RW)r converges or ξn
(RW )r−→ ξ , if

1. ‖ξn‖ is bounded;
2. for every projection P ∈ (M, α) which is finite relative to (M, α), the sequence

{Pξn} converges strongly to the element Pξ , i.e. Pξn
S−→ Pξ .

Note that a weakly convergent sequence is necessarily bounded, but following the
Example 2 of [7], it is easy to construct an example, in which a unbounded sequence
satisfies the second condition of Definition 1.

Example Let H and K be infinite-dimensional separable real Hilbert spaces with
orthonormal bases {ηn}, {γn} respectively. We put R = B(H) ⊗ R1IK and ξn =∑2n

i=n ηi ⊗ γi . Since ‖ξn‖2 = ∑2n
i=n ‖ηi‖2‖γi‖2 = n, it is an unbounded sequence.

Let P be a finite protection of R. Then there is a finite projection P0 in B(H) such that
P = P0 ⊗ 1IK . Without loss of generality we may assume that it is one-dimensional,
i.e., that P0 =< ·, ξ > ξ , for an element ξ ∈ H with ‖ξ‖ = 1. Then

‖Pξn‖2 =
⎛

⎝
2n∑

i=n

P0ηi ⊗ γi ,

2n∑

j=n

P0η j ⊗ γ j

⎞

⎠

=
⎛

⎝
2n∑

i=n

< ηi , ξ > ξ ⊗ γi ,

2n∑

j=n

< η j , ξ > ξ ⊗ γ j

⎞

⎠

=
2n∑

i, j=n

(
< ηi , ξ > ξ, < η j , ξ > ξ

)
H · (γi , γ j )K =

2n∑

k=n

| < ηk, ξ > |2.
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Since the series
∑∞

k=1 | < ηk, ξ > |2 converges, the sequence
∑2n

k=n | < ηk, ξ > |2
converges to 0, when n → ∞. Hence ‖Pξn‖ → 0. Therefore Pξn

S−→ Pξ = 0, but
the sequence {ξn} is unbounded. Moreover it is easy to show that the sequence {ηn ⊗γ }
(RW )r converges to 0, but it does not converge strongly to 0, and the sequence {ξ⊗γn}
converges weakly to 0, but does not (RW )r converge to 0.

It is easy to see that the following assertions are true.

Lemma 4

ξn
RW−→ ξ ⇐⇒ ξn

(RW )r−→ ξ (1)

Here ξn
RW−→ ξ means that ‖ξn‖ is bounded and Pξn

S−→ Pξ , for every projection
P ∈ M (see [7, Definition 1]).

Proof The proof of implication “⇒” is obvious. Let’s prove the implication “⇐”.
Assume, that there is some projection p ∈ M with ‖pξn‖ 
→ 0. Since the projections
p and α(p) are equivalent we have ‖α(p)ξn‖ 
→ 0 (see [1]). It is easy to see that
a = p + α(p) ∈ (M, α) and a ≥ p (because α(p) ≥ 0), therefore ‖aξn‖ 
→ 0.
Then exists a spectral projection e ∈ (M, α) of an element a with ‖eξn‖ 
→ 0. It is a
contradiction with the assumption. �


The following theorem is a generalization of Hibert’s characterization of the com-
pact operators.

Theorem 5 (Theorem 7, [7]) An element A is compact in M iff it maps (RW) con-
verging sequences into strongly converging ones.

We have the following real analogue of the above characterization.

Theorem 6 An element A is compact in (M, α) iff it maps (RW)r converging
sequences into strongly converging ones.

Proof Firstly, let us prove the sufficiency. Let I be the two-sided closed (pure real)
ideal generated by the projections which are finite relative to a real W*-algebra (M, α)
and put J = I + i I . As it was noticed above J is the two-sided closed (complex)
ideal, generated by the projections which are finite relative to a W*-algebra M . If we
put

I1 = {A ∈ (M, α) : Aξn
S→ 0, for any sequence {ξn} ⊂ Hr with ξn

(RW )r−→ 0},

then by (1) for

J1 = {A ∈ M : Aξn
S→ 0, for any sequence {xn} ⊂ H with ξn

(RW )−→ 0},

we obtain I1 ⊂ J1 = J = I + i I . Here the equality J1 = J is valid by Theorem 5.
Since I1 ⊂ (M, α), we obtain I1 ⊂ I . Therefore A ∈ I , i.e. A is compact relatively
to (M, α)
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Now we shall prove the necessity. It suffices to show that I ⊂ I1. Suppose that

K ∈ I and ξn
(RW )r−→ ξ . Without loss of generality we can assume that ξ = θ . We

repeat step by step the scheme of proof of Theorem 1.3 [8], to obtain the real analogue
of the generalized Rellich condition for K , i.e., for every λ > 0 there is a projection P

of (M, α) such that ‖K P‖ ≤ λ and 1I − P is finite. From ξn
(RW )r−→ 0, by definition, we

obtain (1I − P)ξn
S−→ 0, and hence K (1I − P)ξn

S−→ 0. Since ‖K − K (1I − P)‖ =
‖K P‖ ≤ λ and ‖ξn‖ is bounded by definition, we have K ξn

S−→ 0. Thus, we have

shown that for any K ∈ I the condition ξn
(RW )r−→ ξ implies K ξn

S−→ K ξ . Hence
K ∈ I1, and therefore I1 ⊂ I . �

Theorem 6 shows that Hibert’s characterization of the compact operators remains valid
in semifinite real W*-algebras.
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