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1 Introduction

The study of conformal field theories with extended higher spin symmetries is a problem

almost as old as conformal field theory itself. The first example of an extended symmetry

algebra, W3, was constructed by Zamolodchikov in [1] by extending the Virasoro algebra

by addition of spin 3 field. In [2–4] the authors extended the construction of W3 using free

fields to whole family WN of algebras with N ≥ 3. Each of them contains the Virasoro

algebra together with additional generating local fields of spin 3, 4, . . . , N . These algebras

exist for arbitrary values of central charge c. One property that distinguishes these extended

algebras from the more simple algebras such as the Virasoro algebra or affine Lie algebras

is their non-linearity.

A second source of (classical) W-algebras came from the theory of integrable partial

differential equations. After [5–8] found the connection between the Virasoro algebra and

Korteweg-de Vries equation, the Gelfand-Dickey algebra of pseudodifferential operators [9–

13] was introduced to study the generalized KdV hierarchies. Later the geometric picture

was given as the Hamiltonian reduction of the coadjoint orbits of loop groups by Drinfeld

and Sokolov [14]. In the physical context, the Drinfeld-Sokolov reduction is the mechanism

behind formulation of Toda field theories as gauged WZNW modes as explained in [15, 16].

There are now various ways known of systematically producing the quantum chiral

algebras with higher spin generators [17]. For example, they appear naturally as subal-

gebras of the universal enveloping algebras of affine Lie algebras — the so-called Casimir

algebras [18], as well as in various GKO coset constructions [19–21]. There are also many

direct constructions in the spirit of the original Zamolodchikov’s construction [22–25] and

there is also a quantum version of the Drinfeld-Sokolov reduction.

The idea of the quantum Drinfeld-Sokolov reduction is that instead of quantizing the

classical W-algebra, realized as a symplectic quotient, it is easier to quantize the manifold

before taking the quotient and to implement the constraints at the quantum level. In our

context one can start with the affine Lie algebra and use the BRST procedure to obtain

the quantum W-algebra [26–30]. The review of this construction with many references

to the literature are given in [17]. For the family WN that we are mainly interested in,

this procedure reduces to quantization of the free field representation of WN (which is also

called the Miura transformation) as done in [2–4].

The Drinfeld-Sokolov reduction has recently found an interesting physical application

in the context of higher spin theories [31–34]. Einstein theory of gravity with cosmological

constant in three dimensions can be formulated [35, 36] as a Chern-Simons theory with

gauge group SL(2).1 We can extend the gauge group from SL(2) to any simple Lie group

and depending on the choice of the Lie group and the embedding of SL(2) inside of it, we

get a theory that describes cosmological Einstein gravity with higher spin fields. Because

these theories live in three spacetime dimensions, there are no locally propagating degrees

of freedom corresponding to graviton or higher spin fields. But specializing to theories

with AdS spacetime as a solution, one can study the degrees of freedom associated to the

conformal boundary of the AdS spacetime. One particularly interesting property to study

is the so-called asymptotic symmetry algebra. In the context of the cosmological Einstein

1The precise real form depends on the signature of the metric and sign of the cosmological constant.
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gravity this was originally studied in [37]. Choosing properly the asymptotic boundary

conditions at the conformal boundary of AdS one finds the Virasoro algebra as symmetry

algebra acting in the space of solutions of the theory (one could also consider this as a

spectrum generating algebra of the theory). In [31–34] the asymptotic symmetry algebra

was computed in the case of higher spin theories — in this case the asymptotic Virasoro

algebra is extended to classical W-algebra. The precise W-algebra that one obtains in this

way depends on the choice of the Chern-Simons gauge group of the bulk theory as well

as the embedding of the (conformal) SL(2) subgroup. Mathematically, as was explained

in [33], one is effectively performing the Drinfeld-Sokolov reduction.

Another interesting W-algebra closely related to WN series is their formal limit W∞.

The first two quantum versions of this algebra were studied in [38–40]. From today’s point

of view, the authors were studying W∞ for a special value of parameters where the algebra

linearizes. Although already at that time there were signs of connection between W∞ and

WN [41], the understanding that W∞ is actually a two-parametric family algebras came

only recently [34, 42, 43]. The connection between one-parametric algebras WN and two-

parametric family W∞ is analogous to the construction of the higher spin algebra hs(λ) in

Vasiliev theory [44] and its universal relation to sl(N) algebras. If we understand W∞, we

can truncate it to WN for any N . In the other direction, in a suitable basis the structure

constants of WN are rational functions of N and W∞ is an ‘analytic continuation’ in

parameter N .

Shifting the point of view fromWN toW∞, Gaberdiel and Gopakumar [45, 46] in their

study of the holographic duality made a surprising discovery of a triality symmetry [43].

The mapping between the rank parameter N and the structure constants ofW∞ is 3 : 1, so

if we continue N to complex numbers, there are generically 3 different values of N which

give an isomorphic algebra. This extends the picture of level-rank duality discovered earlier

in coset models related to WN [47, 48]. The triality symmetry has many consequences for

the representation theory of W∞ which are yet to be understood.

AlthoughWN algebras have been studied for a long time and many ways of constructing

them are available, we still do not have an explicit form for the structure constants. The

operator product expansions inWN are only known for small values of N . There are known

results for the classical limit W∞ in the quadratic basis of generating fields [49, 50] and in

primary basis [33]. The quantum case is considered in [51] where the quadraticity of OPE

in basis of fields coming from Miura transformation is proved.

The main goal of this work was to try to fill in this gap by finding a closed-form

expression for W1+∞,2 operator product expansions in the quadratic basis of generating

fields. Although our computation is based on solving the associativity conditions, the

resulting operator product expansions are most easily written using bilocal fields similar

to [51]. We show that these bilocal fields are very useful objects for finding the commutation

relations of modes or for computing the correlation functions inW1+∞. We also make many

independent verifications of consistency of the conjectured formulas, the most non-trivial

being the correct results on WN minimal models and the preservation of triality symmetry

which is not at all manifest in the basis of fields we are using.

2The algebra W1+∞ is very closely related to W∞ as will be explained later.
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1.1 Overview of this paper

In the first part of this paper we focus on the construction of W∞ in the primary basis

as was done in [43]. The procedure is quite straightforward: one starts with the stress-

energy tensor whose modes satisfy the Virasoro algebra and extends the algebra by adding

one additional independent primary field Wn(z) of every integer dimension n ≥ 3. These

fields generate all other fields using the operations of taking normal ordered products and

derivatives. To fully specify the chiral algebra, we need to determine the singular part of

the operator product expansion of Wj(z)Wk(w) in terms of fields of lower total dimension.

For this one uses the conditions of associativity of operator products. One starts with

the general ansatz for given field content and solves the algebraic equations that must

be satisfied in order for the operator product algebra to be associative. We carry out the

analysis up to total spin j+k ≤ 10 which is slightly further than what was done in [43]. One

of the original motivations for extending the analysis further was a hope that the structure

constants in the primary basis could follow some pattern which could be understood. But

it turns out that the number of primary fields grows too much and there is not even any

nice canonical way known for enumerating the primary fields, so at this point it seems

that this approach is not so useful. Nevertheless, knowing the structure constants in the

primary basis is useful to comparison with different approaches. Furthermore, in this basis

the nontrivial triality symmetry is easy to observe [43]. In fact, the primary generators can

be chosen in such a way that both fields and structure constants are manifestly invariant

under the triality symmetry. Together with the determination of the number of parameters

that W∞ depends on (the central charge and an additional coupling constant), these are

the main results of the analysis in the primary basis. We also verify the expectation

that for suitably chosen value of the W∞ parameters, the operator product algebra can

be consistently truncated to a quotient algebra which has Virasoro generator together

with generators of spins 3, 4, . . . , N . In this sense, W∞ contains information about all the

WN . Since the structure constants are rational functions of parameters, studying W∞ is

equivalent to working with the whole family WN for all N .

In the second part, we use a different starting point, which is the free field repre-

sentation of WN as considered in [2]. This construction, called also the quantum Miura

transformation, provides another generating set of fields Uj(z) different from the primary

fields Wj(z). The very special property of these generating fields is that their operator

product expansions only contain fields that are at most quadratic normal ordered products

of Uj(z). This gives a hope that using this basis, we might actually be able to determine

all the structure constants. The computation using the free fields can lead to quite com-

plicated combinatorics.3 So we proceed similarly to what we did in the first part and use

the associativity conditions of the operator product algebra to compute the singular parts

of the operator product expansions. It turns out that the results can be organized in very

simple form (3.55) which captures all the information that is contained in the singular

part of the OPE. Furthermore, we conjecture a closed-form expression for all the structure

constants of W1+∞. Since the way of writing the operator product expansion differs from

3See however [51] for important results in this direction.
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the usual way of describing the algebra, we make many consistency checks. We show how

to compute all the correlation functions and discuss transformation from Uj(w) fields to

quasiprimary and to primary basis. In this way we can make comparison between results

of the first and second parts of the article. The free field representation not only provides

us with quadratic basis of Uj fields but it is also good starting point for finding the coprod-

uct in W1+∞. The coproduct, apart from providing us with many non-trivial consistency

conditions for the conjectured structure constants, also shows up later when we study the

properties of W∞ minimal models.

In the last part of this article we study to some extent the representation theory of

W1+∞. In particular, we look at discrete values of parameters of W1+∞ for which the

vacuum representation is maximally degenerate. This is the analogue in W1+∞ of the

Virasoro or WN minimal models. We expect to find all the WN minimal model but in fact

we find also some new minimal models which do not come from WN . The fact that the

resulting set of special values of parameters is triality invariant is another nontrivial check

of the results found in the previous parts of the paper.

2 W∞ algebra in the primary basis

In this section we will study the W∞ algebra in the basis of the Virasoro primary fields.

To get it, we will extend the Virasoro algebra generated by the stress-energy tensor T (z),4

by adding higher spin primary generators Ws(z) of spin 3, 4, . . . . The algebraic structure

will be fixed by imposing the associativity conditions of the operator algebra.

We start by reviewing the construction and algebraic properties of the normal ordering

and mode expansions in the radial quantization [52], since many of the results of this article

rely heavily on computations performed within this formalism. In the next part, we will

discuss the primary field content of W∞ algebra which is the first ingredient when making

an ansatz for the OPE of W∞ generators. With this input, we can use the Mathematica

package OPEdefs to find associativity conditions expressed as algebraic relations between

parameters of the ansatz. The ansatz that we consider determines the OPE of Wj(z)Wk(w)

up to j+ k ≤ 10. The associativity conditions are solved up to sum of spins 12. Our result

matches what was found in [43] — we find a two-parametric family of solutions to the

associativity constraints.5 Furthermore we compare this to the parametrization used when

studying WN algebras and discuss the triality symmetry found in [43]. In the last part of

this section we compare the universal properties of W∞ with respect to the family of WN

algebras to the similar universality of hs(λ) with respect to sl(N) series of algebras.

4We will always work with the holomorphic part of the symmetry algebra of the field theory. All the

local fields that we will consider have an integer spin equal to the scaling dimension, so we will use these

terms interchangeably. For example, T (z) is the Tzz component of the full stress-energy tensor and is a

holomorphic function because of the energy-momentum conservation. All the fields that we will consider

will transform well under the scaling and with respect to translations.
5Computations to higher order than [43] have also been done in unpublished work by Maximilian Kelm

and Carl Vollenweider, see also [53].
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2.1 OPE and Jacobi identities

We will be interested in the behavior of local operators as they approach each other which

is captured by the operator product expansion. In this section we will summarize main

properties of these expansions. Further details can be found in [18, 52, 54, 55].

The general form of the OPE of two local operators A(z) and B(w) that we will

consider is

A(z)B(w) =

hA+hB∑
k=−∞

{AB}k (w)

(z − w)k
. (2.1)

All local operators that we use have a definite non-negative integral scaling dimension; the

scaling dimension of the operator A(z) will be denoted by hA. The upper bound in the

summation over k follows from the fact that there will be no fields with negative scaling

dimension. Note that this expression is not symmetric in A and B, since the right-hand

side is expanded at w. Choosing a different expansion point would modify {AB}n by a

combination of derivatives of {AB}k with k > n.

We can write a contour integral representation of {AB}k which will be useful in the

following:

{AB}k (w) =

∮
w

dz

2πi
A(z)B(w)(z − w)k−1. (2.2)

In particular, the zeroth order operator

(AB)(w) ≡ {AB}0 (w) =

∮
w

dz

2πi

A(z)B(w)

z − w
(2.3)

is called the normal ordered product of A and B [18]. By contraction of two operators we

will mean the singular part of the operator product expansion,

A(z)B(w) ≡
hA+hB∑
k=1

{AB}k (w)

(z − w)k
(2.4)

and we can write

(AB)(w) = lim
z→w

[
A(z)B(w)−A(z)B(w)

]
. (2.5)

Derivatives. By taking a derivative of (2.1) we can easily derive the following equations

∂ {AB}k = {(∂A)B}k + {A(∂B)}k (2.6)

{(∂A)B}k+1 = −k {AB}k . (2.7)

The first of them expresses the Leibniz formula for derivative of product of operators while

the second one can be used to relate the regular terms of OPE to the normal ordered

product,

{AB}−k (w) =
1

k!
(A(k)B)(w) for k ≥ 0. (2.8)

In fact, by taking a formal Taylor series expansion we arrive at the operator

(A(z)B(w)) ≡
∞∑
k=0

(z − w)k

k!
(A(k)B)(w) =

∑
k≤0

{AB}k (w)

(z − w)k
= A(z)B(w)−A(z)B(w) (2.9)

– 6 –
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which just represents all the regular terms of the OPE. Inserted in any correlation function,

this bilocal operator has no singularities as z → w. Later we will encounter other operators

with similar properties.

Symmetry of normal ordering. As noted earlier, although the operator product ex-

pansion is symmetric under exchange of A(z) and B(w), the normal ordered product that

we introduced above is not, since we are expanding at w. By Taylor expanding at z instead,

we can easily see that

{BA}k (w) =
∑
l≥0

(−1)k+l

l!
∂l {AB}k+l (w). (2.10)

One could consider the OPE with midpoint expansion, which would lead to (anti)symmetric

version of the normal ordered product but other properties like the associativity or the

correspondence between states and local operators would become more complicated. Fur-

thermore, we will see later that there is another way to produce regular bilocal operators

in W1+∞ which will be more useful.

Wick theorem and associativity. The generalized Wick theorem

A(z)(BC)(w) =

∮
w

dx

2πi

1

x− w

(
A(z)B(x)C(w) +A(z)B(x)C(w)

)
(2.11)

expresses the fact that the singularities in the OPE of A(z) with (BC)(w) come only

from singularities of either A(z) and B(w) or A(z) and C(w) (see [18] and the discussion in

appendix 6.B. of [52]). This formula is important for manipulations with operator products.

We can express the associativity conditions of the OPE using the OPE coefficients (2.2).

We start by using the contour integral representation (2.2) to write

{A {BC}k}l =

∮
w

dz

2πi
A(z)(z − w)l−1

(∮
w

dx

2πi
B(x)C(w)(x− w)k−1

)
(2.12)

where the contour of x-integration is inside of the z-integration contour. Now we make

the usual contour deformation by pulling the x-contour outside of z-contour and adding a

contour encircling z:

= +w w
w

x
z

z
x

x

z

(2.13)

This leads to equation{
A {BC}j

}
k
−
{
B {AC}k

}
j

=
∑
l>0

(
k − 1

l − 1

)
{{AB}l C}j+k−l . (2.14)

These relations taken with j and k positive are the associativity conditions which will lead

to non-trivial algebraic equations satisfied by the structure constants of W∞.

– 7 –



J
H
E
P
0
9
(
2
0
1
5
)
1
1
6

Mode expansions. Given a local operator A(z) with scaling dimension h we can expand

it in terms of mode operators around the origin of the complex plane,

A(z) =
∑
m

z−m−hAm. (2.15)

The inverse relation is

Am =

∮
0

dz

2πi
A(z)zm+h−1. (2.16)

Using the operator-state correspondence we can associate a state to an operator by writing

|A〉 ≡ lim
z→0

A(z) |0〉 . (2.17)

For this expression to be regular, we need to have

Am |0〉 = 0 for m > −h, (2.18)

which is a generalization of

Lm |0〉 = 0 m > −2 (2.19)

where Lm are the mode operators associated to dimension 2 operator (typically the stress-

energy tensor). If these conditions are satisfied, it follows that

|A〉 = lim
z→0

A(z) |0〉 = A−hA |0〉 . (2.20)

The mode operators of the derivative ∂A(z) are proportional to the mode operators of A(z)

itself,

(∂A)m = −
(
hA +m

)
Am (2.21)

and similarly for higher derivatives. The state corresponding to the derivative of operator

is thus

|∂A〉 = (∂A)−hA−1 |0〉 = A−hA−1 |0〉 . (2.22)

In this way the negative modes of operator A(z) acting on vacuum produce either zero

or states which correspond to derivatives of A(z). Using the same contour deformation

argument as above we can relate the mode expansion of (AB)(w) to that of A(w) and B(w),

(AB)n =
∑

k≤−hA

AkBn−k +
∑

k>−hA

Bn−kAk (2.23)

which is quite similar to the normal ordering of free fields, but note the asymmetry between

A and B in this formula as discussed above. Acting on vacuum, we see that the operator

mapped to normal ordered product of fields is

|(AB)〉 = (AB)−hA−hB |0〉 = A−hAB−hB |0〉 (2.24)

and similarly

|(A(BC))〉 = A−hA(BC)−hB−hC |0〉 = A−hAB−hBC−hC |0〉 . (2.25)

– 8 –
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In this way, the right-nested normal ordered products of operators correspond to states ob-

tained by successive application of the mode operators. This property is one of advantages

of the asymmetric normal ordering prescription (2.3). Finally, we want to state a formula

for the commutation relations between modes of two local operators. It is again a direct

consequence of the contour deformation argument above:

[Am, Bn] ≡
∮
0

dw

2πi

∮
|z|>|w|

dz

2πi
zm+hA−1wn+hB−1A(z)B(w) (2.26)

−
∮
0

dz

2πi

∮
|w|>|z|

dw

2πi
zm+hA−1wn+hB−1A(z)B(w)

=

∮
0

dw

2πi

∮
w

dz

2πi
zm+hA−1wn+hB−1A(z)B(w) .

By definition, the operator ordering on the left hand side corresponds in the radial quan-

tization to radial ordering of local fields on the right hand side. This formula tells us how

to extract the commutator from the singular part of the OPE of A(z) and B(w).

Virasoro algebra and primaries. In the presence of stress-energy tensor T (z) the

Virasoro algebra imposes further constraints on the form of the OPE of primary fields. In

fact, for primary fields A(z) and B(w) we can write the OPE as

A(z)B(w) ∼
∑
j

CjAB

∑
Y

βY (hA, hB, hj , c)OYj (w)

(z − w)hA+hB−hj−|Y |
. (2.27)

Here the sum over all local fields factorizes into the sum over primaries indexed by j and

for each primary j a sum over Virasoro descendants of Oj indexed by Young diagrams

Y . The coefficients β are universal which means that they depend on the primary fields

only through their dimensions and do not depend on any other details of the chiral algebra

(apart from the Virasoro central charge c). There are explicit expressions known for them

involving the inverse of the Shapovalov form for the Virasoro algebra, but they depend on

the choice of basis of the Virasoro descendants (unlike for instance the conformal blocks).

Using (2.27) we can improve the normal ordered product of two primaries to make it

primary. The way to proceed is a simple variation of (2.5). Instead of subtracting just the

singular terms, we can also subtract with each primary field appearing in the singular part

also all of its descendants appearing in both singular and regular parts of the OPE. This

leads to a primary projection of the normal-ordered product

[AB](w) = (AB)(w)−
∑

j:hj<hA+hB

CjAB

∑
|Y |=hA+hB−hj

βY (hA, hB, hj , c)OYj (w). (2.28)

The sum over j is restricted to those operators that appear in the singular part of A(z)B(w)

OPE (we don’t want to subtract the primary operator appearing in (AB)(w)). The result-

ing operator is a primary operator which differs from (AB) by the Virasoro descendants

of primary operators of lower dimension (the examples will be given later). There is a

straightforward generalization of this construction which extracts the primary fields ap-

pearing deeper in the regular part of A(z)B(w) OPE.

– 9 –
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2.2 Bootstrap and W∞ in primary basis

Having reviewed the basic properties of the operator product expansions, we are now ready

to apply them to compute the OPE of W∞. Since the computations are quite involved,

we will use the Mathematica package OPEdefs by Kris Thielemans. For short overview of

OPEdefs see [54] and much more detailed description is given in [55] together with details

of the implementation. The usefulness of Thielemans’ package for this work cannot be

overemphasized.

2.2.1 Field content of W∞

Our starting point in this section will be the definition of W∞ as the algebra obtained by

extending the Virasoro algebra by primary fields Ws(z) of spin s = 3, 4, 5, . . . .6 All other

fields of W∞ will be obtained by taking derivatives and normal ordered products of these

fields. As we will see, there is a two-parametric family of these algebras. For generic values

of these parameters there will be no extra relations between the local operators apart from

those that are required by the consistency of the algebra of local fields discussed in the

previous section.

Another way of phrasing this is through the operator-state correspondence. To each

local operator we can assign a state via (2.17). All the states corresponding to the local

operators ofW∞ can be produced by acting on the vacuum vector with product of negative

mode operators of the generating fields. These states are not independent, but all the

relations between them follow only by applying the commutation relations of W∞. Using

the generalization of the Poincaré-Birkhoff-Witt theorem,7 we can choose a basis of the

local fields by choosing a specific ordering of mode indices, for instance

· · ·W3,−n3,1W3,−n3,2 · · ·W3,−n3,k3
W2,−n2,1 · · ·W2,−n2,k2

|0〉 (2.29)

with

ns,1 ≥ ns,2 ≥ · · · ≥ ns,ks ≥ s (2.30)

(see [45]). The genericity property discussed above is the fact that after ordering the

modes in the chosen way, all these states are linearly independent for generic values of

W∞ parameters. As a consequence, we can immediately write down the character of the

vacuum representation of W∞ (for generic value of parameters):

χ0(c, q) = Trvac q
L0− c

24 = q−
c
24

∞∏
s=2

∞∏
j=s

1

1− qj
. (2.31)

6We will usually denote the Virasoro generator by T (z), but sometimes it will be convenient to consider

it as generator of spin 2 and denote it by W2(z). Remember that unlike Wj(z) with j ≥ 3 it is not primary

if the central charge is non-zero.
7We must generalize the usual PBW because of the non-linearity of algebra that we have. The usual

form of PBW theorem for Lie algebras works because there is a natural grading on the space of states by

number of mode operators. Every time we commute two mode operators, we obtain a state which has a

smaller number of mode operators acting on the vacuum. For W∞ there is another grading which does not

simply count the mode operators, but gives them an additional weight according to their spin. See also [56].
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For any values of parameters, this is the character of the vacuum Verma module of W∞.

Generically, the vacuum Verma module will be irreducible, but if the parameters take

special values the representation can become reducible. We will consider these later when

discussing the representation theory of W∞ and for the moment we will restrict to the

generic case.

Counting primaries. Apart from the generating set of primary fields of spin 3, 4, . . .

there will be many other composite primary fields. Using the character formula (2.31) and

known properties of Virasoro algebra characters, we can easily write down the function

that counts the Virasoro primaries. It is enough to take the full W∞ vacuum character

and decompose it into a sum of Virasoro Verma module characters. For generic values of

the W∞ parameters, these are all irreducible except for the vacuum Verma module, which

has a singular vector at level 1. We have

χ0(c, q) = χV 0(c, q) +

∞∑
h=1

Ph χV (h, c, q) (2.32)

where χV (h, c, q) is the character of the Virasoro algebra Verma module with highest

weight h,

χV (h, c, q) = qh−
c
24

∞∏
j=1

1

1− qj
, (2.33)

χV 0(c, q) is the character of the Virasoro algebra vacuum Verma module

χV 0(c, q) = χV (0, c, q)− χV (1, c, q) = q−
c
24

∞∏
j=2

1

1− qj
(2.34)

and Ph is the integer counting the number of Virasoro primaries of conformal dimension

h. Defining a generating function for number of primaries

P (q) =
∞∑
h=0

Phq
h (2.35)

and using the previous formulas we find a compact expression for P (q)

P (q)=q+(1−q)
∞∏
s=3

∞∏
j=s

1

1−qj
'1+q3+q4+q5+2q6+2q7+5q8+6q9+11q10+14q11+26q12+· · ·

(2.36)

we see that the first composite primary field has dimension 6 and is obtained from two

spin 3 fields. The same happens for the spin 7 field composed of spin 3 and spin 4 fields.

Proceeding further, we find 5 primary fields of dimension 8. One of them is the ‘elementary’

primary field W8(z). Two of them are composites of [W3W5] and [W4W4]. The remaining

two are schematically [W3W4]
(1) and [W3W3]

(2).8 We can summarize this discussion by

table 1. Note that to understand better what Ws primaries the composite primaries are

8Here these brackets are used symbolically to denote the composite primary fields. The primary projec-

tion of the normal ordered product was defined explicitly around (2.28) for two primary fields and no extra

derivatives. For composite primaries involving derivatives in the leading term we need to extract terms

deeper in the regular part. Examples of these are given in appendix A.1.
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spin count composition of the primary field

0 1 1

3 1 W3

4 1 W4

5 1 W5

6 2 W6, [W3W3]

7 2 W7, [W3W4]

8 5 W8, [W3W5], [W4W4], [W3W4]
(1), [W3W3]

(2)

9 6 W9, [W3W6], [W4W5], [W3W5]
(1), [W3W4]

(2), [W3W3W3]

Table 1. Primary fields of lower spin in W∞.

made of, one can use a more refined counting function

∞∏
s=2

∞∏
j=s

1

1− wsqj
(2.37)

(with w2 = 1). For example, at order 9 in q we find the coefficient

w9 + w3w6 + w4w5 + w3w5 + w3w4 + w3w3w3 (2.38)

which is simply reflected by the last line of the table above.

2.2.2 Bootstrap and OPE associativity

Having understood the primary field content of our algebra, we are ready to use OPEdefs

to find the constraints on W∞ structure constants following from the associativity of the

operator algebra. In fact, we will use the extension of OPEdefs called OPEconf which is

useful for working with Virasoro algebra and Virasoro primary fields. One starts by writing

the ansatz for the singular part of the OPE of the primary fields. In our case, it can be

symbolically written as

W3W3 ∼ C0
331+ C4

33W4

W3W4 ∼ C3
34W3 + C5

34W5

W3W5 ∼ C4
35W4 + C6

35W6 + C
[33]
35 [W3W3]

W4W4 ∼ C0
441+ C4

44W4 + C6
44W6 + C

[33]
44 [W3W3]. (2.39)

The structure constants C ljk do not depend on the choice of the expansion point of the nor-

mal ordering prescription, since these differ by derivatives of operators, which are Virasoro

descendants. So the structure constants have symmetry

C lkj = (−1)hj+hk−hlC ljk. (2.40)

In general, it is known that there is a Z2 symmetry of W∞ flipping the sign of odd spin

generators,

Ws → (−1)sWs, (2.41)
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but in (2.39) it is a consequence of the symmetry of the OPE under the exchange of the

two operators (2.40).

There is an obvious freedom to rescale the Ws generators but in fact we can also add to

any new primary field, say W6, any combination of composite primaries of the same spin,

in this case just [W3W3]. Doing this changes the coefficient of identity of W6 with itself

(the two-point function on a sphere) as well as with [W3W3]. There is a natural condition

that can be used to fix this shift symmetry which is to require Ws to have zero two-point

function with other primaries of the same dimension. Equivalently, we can ask Ws to have

zero coefficient of identity with all composite primaries of spin s.

Unfortunately, fixing this shift symmetry using the orthogonality of two-point function

has certain disadvantages. First of all, computing directly the two-point function of primary

operators requires us to compute OPE of Wj(z)Wk(w) for higher j+k. Furthermore, fixing

the shift symmetry in this way does not considerably simplify the structure constants. For

this reason, when performing the computations, we left the shift symmetry unfixed. But

later, when comparing the results of the computations in the quadratic basis of W∞, we

will be using this two-point function orthogonality condition.

As for the normalization of Ws, the original convention dating back to [1] is to have

Ws(z)Ws(w) ∼ c/s

(z − w)2s
+ · · · . (2.42)

This choice of normalization proportional to the central charge c removes some singularities

of the structure constants as functions of parameters of the algebra but leaves others. In

fact, in the context ofW∞ this normalization does not seem to be very well motivated. For

this reason, we will leave also the normalization constant C0
ss free during our computations.

Finally we are ready to compute the first implications of Jacobi identities. The first

two lines of ansatz (2.39) let us find the expression for primary operators [W3W3] and

[W3W4] and we find

[W3W3] = (W3W3) + C4
33

(
−22(TW4)

3(c+ 24)
− (5c+ 76)W ′′4

36(c+ 24)

)
+ C0

33

(
− 6(67c2 + 178c− 752)(T ′′T )

c(2c− 1)(5c+ 22)(7c+ 68)
− 3(225c2 + 1978c+ 776)(T ′T ′)

2c(2c− 1)(5c+ 22)(7c+ 68)

− 16(191c+ 22)(T (TT ))

c(2c− 1)(5c+ 22)(7c+ 68)
− (c− 8)(5c2 + 60c+ 4)T (4)

2c(2c− 1)(5c+ 22)(7c+ 68)

)
(2.43)

and

[W3W4]=(W3W4)+C5
34

(
−94(TW5)

11c+350
− (c+19)W ′′5

11+350

)
+C4

34

(
− (5c+22)(313c2+5783c+2964)(T ′W ′3)

36(c+2)(c+23)(5c−4)(7c+114)

− (437c3+9089c2+22454c−76152)(T ′′W3)

12(c+2)(c+23)(5c−4)(7c+114)
− (355c3−329c2−52214c−12072)(TW ′′3 )

18(c+2)(c+23)(5c−4)(7c+114)

− 4(257c+ 83)(T (TW3))

(c+23)(5c−4)(7c+114)
− (25c4−930c3−17157c2+115358c+26904)W

(4)
3

432(c+2)(c+23)(5c−4)(7c+114)

)
. (2.44)
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Although the coefficients look very complicated, they are all fixed by the Virasoro algebra.

Every pair of parentheses contains all the descendants at given level, multiplied by the

corresponding β coefficients. Using OPEconf one only needs to call the function OPEPPole

to arrive at this result. Now that we know all the fields appearing on the right hand

side of (2.39), we can find what the Jacobi identities imply for the structure constants

appearing in (2.39). The Jacobi identities for (W3W3W3) do not give anything, but already

(W3W3W4) imply five relations for structure constants. Note that we need to know OPE

of Wj(z) and Wk(w) up to j+ k = 8 to be able to check this Jacobi identity. The resulting

relations are

C3
34 =

C4
33C

0
44

C0
33

C4
44 =

3(c+ 3)

(c+ 2)

C4
33C

0
44

C0
33

− 288(c+ 10)

c(5c+ 22)

C0
33

C4
33

C4
35 =

5(c+ 7)(5c+ 22)

(c+ 2)(7c+ 114)

(C4
33)

2C0
44

C0
33C

5
34

− 60

c

C0
33

C5
34

(2.45)

C6
44 =

4

5

C5
34C

6
35

C4
33

C
[33]
44 =

30(5c+ 22)

(c+ 2)(7c+ 114)

C0
44

C0
33

+
4

5

C5
34C

[33]
35

C4
33

.

One can proceed further to compute the OPE of Wj and Wk with higher and higher j+ k.

We reached j + k ≤ 10 and Jacobi identities were satisfied for j + k + l ≤ 12. Apart from

OPEs given in (2.39) we have

W3W6 ∼ C3
36W3 + C5

36W5 + C7
36W7 + C

[34]
36 [W3W4] + C

[34]′

36 [W3W4]
(1)

W4W5 ∼ C3
45W3 + C5

45W5 + C7
45W7 + C

[34]
45 [W3W4] + C

[34]′

45 [W3W4]
(1)

W3W7 ∼ C4
37W4 + C6

37W6 + C
[33]
37 [W3W3] + C8

37W8 + C
[35]
37 [W3W5]

+ C
[44]
37 [W4W4] + C

[33]′′

37 [W3W3]
(2) + C

[35]′

37 [W3W5]
(1) (2.46)

W4W6 ∼ C4
46W4 + C6

46W6 + C
[33]
46 [W3W3] + C8

46W8 + C
[35]
46 [W3W5]

+ C
[44]
46 [W4W4] + C

[33]′′

46 [W3W3]
(2) + C

[35]′

46 [W3W5]
(1)

W5W5 ∼ C0
551+ C4

55W4 + C6
55W6 + C

[33]
55 [W3W3] + C8

55W8 + C
[35]
55 [W3W5]

+ C
[44]
55 [W4W4] + C

[33]′′

55 [W3W3]
(2) + C

[35]′

55 [W3W5]
(1).

Although this looks complicated, the application of Jacobi identities proceeds exactly in

the same way as before. Rather than giving all the relations found in this way, let us count

the number of free structure constants in the ansatz and number of relations found from

the Jacobi identities. In (2.39) and (2.46) we have 46 unknown coefficients. Solving Jacobi

identities to order 12 determines 34 of them. But exactly 11 of them correspond to field

redefinitions and normalization. These can be chosen to be for example

C0
33, C

0
44, C

5
34, C

6
35, C

7
36, C

8
37, C

[33]
35 , C

[34]
36 , C

[35]
37 , C

[44]
37 , C

[33]′′

37 . (2.47)

– 14 –



J
H
E
P
0
9
(
2
0
1
5
)
1
1
6

So in total there remains 46 − 34− 11 = 1 combination of coefficients that is independent

of field redefinitions and rescalings. One possible choice is to take

x2 =
(C4

33)
2C0

44

(C0
33)

2
. (2.48)

Together with the central charge c which appears already in the Virasoro subalgebra, we

find two-parametric family of algebras, as was first found in [43]. For completeness, the

values of the structure constants that we found are given in appendix A.

2.2.3 Connection to WN

One knows from the coset construction or from the free field representation, that for each

integer N ≥ 3 there exists a one-parametric family of algebras extending the Virasoro alge-

bra by generating primary fields of dimension 3, 4, . . . , N . For each fixed N the additional

parameter is just the central charge. For example, W3 of Zamolodchikov [1] is the simplest

algebra of this family.

It is clear from the construction of W∞ above that by putting all fields Ws with s > N

to zero we arrive at ansatz for WN algebra. So there should be a discrete number of values

for x2 such that when x2 takes one of these values, the W∞ can be truncated to WN . To

determine these values, Gaberdiel and Gopakumar in [43] used the representation theory

of WN and found

x2 =
144(c+ 2)(N − 3)(c(N + 3) + 2(4N + 3)(N − 1))

c(5c+ 22)(N − 2)(c(N + 2) + (3N + 2)(N − 1))
. (2.49)

Another possibility is to use the free field representation of W∞ of the second part of

this article to compute x2. For lower values of N the formula (2.49) can be verified also

by comparing directly to WN . Either way, there is an important fact that Gaberdiel and

Gopakumar noticed. Since all the structure constants ofW∞ computed up to dimension 12

of Jacobi identities are algebraic function of c, x2 and normalization-dependent coefficients

(see formulas in appendix A), choosing a different value of parameter N in (2.49) gives

exactly the same W∞ as long as c and x2 are the same. Since equation for N in terms

of c and x2 is a cubic equation for N , there are generically three different values of N at

fixed c which correspond to identical algebra. The equations for three solutions of (2.49)

as an equation for N are quite complicated, but one can instead try to compute c and x2

in terms of these three roots. Let us denote the three roots by λ1, λ2 and λ3. What we

find is the set of equations

0 = λ1λ2 + λ1λ3 + λ2λ3 (2.50)

c = (λ1 − 1)(λ2 − 1)(λ3 − 1) (2.51)

x2 =
144(c+ 2)(λ1 − 3)(λ2 − 3)(λ3 − 3)

c(5c+ 22)(λ1 − 2)(λ2 − 2)(λ3 − 2)
. (2.52)

These equations are manifestly symmetric in their three roots λj . Also all the zeros and

poles of x2 in this parametrization have a representation-theoretic meaning. For example

the poles at λ = 2 are consequences of the possibility of truncation of W∞ to Virasoro
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subalgebra for λ = 2. Zeros at λ = 3 similarly represent the possible truncation of W∞
to W3. The value of central charge c = −22/5 is the Lee-Yang singularity minimal model

that is at the same time minimal model of Virasoro algebra and W3.

2.2.4 Universality

Before concluding this part of the article, let us compare the relation between W∞(λ) and

WN to the construction of hs(λ) which is analogous but more explicit.9 Let us start with

the Lie algebra sl(2),

[J0, J±] = ±J± (2.53)

[J+, J−] = 2J0 (2.54)

and its N -dimensional irreducible representation. This naturally gives us an embedding of

sl(2) ⊂ End(N) under which the space End(N) of N ×N matrices decomposes as

End(N) ' 1 + 3 + 5 + · · ·+ (2N − 1). (2.55)

Here we denote the irreducible representations of sl(2) by their dimensions. This means

that there exists a basis T lm (l = 0, 1, . . . , N − 1 and m = −l, . . . , l) of End(N) with the

subspace spanned by T lm, m = −l, . . . , l transforming as a (2l + 1)-dimensional irreducible

representation of sl(2) and m is the eigenvalue of J0. We can write the associative product

of End(N) in this basis in the form10

T l1m1
? T l2m2

=

l1+l2∑
l=0

l∑
m=−l

F l1l2lm1m2m(N)T lm. (2.56)

If we choose the normalization of T lm suitably, the structure constants F are rational

functions of N — the explicit expressions for the structure constants in terms of 3j and 6j

symbols are given in [39, 40]. This allows us to consider the universal associative algebra

A(λ) defined on the vector space of T lm, l = 0, 1, 2, . . .; m = −l, . . . , l with the structure

constants being the same rational functions but no longer restricting λ to be a positive

integer,

T l1m1
? T l2m2

=

l1+l2∑
l=0

l∑
m=−l

F l1l2lm1m2m(λ)T lm. (2.57)

To get back from A(λ) (which as a vector space has an infinite dimension) to finite-

dimensional End(N), one realizes that for λ equal to positive integer N , there is an ideal

in the associative algebra A(λ) generated by T lm with l ≥ N and we get back End(N) if

we factor this ideal out.

9There are various connections between W∞ and hs(λ). For example, the Drinfeld-Sokolov procedure

applied to hs(λ) produces W∞ and in the other direction, in the limit of large central charge the vacuum-

preserving subalgebra of W∞ contains hs(λ) [57–59].
10The structure constants F are in fact zero unless m1 +m2 = m because of the U(1) symmetry gener-

ated by J0.
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There is a simple one-line construction of A(λ) as a quotient of the universal enveloping

algebra of sl(2) by the Casimir ideal,

A(λ) =
U(sl(2))

I
(
J2
0 + 1

2J+J− + 1
2J−J+ −

λ2−1
4

) . (2.58)

It is quite easy to see that the right hand side decomposes into a direct sum of all odd-

dimensional (integer spin) irreducible representations of sl(2), each with multiplicity 1.

Furthermore, taking the N -dimensional irreducible representation of sl(2) gives us a map

from the universal enveloping algebra to End(N). If λ = ±N this map is compatible with

the quotient, the kernel of this map is exactly the ideal that we need to quotient out to

get from A(N) to End(N). Note that both ways of constructing the algebra give us a

preferred sl(2) subalgebra. In this sense, A(λ) has more structure than just ‘gl(∞)’ — it

has the preferred sl(2) subalgebra under which the decomposition of A(λ) into irreducible

representations of sl(2) is as given above.

Geometrically, this construction is the quantum analogue of the construction of the

2-sphere S2 embedded in R3 via

X2 + Y 2 + Z2 = R2. (2.59)

Defining the usual su(2) generators X,Y and Z by

J+ = (X + iY ) (2.60)

J− = (X − iY ) (2.61)

J0 = Z (2.62)

the Casimir constraint becomes

X2 + Y 2 + Z2 ∼ λ2 − 1

4
(2.63)

which gives us the relation between the radius of the sphere and the dimension of the

quantized Hilbert space (which is the usual connection between the number of states and

the symplectic volume of the quantized manifold). In the large radius limit λ → ∞ one

should reduce to the classical case and in fact one can check that with proper identification

of T lm with spherical harmonics Y l
m the limit of the structure constants in (2.57) has the

leading term corresponding to multiplication of the spherical harmonics and the subleading

term corresponding to their Poisson brackets induced from the natural symplectic form on

S2 which is the rotationally-invariant volume form.

Usually one defines the higher spin algebra hs(λ) to be the Lie algebra associated

to the associative algebra A(λ) with the center (the zero-dimensional representation T 0
0 )

quotiented out. Eliminating this one-dimensional center is the same operation that is done

for N integer when going from gl(N) to simple Lie algebra sl(N).

The situation inW∞ is entirely analogous. There are two infinitely generated algebras,

W∞ andW1+∞. The first one is the extension of the Virasoro algebra by primary generators

of spin 3, 4, . . ., while in the second algebra we also include the spin 1 generator. The spin
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1 part of W1+∞ can be decoupled from the rest, so W1+∞ is in fact a product of W∞ with

û(1) algebra. If we choose N in (2.49) to be an integer ≥ 2, the algebra W∞ develops a

large ideal generated by Wj(z) with j > N and factoring this ideal out, we get WN . The

structure constants of the WN family of algebras are (with suitable normalization of the

fields) again rational functions of c and N and W∞ can be obtained by continuation. In

this sense, working with W∞ is equivalent to considering all WN at the same time. But

the triality symmetry typically connects WN to W∞ with rational or negative values of λ

(just like the special case of the triality, the level-rank duality [47, 48]) so working with the

full W∞ reveals more symmetry than if we only consider individual WN algebras.

3 W1+∞ in the quadratic basis

In the previous section we studied the W∞ algebra in the basis of Virasoro primary fields.

The main advantage of that approach is that it is quite easy at lower spins to see that

there is in fact a two-parametric family of algebras and furthermore that the connection

between ‘physical’ parameters, the central charge c and the rank parameter N , is 3 : 1 —

the triality symmetry.

Looking at the structure constants in OPE of lower spin fields, the systematic under-

standing of these as rational functions of parameters seems to be very difficult. The main

problem is that we are decomposing a big algebra under a small Virasoro subalgebra. The

number of possible primaries is growing roughly as the number of plane partitions (more

precisely it is given by the counting function (2.36)). But more important than the large

number of coefficients is the fact that there is no easy and systematic way to enumerate

them which would make the structure constants simple and canonical.

Furthermore, the operators appearing in the OPE of primary operators Wj(z)Wk(w)

have unbounded non-linearity with respect to basic fields Wl(w). In general, there is no

reason for the chiral algebra to be linear. The reason why simple algebras like Virasoro

algebra of affine Lie algebras are linear is that in those cases one is considering only low

spins and small field content. The higher spin algebras have usually certain restrictions on

possible values of spins of fields entering the ‘interaction vertex’. In our case this restriction

takes the following form: the singular part of the OPE of X1(z) and X2(w) with spins s1
and s2 only contains spins up to

s ≤ s1 + s2 − 1 (3.1)

or in the case of additional Z2 symmetry

s ≤ s1 + s2 − 2. (3.2)

So for algebras with generators of low spin the composite fields have too high spin to appear

in the singular part of the OPE. But already some of the superconformal algebras with

more supersymmetries [60, 61] are nonlinear.

Luckily, inW∞ there exists a different choice of generating fields which are not primary

but whose OPE has only quadratic non-linearity. This significantly reduces the number of

possible terms on the right hand side of the OPE as well as possible field redefinitions. The
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simplest way to obtain these generating fields is through the free field representation of WN

algebras. This will be our starting point of this section. Using this free field representation,

we will determine OPE of generating fields Uj(z)Uk(w) with j = 1, 2. Basically, by doing

this we will fix how the fields Uk(w) transform under the û(1) and Virasoro subalgebras of

W1+∞. Having fixed this and using also some information about the most singular terms

of the OPE of other fields, we will determine the remaining OPE coefficients using the

associativity conditions of the OPE and quadraticity of this basis.

Having determined the OPE Uj(z)Uk(w) up to j+k ≤ 15 we can analyze the structure

constants. There is still a certain ambiguity between the various normal ordering prescrip-

tions. Instead of the usual normal ordering prescription (2.3) we will implicitly introduce a

new set of bilocal fields (3.43). These fields will absorb all the terms with derivatives of the

usual operator product expansion. Their introduction will allow us to specify the W1+∞
in different form than is usually done (3.55) and this new form will let us quickly derive

the commutation relations of the modes of the U -fields. Also the correlation functions of

U -operators on a sphere are recursively computable.

Starting from the Miura representation of U -fields in terms of the free fields, we will

find a coproduct in W1+∞, which will represent W1+∞ with parameters (α0, N1 + N2) in

the product of W1+∞ with parameters (α0, N1) and (α0, N2). There are many non-trivial

identities for structure constants C lmjk (α0, N) that must hold in order for this coproduct

to be consistent. We will find the linear combinations of U -fields and their derivatives

which transform as quasiprimary fields with respect to the stress-energy tensor T1+∞ and

describe how to construct the primary fields. Using these primary fields we can connect

to the primary basis computation of the previous section and verify consistency of these

computations. Finally, we discuss how the triality symmetry which is manifest in the

primary basis implies the existence of other two U -bases. The transformation between

primary and quadratic U -bases is non-linear and the same is true for the triality action

exchanging various U -bases.

3.1 Free field representation

The starting point of this section is the free field representation of W1+N in terms of N

free bosons — the Miura transformation [2, 3, 17]. We define the û(1) currents

Jj(z) = i∂φj(z), j = 1, . . . , N (3.3)

with OPE

Jj(z)Jk(w) ∼
δjk

(z − w)2
(3.4)

and an operator R(z)

R(z) = :

N∏
j=1

(
α0∂ + Jj(z)

)
: =

N∑
k=0

Uk(z)(α0∂)N−k . (3.5)

The double dots denote the normal ordering of free fields and α0 is a parameter which

we will soon relate to the central charge of the algebra. Classically, this expression would
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correspond to a factorization of N -th order differential operator into a product of differential

operators of the first order. For our purposes, it represents the generators of W1+N , Uj(z),

in terms of the free fields Jk(z). It is not obvious from this definition that the chiral algebra

generated by Uj(z) closes, i.e. that all singular terms of the OPE of Uj(z) can be expressed

only in terms of derivatives and normal ordered products of Uj , but this has been proved

in [2, 3, 51].

As an illustration, we can list the first few Uj(z) explicitly:

U0 = 1 (3.6)

U1 =
N∑
j=1

Jj (3.7)

U2 =
∑
j<k

: JjJk : +α0

N∑
j=1

(j − 1)J ′j (3.8)

U3 =
∑
j<k<l

: JjJkJl : +α0

∑
j<k

(j − 1) : J ′jJk : (3.9)

+ α0

∑
j<k

(k − 2) : JjJ
′
k : +

α2
0

2

N∑
j=1

(j − 1)(j − 2)J ′′j

U4 =
∑

j<k<l<m

: JjJkJlJm : +
α3
0

6

∑
j

(j − 1)(j − 2)(j − 3)J ′′′j (3.10)

+ α0

∑
j<k<l

(j − 1) : J ′jJkJl : +(k − 2)JjJ
′
kJl : +(l − 3) : JjJkJ

′
l :

+
α2
0

2

∑
j<k

(j − 1)(j − 2) : J ′′j Jk : +2(j − 1)(k − 3) : J ′jJ
′
k : +(k − 2)(k − 3) : JjJ

′′
k .

3.2 û(1) and Virasoro subalgebras

Let us now focus on the subalgebra generated by U1(w) and U2(w). Using the Wick theorem

for free fields, we can compute

U1(z)U1(w) ∼ N

(z − w)2
(3.11)

U1(z)U2(w) ∼ N(N − 1)α0

(z − w)3
+

(N − 1)U1(w)

(z − w)2
(3.12)

U2(z)U2(w) ∼ N(N − 1)(1− 2(2N − 1)α2
0)

2(z − w)4
+
−2U2(w)

(z − w)2
+

(N − 1)(U1U1)(w)

(z − w)2
(3.13)

+
α0N(N − 1)U ′1(w)

(z − w)2
− U ′2(w)

z − w
+

(N − 1)(U ′1U1)(w)

z − w
+
α0N(N − 1)U ′′1 (w)

2(z − w)
.

û(1) subalgebra. Since there is a unique dimension 1 field in W1+∞, U1(z), there are no

field redefinitions possible apart from the rescaling. The OPE of U1(z) with itself is that

of û(1) current algebra. Normalizing U1(z) so that it has a N -independent OPE,

J(z) = − 1√
N
U1(z) (3.14)
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we see that

J(z)J(w) ∼ 1

(z − w)2
. (3.15)

Virasoro subalgebras. At dimension 2 we have a three dimensional space of local op-

erators. We can look for linear combinations of these which satisfy OPE of the Virasoro

algebra. There are two one-parametric families and one discrete solution: one family is the

Sugawara stress-energy tensor corresponding to J(z) with background charge modification,

T1(z) ≡ 1

2
(JJ)(z) + βJ ′(z) (3.16)

which satisfies the Virasoro algebra with central charge

c1(β) = 1− 12β2N. (3.17)

The discrete solution is the stress-energy tensor of W∞ which has zero OPE with J(z)

T∞(z) = −U2(z) +
(N − 1)α0

2
U ′1(z) +

N − 1

2N
(U1U1)(z) (3.18)

and satisfies Virasoro algebra with central charge

c∞ ≡ c = (N − 1)
(
1−N(N + 1)α2

0

)
. (3.19)

The sum of these stress-energy tensors gives us the second one-parametric family of Virasoro

algebras with central charge given by the sum of their central charges. In this family there

is a natural stress-energy tensor from point of view of W1+∞,

T1+∞(z) = −U2(z) +
(N − 1)α0

2
U ′1(z) +

1

2
(U1U1)(z). (3.20)

With respect to this stress-energy tensor the field J(z) is primary of spin 1. The central

charge of this stress-energy tensor is

c1+∞ = c+ c1(0) = c+ 1 = N
(
1− (N − 1)(N + 1)α2

0

)
. (3.21)

Every time we discuss the scaling dimensions of the various fields, we mean the ‘engineering’

dimensions, which are j for Uj(z), dimension 1 for each derivative and which are additive

under normal ordered products.11 The quadratic pole of T1+∞(z) with any field of definite

scaling dimension A(w) measures exactly this scaling dimension (this is not true for instance

for T∞ which assigns dimension 0 to U1(w) and with respect to which the other fields Uj(w)

do not even have definite scaling dimensions).

In the following (especially when discussing the triality), we will need to compare

properties ofW1+∞ computed in primary and quadratic bases. Since we are using different

parametrizations of W∞, we will fix the following convention: the parameter N of both

primary basis computation and quadratic basis computation will be the same and equal

11It is this counting of dimensions that gives us the nice formula for the vacuum character of W1+∞ as

MacMahon function [45].
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to the first root λ1. The central charge c in the primary basis computation must match

the central charge of stress-energy tensor which commutes with U1(z) (since restricting to

fields commuting with U1(z) takes us from W1+∞ to W∞). This means that

c = (λ1 − 1)(λ2 − 1)(λ3 − 1) = (N − 1)(1−N(N + 1)α2
0) (3.22)

so that

α2
0 = −(λ2 + λ3)

2

λ2λ3
= −λ2λ3

λ21
. (3.23)

We also see that the combination

N3α2
0 = −λ1λ2λ3 (3.24)

is triality invariant.

3.2.1 OPE of higher spin fields with U1(z) and U2(z)

Having found the û(1) and Virasoro subalgebras of W1+∞, we can now use the free field

Wick theorem to compute OPE of U1(z) and U2(z) with Uk(w). We have

U1(z)U1(w) ∼ N

(z − w)2
(3.25)

U1(z)U2(w) ∼ N(N − 1)α0

(z − w)3
+

(N − 1)U1(w)

(z − w)2
(3.26)

U1(z)U3(w) ∼ N(N − 1)(N − 2)α2
0

(z − w)4
+

(N − 1)(N − 2)α0U1(w)

(z − w)3
+

(N − 2)U2(w)

(z − w)2
(3.27)

U1(z)U4(w) ∼ N(N − 1)(N − 2)(N − 3)α3
0

(z − w)5
+

(N − 1)(N − 2)(N − 3)α2
0U1(w)

(z − w)4
(3.28)

+
(N − 2)(N − 3)α0U2(w)

(z − w)2
+

(N − 3)U3(w)

(z − w)2

and in general12

U1(z)Uk(w) ∼
k−1∑
l=0

(N − l)!αk−1−l0

(N − k)!

Ul(w)

(z − w)k+1−l . (3.29)

One can verify that this form of the OPE satisfies the (U1U1Uj) Jacobi identity as it should.

Computation of the OPE of U2(z)Uk(w) using combinatorics of free field Wick contractions

is more complicated. One can simplify things slightly using the Newton identities from the

theory of symmetric polynomials. It is simpler to compute first OPE of T1+∞(z) with

Uk(w). Using free fields, we find

T1+∞(z) =
1

2

N∑
j=1

: Jj(z)Jj(z) : +
α0

2

N∑
j=1

(N + 1− 2j)J ′j(z) (3.30)

12Although for our purposes we need the following expression only for finite number of Uk(w) fields, the

following formula can be derived combinatorially.
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and

T1+∞(z)U1(w) ∼ U1(w)

(z − w)2
+
U ′1(w)

z − w
(3.31)

T1+∞(z)U2(w) ∼
1
2 (N − 1)N(N + 1)α2

0

(z − w)4
+

(N − 1)α0U1(w)

(z − w)3
+

2U2(w)

(z − w)2
+
U ′2(w)

z − w
(3.32)

T1+∞(z)U3(w) ∼ (N + 1)N(N − 1)(N − 2)α3
0

(z − w)5
+

1
2 (N + 3)(N − 1)(N − 2)α2

0U1(w)

(z − w)4

+
2(N − 2)α0U2(w)

(z − w)3
+

3U3(w)

(z − w)2
+
U ′3(w)

z − w
(3.33)

T1+∞(z)U4(w) ∼
3
2 (N+1)N(N−1)(N−2)(N−3)α4

0

(z−w)6
+

(N+2)(N−1)(N−2)(N−3)α3
0U1(w)

(z − w)5

+
1
2 (N+5)(N−2)(N−3)α2

0U2(w)

(z−w)4
+

3(N−3)α0U3(w)

(z−w)3
+

4U4(w)

(z−w)2
+
U ′4(w)

z−w
. (3.34)

For general k we have13

T1+∞(z)Uk(w)∼
k−1∑
l=0

1
2 [(k−1)(N+1)−l(N−1)] (N−k+1)k−lα

k−l
0 Ul(w)

(z−w)k+2−l +
kUk(w)

(z−w)2
+
U ′k(w)

z−w
.

(3.35)

Note that the right hand side is linear in Ul(w) and the only term with derivative is the

simple pole. The simplicity of this result is the reason for computing the OPE with T1+∞
first. Having computed the OPE of U1(z) and T1+∞(z) with Uk(w), we can now compute

the OPE of U2(z) with Uk(w). Again, for first few fields we find

U2(z)U1(w) ∼ −N(N − 1)α0

(z − w)3
+

(N − 1)U1(w)

(z − w)2
+

(N − 1)U ′1(w)

z − w
(3.36)

U2(z)U2(w) ∼
1
2N(N − 1)(1 + 2(1− 2N)α2

0)

(z − w)4

+
−2U2(w)

(z − w)2
+

(N − 1)(U1U1)(w)

(z − w)2
+
N(N − 1)α0U

′
1(w)

(z − w)2
(3.37)

+
−U ′2(w)

z − w
+

(N − 1)(U ′1U1)(w)

z − w
+

1
2N(N − 1)α0U

′′
1 (w)

z − w

U2(z)U3(w) ∼ N(N − 1)(N − 2)(1 + α2
0 − 3Nα2

0)α0

(z − w)5
+

1
2(N − 1)(N − 2)(1− 4Nα2

0)U1(w)

(z − w)4

+N(N − 1)(N − 2)α2
0

(
U1(w)

(z − w)4
+

U ′1(w)

(z − w)3
+

U ′′1 (w)

2(z − w)2
+

U ′′′1 (w)

6(z − w)

)
+ (N − 1)(N − 2)α0

(
(U1U1)(w)

(z − w)3
+

(U ′1U1)(w)

(z − w)2
+

(U ′′1U1)(w)

2(z − w)

)
+
−(N − 2)(N + 1)α0U2(w)

(z − w)3
+
−2U3(w)

(z − w)2
+
−U3(w)

(z − w)2
+
−U ′3(w)

z − w
(3.38)

+ (N − 2)

(
(U1U2)(w)

(z − w)2
+

(U ′1U2)(w)

z − w

)
13Here and in the following we use the notation (x)n for the raising factorial x(x+ 1) · · · (x+ n− 1) and

[x]n for the falling factorial x(x− 1) · · · (x− n+ 1).
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and

U2(z)U4(w) ∼
1
2N(N−1)(N−2)(N−3)α2

0(3+2α2
0−8Nα2

0)

(z−w)6
+

(N−1)(N−2)(N−3)α0(1−3Nα2
0)U1(w)

(z−w)5

+N(N−1)(N−2)(N−3)α3
0

(
U1(w)

(z−w)5
+
U ′1(w)

(z−w)4
+

U ′′1 (w)

2(z−w)3
+

U ′′′1 (w)

6(z−w)2
+
U ′′′′1 (w)

24(z−w)

)
+

1
2(N − 2)(N − 3)(1− 2α2

0 − 4Nα2
0)U2(w)

(z − w)4
+
−(N − 3)(N + 2)α0U3(w)

(z − w)3

+ (N − 1)(N − 2)(N − 3)α2
0

(
(U1U1)(w)

(z − w)4
+

(U ′1U1)(w)

(z − w)3
+

(U ′′1U1)(w)

2(z − w)2
+

(U ′′′1 U1)(w)

6(z − w)

)
+ (N − 2)(N − 3)α0

(
(U1U2)(w)

(z − w)3
+

(U ′1U2)(w)

(z − w)2
+

(U ′′1U2)(w)

z − w

)
+ (N − 3)

(
(U1U3)(w)

(z − w)2
+

(U ′1U3)(w)

z − w

)
−
(

U4(w)

(z − w)2
+
U ′4(w)

z − w

)
+
−3U4(w)

(z − w)2
, (3.39)

which is quadratic and more complicated than OPE with T1+∞(z). One property of the

OPE that can be noticed here is that the terms with derivatives can be absorbed into OPE

if we allow for bilocal normal ordering (2.9),

U2(z)U4(w) ∼
1
2N(N−1)(N−2)(N−3)α2

0(3+2α2
0−8Nα2

0)

(z−w)6
+

(N−1)(N−2)(N−3)α0(1−3Nα2
0)U1(w)

(z−w)5

+
N(N − 1)(N − 2)(N − 3)α3

0U1(z)

(z − w)5
+

1
2(N − 2)(N − 3)(1− 2α2

0 − 4Nα2
0)U2(w)

(z − w)4

+
−(N − 3)(N + 2)α0U3(w)

(z − w)3
+

(N − 1)(N − 2)(N − 3)α2
0(U1(z)U1(w))

(z − w)4

+
(N−2)(N−3)α0(U1(z)U2(w))

(z−w)3
+

(N−3)(U1(z)U3(w))

(z−w)2
+
−U4(z)

(z−w)2
+
−3U4(w)

(z−w)2
. (3.40)

We will see later that only a small generalization of this will allow us to understand all

terms with derivatives in OPE of arbitrary Uj(z) and Uk(w). The general formula for the

OPE of U2(z) and Uk(w) analogous to (3.29) is14

U2(z)Uk(w) ∼
k−1∑
m=0

[N −m]k−mα
k−m−1
0

(
U1(z)Um(w)

)
(z − w)k−m+1

+

k−1∑
m=0

[N −m]k−mα
k−m−2
0

[
k−m−1

2 + α2
0 (N(m− k)−m+ 1)

]
Um(w)

(z − w)k−m+2

+
−mUm(w)

(z − w)2
+
−U ′m(w)

z − w
. (3.41)

14Strictly speaking, this formula was only verified for first ∼ 15 values of k but because of the nature of

the combinatorics involved it is reasonable to expect that it holds for arbitrary values of k.
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It is easy to verify that all the previous formulas are special cases of this one. More

importantly, the Jacobi identities (U1U2Uj) and (U2U2Uk) are satisfied as one can check

for given value of k using OPEdefs.

3.3 Higher OPE using associativity conditions

As discussed above, the computation of the OPE Uj(z)Uk(w) using the free field represen-

tation is in principle a straightforward application of Wick theorem, but in practice the

combinatorics of contractions is very complicated.15 For this reason, in this section we

will use the associativity conditions of the operator algebra as implemented in OPEdefs

(bootstrap approach) to compute the operator product expansion of Uj(z) fields.

Finding the most general algebra with a given set of generators is more efficiently

done in the basis of generators which are primaries with respect to Virasoro algebra [43]

as was reviewed in the previous section. On the other hand, here we want to use as an

input for bootstrap equations all that we already know from the free field computations.

In particular, we will assume the following:

• OPE U1(z)Uk(w) takes the form (3.29)

• OPE U2(z)Uk(w) takes the form (3.41)

• OPE Uj(z)Uk(w) cannot have Ul(w) in its singular part unless l ≤ j + k − 2

• we will solve the equations for generic values of N and α0

• the operators appearing on the r.h.s. of the OPE are at most quadratic compos-

ites of Uj .

The first two conditions fix the subalgebra generated by U1 and U2 as well as the normal-

ization of higher Uj fields and their transformation under U1 and U2 action. The third

condition comes from the fact that the singular terms in OPE have at least one contraction

of two free fields. The next assumption just expresses the fact that at this point we are

interested in the full two-parametric family of solutions and not in solutions which could

exist for special values of the parameters. Finally, the last condition is nontrivial and seems

to be very special for W∞ and particular choice of the basis. It is clearly not true in the

basis of primary fields, where the composite fields appearing in the OPE of two primaries

have arbitrary non-linearity, bounded only by the scaling dimensions of the fields as dis-

cussed in the previous section. But this quadraticity property holds classically [49, 50] and

follows also from the free-field computations of [2, 3, 51].

Under these assumptions we can compute the OPE of Uj(z) and Uk(w) using the Jacobi

identities. These identities can be solved order by order in j + k using the Mathematica

package OPEdefs. We start with the ansatz

Uj(z)Uk(w) ∼
∑

l+m+α+β<j+k
(l,α)≤(m,β)

C lmαβjk (α0, N)(U
(α)
l U

(β)
m )(w)

(z − w)j+k−l−m−α−β
(3.42)

15But see [2, 3, 51] where the free-field manipulations are used.
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which follows from the assumed quadraticity of the OPE. The restriction (l, α) ≤ (m,β) on

possible operators on the right hand side expresses the fact that the operators (Uαj U
β
k )(w)

and (Uβk U
α
j )(w) are not independent, but related via (2.10).

Assuming (3.42) and restrictions summarized above, we can start solving the Jacobi

identities. Jacobi identities for (U1U1Uk), (U1U2Uk) and (U2U2Uk) are satisfied automat-

ically given (3.29), (3.41). Jacobi identities for triples (U1U3U3) and (U2U3U3) determine

uniquely OPE U3(z)U3(w) except for the most singular term (coefficient of the identity)

which we determine from the free field computation. To determine OPE U3(z)U4(w) we

use Jacobi identities for (U1U3U4), (U2U3U4) and (U3U3U3). We may proceed similarly

at j + k = 8: Jacobi identities (U1U3U5) and (U2U3U5) determine U3(z)U5(w) and Jacobi

identities (U1U4U4), (U2U4U4) and (U3U3U4) determine U4(z)U4(w). An illustration of

the expressions one finds in this way is given in appendix B. We proceeded this way and

determined the OPE of Uj(z)Uk(w) up to j + k ≤ 15.

3.4 Results of associativity constraints

Following the procedure described in the preceding section, we obtained a lot of data. The

question is if any general patterns can be observed. We found that all the computed OPE

coefficients are in fact consistent with the following statement: There exists a set of bilocal

operators Ujk(z, w) regular as z → w such that the full operator product expansion (not

only the singular part) has the form

Uj(z)Uk(w) =
∑

l+m≤j+k

C lmjk (α0, N)Ulm(z, w)

(z − w)j+k−l−m
(3.43)

Here C lmjk are polynomials in two variables that we still have to determine.16 Comparing

this to (3.42) the difference is that now the structure constants C lmαβjk have been factorized

into C lmjk which do not depend on the order of derivatives (α, β) and Ulm(z, w) which

includes all the derivative terms and is independent of j and k.

Assuming the knowledge of C lmjk , we can use the formula (3.43) to inductively compute

Ulm(z, w) as power series expansion in terms of usual normal ordered products of operators.

For instance, since U0 = 1,

C lm0j = δl0δ
m
j , (3.44)

so

Uj(w) = U0(z)Uj(w) = U0j(z, w) (3.45)

and similarly

Uj(z) = Uj(z)U0(w) = Uj0(z, w). (3.46)

To determine U11(z, w), we have from (3.43)

U1(z)U1(w) =
C00
111

(z − w)2
+
C10
11U10(z, w)

z − w
+
C01
11U01(z, w)

z − w
+ C11

11U11(z, w). (3.47)

16This way of writing the OPE is similar to what was derived only using the free field computations

in [2, 3, 51].
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Furthermore, the structure polynomials in this case are (see later in section 3.6)

C00
11 = N (3.48)

C10
11 = 0 (3.49)

C01
11 = 0 (3.50)

C11
11 = 1 (3.51)

so

U11(z, w) = U1(z)U1(w)− N

(z − w)2
=
∞∑
k=0

(z − w)k

k!
(U

(k)
1 U1)(w) ≡ (U1(z)U1(w)). (3.52)

where we used (2.9). In this way we may determine inductively all Ujk(z, w) assuming the

form (3.43) of the OPE and knowing the structure polynomials C lmjk (α0, N). Furthermore,

our explicit computation of the coefficients using the Jacobi identities lets us determine

C lmjk (α0, N) up to j + k ≤ 15.

3.4.1 Inverse formula

There is a simple transformation of (3.43) which turns out to be quite useful. Considering

indices (j, k) as biindex and similarly for (l,m), we see that we have a linear relation

between Uj(z)Uk(w) and Ulm(z, w). The transformation matrix

C lmjk (α0, N)

(z − w)j+k−l−m
(3.53)

is lower triangular (considering the lower biindex to be the row index). Denoting Dlm
jk (α0, N)

the inverse matrix to C lmjk (α0, N),

C lmjk D
rs
lm = δrj δ

s
k (3.54)

we can rewrite the OPE equivalently as

Ujk(z, w) =
∑

l+m≤j+k

Dlm
jk (α0, N)Ul(z)Um(w)

(z − w)j+k−l−m
. (3.55)

Since the left-hand side is an operator regular as z → w, the main observation (3.43) can

also be stated in this form: there exist polynomials Dlm
jk (α0, N) such that for each (j, k) the

following combination of the OPE is regular as z → w:

∑
l+m≤j+k

Dlm
jk (α0, N)Ul(z)Um(w)

(z − w)j+k−l−m
∼ reg. (3.56)

If we denote this bilocal operator by Ujk(z, w), reversing the steps above we can derive

again (3.43).
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3.4.2 Connection to usual normal-ordered products

If one wants to translate between the usual normal-ordered products and bilocal operators

Ujk(z, w), we can just take all the regular terms from the expression (3.55) using (2.1). In

this way we find

Ujk(z, w) =

∞∑
s=0

∑
l+m≤j+k

Dlm
jk (α0, N) {UlUm}l+m−j−k−s (w)(z − w)s (3.57)

=

∞∑
s=0

∑
l+m≤j+k

Dlm
jk (α0, N)

(
U

(j+k−l−m+s)
l Um

)
(w)

(j + k − l −m+ s)!
(z − w)s. (3.58)

Note that the sum over s starts at s = 0 since all the singular terms cancel by the definition

of Dlm
jk — otherwise Ujk(z, w) would not be regular at z = w.

The inverse formula can be derived from (3.43) by Taylor expanding Ulm(z, w):

{UjUk}r (w) =
∑

l+m≤j+k

C lmjk (α0, N)
(
∂j+k−l−m−rz Ulm

)
(z, w)

∣∣
z=w

(j + k − l −m− r)!
. (3.59)

3.5 Commutation relations of modes

The equation (3.55) together with the contour deformation argument (2.13) are very useful

for deriving the commutation relations between modes of Uj(w) operators:

[Uj,a, Uk,b] = −
∑

l+m≤j+k−1

∞∑
α=0

Dlm
jk (α0, N)

(
j + k − l −m− 1 + α

α

)
(
Ul,m−k+a−αUm,k−m+b+α − (−1)j+k−l−mUm,l−j+b−αUl,j−l+a+α

)
. (3.60)

To obtain this result, we used the formula for the commutator of modes (2.26) and applied

it to (3.55). The regular term on the left-hand side gives no contribution since it has

no singularities as z → w. The leading term j + k = l + m gives the commutator on

the left-hand side of (3.60) while the other terms after expanding the denominators and

expressing the integrals in terms of modes give the right-hand side of (3.60). The infinite

number of terms on the right-hand side of (3.60) seems to be an unavoidable consequence

of having non-linear OPE of the Uj(z) fields. It is analogous to the infinite sum in the

expression (2.23) for the mode expansion of the normal ordered product. It is important

to remember that as long as we work with the highest-weight representations of the chiral

algebra where the highest-weight state is annihilated by positive modes, there will only be

a finite number of non-zero terms in (3.60) when applied to any state at finite level.

3.6 Formula for structure constants

We still haven’t determined the value of structure constants C lmjk (α0, N). From the way

they enter the OPE we see that they satisfy the symmetry relation

C lmjk (α0, N) = (−1)j+k−l−mCmlkj (α0, N). (3.61)
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Furthermore, from the OPE computed with OPEdefs we find a shift symmetry

C l+n,m+n
j+n,k+n (α0, N + n) = C lmjk (α0, N) (3.62)

with n a positive integer. The origin of this symmetry is not clear to us. Using these two

symmetries, we can reduce the computation of the structure constants to the computation of

C lm0k (α0, N) and C l0jk(α0, N). (3.63)

The first one is easy, since the OPE of any field with identity field does not introduce any

singularities. Hence we have

C lm0k (α0, N) = δl0δ
k
m. (3.64)

Determination of C l0jk(α0, N) is more difficult. Focusing first on the two-point function

C00
jk (α0, N) coefficient, one first observes from the computed OPE data that there exist

universal polynomials Pl(α0, N) such that for j, k ≥ 1

C00
jk (α0, N) = (−1)j+1

(
N

j

)(
N

k

)
j!k!

∞∑
l=0

(
j−1

l

)(
k−1

l

)
(−1)lαj+k−2l−20 Pl(α0, N)(

N
l+1

)
(l + 1)!2

(3.65)

which looks like a generalization of the binomial transform to two variables (the only terms

that couple the l dependence to j and k dependence are the binomial coefficients). The

first few of them are

P0(α0, N) = 1

P1(α0, N) = 1− 2Nα2
0

P2(α0, N) = 1 + 4α2
0 − 6Nα2

0 − 6Nα4
0 + 6N2α4

0 (3.66)

P3(α0, N) = 1 + 16α2
0 − 12Nα2

0 + 36α4
0 − 84Nα4

0

+ 36N2α4
0 − 48Nα6

0 + 72N2α6
0 − 24N3α6

0.

One can use the OPE data to compute these polynomials for high values of l, but we

would like to find the formula for general l. Another important observation is that these

polynomials factorize at N = l:

P0(α0, N = 0) = 1

P1(α0, N = 1) =
(
1− 2α2

0

)
P2(α0, N = 2) =

(
1− 2α2

0

)(
1− 6α2

0

)
(3.67)

P3(α0, N = 3) =
(
1− 2α2

0

)(
1− 6α2

0

)(
1− 12α2

0

)
P4(α0, N = 4) =

(
1− 2α2

0

)(
1− 6α2

0

)(
1− 12α2

0

)(
1− 20α2

0

)
or

Pl(α0, N = l) =
l∏

m=1

(
1−m(m+ 1)α2

0

)
. (3.68)

Using the coproduct in W1+∞ discussed in section 3.8 and plugging in the ansatz (3.65)

we can extract from the most singular part the following recurrence formula for Pl(α0, N),

Pl(α0, N + 1)− Pl(α0, N) = −α2
0l(l + 1)Pl−1(N) (3.69)
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which together with the boundary condition (3.68) and P0(α0, N) = 1 can be solved17 in

the region N ≥ l and one finds

Pl(α0, N) =

l∑
j=0

(−1)jα2j
0

l!(l + 1)!

(l − j)!(l − j + 1)!

(
N − l − 1 + j

j

) l−j∏
k=1

(
1− k(k + 1)α2

0

)
. (3.70)

Combining this with formula for C00
jk (α0, N) one finds finally that

C00
jk (α0, N)=

(−1)j+1Γ(N+1)αj+k−20

Γ(N−j+1)Γ(N−k+1)

∞∑
l=0

Γ(N−l)(j+k−l−2)!

(j−l−1)!(k−l−1)!

l∏
m=1

(
1− 1

m(m+1)α2
0

)
(3.71)

which holds unless both j and k are zero. The sums and products can be resummed using

hypergeometric summation identities and one arrives at

C00
jk (α0, N) =

(−1)j+1Γ(N + 1)Γ(N)(j + k − 2)!αj+k−20

(j − 1)!(k − 1)!Γ(N − j + 1)Γ(N − k + 1)
×

× 4F3

(
1− j, 1− k, 32 + 1

2α0

√
4 + α2

0,
3
2 −

1
2α0

√
4 + α2

0

2, 2− j − k, 1−N
, 1

)
. (3.72)

The origin of the square root factors in (3.72) is the quadratic dependence of the prod-

uct (3.71) on m and it is one of the reasons why it was difficult to find form of C00
jk (α0, N).

One may ask what do the values of α2
0 for which the product vanishes for large enough l:

α2
0 =

1

l(l + 1)
. (3.73)

For WN minimal models the value of α2
0 is

α2
0 =

(p′ − p)2

p′p
(3.74)

where p′ and p are two coprime integers [17]. In particular, the unitary minimal models

we can choose have p′ = p+ 1 and the product vanishes for

l =
p

p′ − p
= p. (3.75)

Having understood the C lmjk (α0, N) for l = m = 0, we may try to express the results

of the OPE computations in terms of similar functions. One way of writing the result is

Cl0
jk = δljδ

0
k +

(−1)j−1Γ(N − l + 1)Γ(N + 1)αj+k−l−2
0

Γ(N − j + 1)Γ(N − k + 1)
× (3.76) l+1

2∑
a=0

l−a−1∑
b=a−1

(−1)a+b+1

Γ(N−a+1)

((
l−a−1

a

)(
l−2a−1

b−a

)
+

(
l−a−1

a−1

)(
l−2a

b−a+1

))
φj+k−l−1,N−a
j−b−1,k−l+b+1

+

l+1
2∑

a=0

l−a∑
b=a−1

(−1)a+b

Γ(N−a+1)

((
l−a−1

a

)(
l−2a−1

b−a

)
+

(
l−a
a−1

)(
l−2a+1

b−a+1

))
φj+k−l−2,N−a
j−b−1,k−l+b


17Thanks to Masaki Murata for bringing optimism at this point.
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which holds for all l > 0 and where we defined

φabcd(α0) =

min(c−1,d−1)∑
α=0

Γ(a− α)Γ(b− α)

Γ(c− α)Γ(d− α)

α∏
β=1

(
1− 1

β(β + 1)α2
0

)
(3.77)

=
Γ(a)Γ(b)

Γ(c)Γ(d)
4F3

(
1− c, 1− d, 32 + 1

2α0

√
4 + α2

0,
3
2 −

1
2α0

√
4 + α2

0

2, 1− a, 1− b
; 1

)
. (3.78)

This is our main result for the structure coefficients. It would be nice if this formula could

be rewritten in terms of functions that appear as structure constants of hs(λ) algebra like

the Wigner 3j or 6j symbols, but so far it has resisted our attempts to simplify it. But it is

a closed form formula which together with symmetry relations gives the correct result for

approximately 9000 structure constants that we computed using OPEdefs — not counting

all the derivative terms which were already taken into account by (3.43).

Let us emphasize that the N -dependence of the structure constants C lmjk is rational,

and that the equations that come from the associativity conditions are algebraic (always

assuming our field content). This means that if these associativity conditions are satisfied

for all integer values of N , they must hold also for all complex values of N except for

those which happen to be poles of the structure constants C lmjk . In that case we must be

more careful — but even in this case by rescaling the generators one can often remove the

singularities.

3.7 Correlation functions

Having found an explicit way of rewriting OPE (3.55), we can easily compute the correlation

functions of Uj(z) operators on the sphere. Because of the scaling symmetry, the one-point

functions are

〈Uj(z)〉 = δj0. (3.79)

The two-point functions are given by the structure constant C00
jk ,

〈Uj(z)Uk(w)〉 =
C00
jk

(z − w)j+k
(3.80)

for which we have an explicit expression (3.71) when both j and k are nonzero. If any

one of these is zero, the two-point function reduces to one-point function. It is easy to

understand (3.80). We have

〈Ujk(z, w)〉 = δ0j δ
0
k, (3.81)

because the expectation value of bilocal operators Ujk(z, w) must be regular as z → w but

at the same time proportional to (z − w)−j−k because of the scaling symmetry. This is

consistent only for j = 0 = k. Now (3.80) follows immediately using (3.54).

To determine the three-point and higher correlation functions, we can use the Cauchy

integral formula, since from the equation (3.55) we understand the two-point singularities.

Consider the three-point function

〈Uj(x)Uk(y)Ul(z)〉 (3.82)
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and assume j 6= 0 (otherwise the three-point function reduces to two-point function which

we already know). This function at fixed values of y and z is a meromorphic function of x

on the Riemann sphere with possible poles only at y and z. From the Cauchy formula and

the absence of poles at x→∞,18 we have

〈Uj(x)Uk(y)Ul(z)〉 =

∮
x

dw

2πi

〈Uj(w)Uk(y)Ul(z)〉
w − x

= −
∮
y

dw

2πi

〈Uj(w)Uk(y)Ul(z)〉
w − x

−
∮
z

dw

2πi

〈Uj(w)Uk(y)Ul(z)〉
w − x

(3.83)

=

∮
y

dw

2πi

∑
a+b<j+k

Dab
jk〈Ua(w)Ub(y)Ul(z)〉

(w − x)(w − y)j+k−a−b

+

∮
z

dw

2πi

∑
a+b<j+l

Dab
jl 〈Ua(w)Uk(y)Ub(z)〉

(w − x)(w − z)j+l−a−b
. (3.84)

We see that the computation of our three-point function reduces to the computation of

three-point functions with lower values of j + k + l, so inductively we can compute all the

three point functions. Four-point and higher-point correlation functions can be obviously

computed using the same method.

The computation that we used singles out the field Uj(x). But of course we could repeat

the same using Uk(y) or Ul(z). Equality of the three-point functions obtained in different

ways follows from the associativity of the OPE and it would be interesting to see what kind

of algebraic constraints we get for the structure constants Dlm
jk . If Uj(x) were quasiprimary,

the x-dependence of the correlation function would be fixed by global conformal invariance.

Unfortunately, Uj(x) do not transform under special conformal transformations as simply

as quasiprimary fields, and dilation, rotation and translation symmetries do not fix the

functional dependence of three-point function. If the dependence of three-point function

on x, y and z was fixed in terms of dimensions of fields, it would be easy to evaluate the in-

tegrals and we would obtain algebraic equations for the structure constants as compatibility

equations for the three-point functions.

The reason we used the Cauchy formula was that the singular parts of the three-point

functions as two points approach each other are not independent. Replacing the Uj(x)Uk(y)

by terms coming from (3.55) determines the singularity as x → y but includes also some

terms which are singular as x → z (in fact those that are singular both as x → y and

x → z). The same is true for singularity of Uj(x)Ul(z) as x → z. So if we just added the

singular terms as determined by (3.55), we would be over-counting - including terms which

have both singularities twice.

It would be interesting to see what are the constraints on Dlm
jk coming from the consis-

tency of the n-point functions, what is the generating set of these equations, and what kind

of W-algebras share this quadratic property with W1+∞. Clearly the affine Lie algebras

or the Virasoro algebra are of this type. For example, for Virasoro algebra we can rewrite

the OPE as

T (z)T (w)− T (z)

(z − w)2
− T (w)

(z − w)2
− c/2

(z − w)4
∼ reg. (3.85)

Note that the derivative term disappears if we use this symmetric form of the OPE.

18For this step we needed j 6= 0; the identity operator clearly does not have sufficient fall-off at infinity.
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3.8 Coproduct in W1+∞

Although we succeeded in finding a closed-form expression for the structure constants

C lmjk (α0, N) it is useful as a consistency check to derive some constraints on these structure

constants and verify that these are satisfied. One set of relations comes from the free field

representation (3.5). What we can do is to simply split the N free bosons we started with

into two groups of N1 and N2 free bosons such that N = N1 + N2. Denoting the Uj(z)

fields constructed in this way by U(1)j(z) and U(2)k(w), we have

R(z) = R1(z)R2(z) =

N1∑
k=0

N2∑
l=0

U(1)k(z)(α0∂)N1−kU(2)l(z)(α0∂)N2−l. (3.86)

We left out the free field normal ordering symbols since the two sets of free fields commute

with each other. Passing now the derivatives to the right,19 we find

Uj(z) =

j∑
k=0

j−k∑
l=0

(
N1 − k
j − k − l

)
αj−k−l0 U(1)k(z)U

(j−k−l)
(2)l (z). (3.87)

The first set of fields generate the W1+∞ with parameters (α0, N1) and the other with

parameters (α0, N2). This formula tells us how to find the W1+∞ algebra with param-

eters (α0, N1 + N2) in the product of the two theories. Using the explicit form of the

OPE Uj(z)Uk(w) for j + k ≤ 15 computed before, one can verify that (3.87) is consistent

for arbitrary (not only positive integer) values of N1 and N2, which is however not very

surprising since the structure constants C lmjk (α0, N) are polynomials in α0 and N .

The consistency of the coproduct together with the quadratic form of the OPE (3.55)

allows us to derive the conditions for the structure constants. Plugging (3.87) in (3.55) we

find that∑
l+m≤j+k

∑
a+c+ρ≤l

∑
b+d+σ≤m

∑
α+β≤a+b

∑
γ+δ≤c+d

(−1)l−a−c−ραl+m−a−b−c−d0

×
(
N1 − a
l − a− c

)(
N1 − b

m− b− d

)(
l − a− c

ρ

)(
m− b− d

σ

)
(c+ d− γ − δ)l+m−a−b−c−d−ρ−σ

×Dlm
jk (α0, N1+N2)C

αβ
ab (α0, N1)C

γδ
cd (α0, N2)

U(1)αβ(z, w)U
(ρσ)
(2)γδ(z, w)

(z − w)j+k−α−β−γ−δ−ρ−σ
∼ reg (3.88)

must be regular. Operators U(1)αβ(z, w) in the first W1+∞ are independent so we can

extract from this formula the coefficient of each of them. On the other hand, operators

U
(ρσ)
(2)γδ(z, w) are not independent because of the derivatives and symmetry in (γ, δ). What

we can do is to take the Taylor expansion of these operators at z = w, but the resulting

formulas are not very illuminating. Specializing for simplicity to ρ = σ = 0 and fixed

values of α, β, γ and δ, which satisfy

α+ β + γ + δ < j + k (3.89)

19This construction is not symmetric in U(1) and U(2). There is an analogous version of this construction

if we move the derivatives to the left, but we have not found any symmetric variant of the coproduct.
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we have

0=
∑

l+m≤j+k

∑
a+c≤l

∑
b+d≤m

(−1)l−a−cαl+m−a−b−c−d0

(
N1 − a
l − a− c

)(
N1 − b

m− b− d

)
(3.90)

×(c+d−γ−δ)l+m−a−b−c−dDlm
jk (α0, N1+N2)C

αβ
ab (α0, N1)

(
Cγδcd (α0, N2)+Cδγcd (α0, N2)

)
.

This equation holds trivially also for α+ β + γ + δ > j + k, while the simple modification

valid for any values of indices is

δα+γj δβ+δk + δα+δj δβ+γk = (3.91)∑
l+m≤j+k

∑
a+c≤l

∑
b+d≤m

(−1)l−a−cαl+m−a−b−c−d0

(
N1 − a
l − a− c

)(
N1 − b

m− b− d

)
× (c+d−γ−δ)l+m−a−b−c−dDlm

jk (α0, N1+N2)C
αβ
ab (α0, N1)

(
Cγδcd (α0, N2)+Cδγcd (α0, N2)

)
.

Inverting the Dlm
jk matrix, we can write this also as

Cα+γ,β+δlm (α0, N1 +N2) + Cα+δ,β+γlm (α0, N1 +N2) =

=
∑
a+c≤l

∑
b+d≤m

(−1)l−a−cαl+m−a−b−c−d0

(
N1 − a
l − a− c

)(
N1 − b

m− b− d

)
× (c+ d− γ − δ)l+m−a−b−c−dCαβab (α0, N1)

(
Cγδcd (α0, N2) + Cδγcd (α0, N2)

)
. (3.92)

Specializing to γ = 0 = δ,

Cαβlm (α0, N1 +N2) =
∑
a+c≤l

∑
b+d≤m

(−1)l−a−cαl+m−a−b−c−d0

(
N1 − a
l − a− c

)(
N1 − b

m− b− d

)
× (c+ d)l+m−a−b−c−dC

αβ
ab (α0, N1)C

00
cd (α0, N2). (3.93)

Choosing N2 = 1 and noticing that C00
cd (α0, 1) is nonzero only for (c, d) = (0, 0) or (c, d) =

(1, 1), we arrive at recurrence relation

Cαβlm (α0, N + 1)− Cαβlm (α0, N) =
∑
a<l

∑
b<m

(−1)l−a−1αl+m−a−b−20 (3.94)

×
(
N−a
l−a−1

)(
N−b

m−b−1

)
(l +m− a− b− 1)! Cαβab (α0, N).

These equations are sufficient to determine Cαβlm (α0, N) assuming that we know these for

any value of N .20 For example, we know that at N = 0 and N = 1, W1+∞ has a basis

with known linear structure constants [38–40], so one would only need to understand the

transformation between the linear basis and quadratic basis of the algebra. If this is

understood and C lmjk (α0, 0) or C lmjk (α0, 1) determined, we can use the identities following

from the existence of the coproduct to determine C lmjk (α0, N) for any N . Alternatively, we

could also use the shift symmetry (3.62) which is clearly simpler, but its origin is not clear.

20Note that for this to be true it is not enough to work with meromorphic functions in the complex plane

— we are also using the fact that Clm
jk are rational functions of N of degree bounded in terms of j, k, l,m.
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Let us now have a look at how the coproduct acts in the parameter space of W1+∞.

In the free field construction of the coproduct (3.86) it was important that both of the

theories that we are composing have the same value of α2
0 but can possibly differ by value

of Nj . The resulting theory has the same value of α2
0 and N = N1 +N2. Looking at (3.23)

and (2.50) we see that both of these equations are homogeneous in λj . This means that

the coproduct allows us to additively compose the triplets (λ1, λ2, λ3) and (λ′1, λ
′
2, λ
′
3) as

3-vectors if they are proportional. We will see later that in fact this addition restricted

to the set of minimal models produces again W1+∞ algebra with parameters of another

minimal model, and that the minimal models thus lie in the parameter space on various

lines through the origin with direction of these lines characterized by the value of α2
0.

3.9 Virasoro subalgebras and quasiprimary fields

Having understood the commutation modes in the quadratic U -basis, we can now try to

compare them with the results of the primary basis computation.

3.9.1 Quasiprimary fields

One can check that the generating fields Uk(z) are not primary nor quasiprimary, but they

do have definite scaling dimensions with respect to T1+∞(z). Recall that a local field A(z)

is quasiprimary with respect to stress-energy tensor T (z) if we have OPE

T (z)A(w) ∼ · · ·+ 0

(z − w)3
+
hAA(w)

(z − w)2
+
A′(w)

z − w
. (3.95)

The quadratic pole determines the scaling dimension of A(z) while the cubic pole must

vanish if the field is quasiprimary with respect to T (z). If there are no higher order poles

than quadratic, the field A(z) is primary. Computing OPE of T1+∞(z) with Uk(z) we find

T1+∞(z)Uk(w)∼ 1

2

k−1∑
l=0

(
(k−l−1)N+(k+l−1)

)
(N−k+1)k−lα

k−l
0 Ul(w)

(z−w)k−l+2
+
kUk(w)

(z−w)2
+
U ′k(w)

z−w
(3.96)

so that Uk(w) do have a definite scaling dimension k with respect to T1+∞ but they are not

quasiprimary. But we can make linear combinations of Uk(w) and their derivatives that

are quasiprimary:

Qj(z) =
(j − 1)!

(2j − 2)!

j−1∑
k=0

(−1)k
(2j − k − 2)!(N − j + 1)kα

k
0

k!(j − k − 1)!
U

(k)
j−k(z). (3.97)

The inverse transformation looks similar

Uj(z) = (j − 1)!

j−1∑
k=0

(2j − 2k − 1)!(N − j + 1)kα
k
0

k!(j − k − 1)!(2j − k − 1)!
Q

(k)
j−k(z). (3.98)

These two identities generalize the binomial transform between two sequences. Since the

transformation between U -basis and quasiprimary basis is linear, it preserves the quadratic

form of the OPE. Furthermore, quasiprimary fields have simple transformation properties
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under inversion, so they behave under BPZ conjugation better than U -fields. On the other

hand, the structure constants of W1+∞ are polynomials in each index if we fix the other

indices. This is however not true in quasiprimary basis. For example the coefficient of

identity in OPE of Qj(z)Qk(w) can be nonzero only if j = k (because of the restrictions

coming from the global conformal group on two-point functions).

3.9.2 Primary fields

Having discussed W1+∞ in primary basis as well as in quadratic basis, we should try to

understand the transformation between these two bases. Apart from checking that we are

actually dealing with the same chiral algebra, this comparison is also useful to understand

the triality symmetry. Recall that although in quadratic basis we have simpler form of the

OPE and in fact we have a closed-form expression for it, the triality symmetry is hidden.

On the other hand, the structure constants of W1+∞ are manifestly triality invariant when

we work with the primary basis.

As already discussed in section 2, there is no canonical choice of primary fields. If

we work with W∞ algebra by considering only fields which have regular OPE with U1(z),

the non-uniqueness of primary fields will first appear at dimension 6 where the composite

primary field (W3W3) + · · · appears. But working with W1+∞ we saw in section 3.2

that there are various choices of Virasoro subalgebras and fixing one of these, already at

dimension 2 there is a Virasoro-primary field. For example, with respect to stress-energy

tensor (3.20), the following field is dimension 2 primary:

− U2(z) +
(N − 1)(N + 1)α2

0

2
(U1U1)(z) +

(N − 1)α0

2
U ′1(z). (3.99)

Similarly to previous derivation in W∞, we can derive the primary field counting function

in W1+∞ and we find
∞∑
h=0

Phq
h = q+

∞∏
s=2

∞∏
j=s

1

1− qj
' 1+q+q2+2q3+4q4+6q5+12q6+18q7+33q8+· · · . (3.100)

Orthogonality in two-point functions. One possible choice of generating fields21 uses

the two-point function (3.72). Up to an overall normalization, we can find at each dimension

a unique linear combination of fields of the same dimension, which has zero two-point

function with all fields of lower dimension and with composite fields of the same dimension.

For example at dimension 2 we have only 3 fields. The field

T∞(z) = −U2(z) +
N − 1

2N
(U1U1)(z) +

(N − 1)α0

2
U ′1(z) (3.101)

is the only linear combination at dimension 2 with coefficient of U2(z) equal to −1 and

having zero two-point function with U1(z), U ′1(z) and (U1U1)(z). At dimension 3 we have

in total 6 fields. The combination that has vanishing two-point function with all dimension

1 and 2 fields and dimension 3 composite fields is the primary

W3(z) ∼ −U3(z) +
(N − 2)

N
(U1U2)(z)− (N − 1)(N − 2)

3N2
(U1(U1U1))(z) +

(N − 2)α0

2
U ′2(z)

− (N − 1)(N − 2)α2
0

12
U ′′1 (z)− (N − 1)(N − 2)α0

2N
(U ′1U1)(z). (3.102)

21These generating fields turn out to be primary with respect to T∞ for spins ≥ 3.
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Similarly at dimension 4 we have the primary field

W4(z) ∼ α0(N − 3)(N − 2)(N − 1)(5N + 6)(α2
0N

2 − α2
0N − 1)(U ′1(U1U1))(z)

2N2(5α2
0N

3 − 5α2
0N − 5N − 17)

+
(N − 3)(N − 2)(N − 1)(α2

0N
2 − α2

0N − 1)(2α2
0N

2 + 3α2
0N − 3)(U ′1U

′
1)(z)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

− α0(N−3)(N−2)(N−1)(5α2
0N

2+7α2
0N−5)(U ′1U2)(z)

2N(5α2
0N

3−5α2
0N−5N−17)

−α0(N−3)(N−2)(U1U
′
2)(z)

2N

+
(N − 3)(N − 2)(N − 1)(5N + 6)(α2

0N
2 − α2

0N − 1)(U1(U1(U1U1)))(z)

4N3(5α2
0N

3 − 5α2
0N − 5N − 17)

− (N − 3)(N − 2)(5N + 6)(α2
0N

2 − α2
0N − 1)(U1(U1U2))(z)

N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(3.103)

+
(N − 3)(N − 2)(5α2

0N
2 + 7α2

0N − 5)(U2U2)(z)

2N(5α2
0N

3 − 5α2
0N−5N−17)

+
α0(N−3)U ′3(z)

2
+

(N − 3)(U1U3)(z)

N

+
(N−3)(N−2)(N−1)(2α4

0N
4 − 5α2

0N
3 − 2α4

0N
2 − 7α2

0N
2−4α2

0N+5N − 2)(U ′′1 U1)(z)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

+
α0(N−3)(N−2)(N−1)(α4

0N
4 − 10α2

0N
3−α4

0N
2−14α2

0N
2 − 2α2

0N + 10N − 1)U ′′′1 (z)

24N(5α2
0N

3 − 5α2
0N−5N−17)

− (N − 3)(N − 2)(2α4
0N

4 − 2α4
0N

2 − 5α2
0N

2 − 11α2
0N + 3)U ′′2 (z)

4N(5α2
0N

3 − 5α2
0N − 5N − 17)

− U4(z).

We see that already at dimension 4 the result is quite complicated. The normal order-

ing prescription is not canonical so if we used a different normal ordering prescription or

different nesting of higher non-linear terms, we would find different coefficients.

The procedure for obtaining primary fields as described above works also for fields of

higher dimension. By making the two-point function of Wj(z) with Virasoro descendants

of lower dimension primaries vanish we find a combination of fields which is primary. By

further restricting to a combination which has zero two-point function with other primary

fields of the same dimension but constructed from lower spin fields we arrive at primary field

of given dimension which is uniquely determined up to an overall normalization. Ultimately

we want to have a triality-invariant combination, which can be checked by computing any

OPE coefficient of our field with any other triality-invariant field.

As for the normalization, if we choose the coefficient of Uj(z) in Wj(z) to be −1, the

coefficient of identity of the OPE of Wj(z)Wj(w) for first few fields is as follows:

W1(z)W1(w) ∼ N

(z − w)2
+ · · · (3.104)

W2(z)W2(w) ∼ S1
2(z − w)4

+ · · · (3.105)

W3(z)W3(w) ∼ S1S2
6N(z − w)6

+ · · · (3.106)

W4(z)W4(w) ∼ S1S2S3S−1
4N2(5c+ 22)(z − w)8

+ · · · (3.107)

W5(z)W5(w) ∼ S1S2S3S4S−1
10N3(7c+ 114)(z − w)10

+ · · · (3.108)
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where we introduced the notation

Sj = (λ1 − j)(λ2 − j)(λ3 − j) = (N − j)(j2 −Njα2
0 −N2α2

0) (3.109)

which is obviously triality invariant. We see that up to an overall factor of N2−j all the

two-point functions of Wj(z) fields constructed above are manifestly triality-invariant.

Comparison to W∞. At this point we can finally compare the OPEs of these fields and

primary generators of W∞ discussed in section 2 and verify that the structure constants

computed in both ways match. In this way we verify once again the formula (2.49) which

determines the structure constants of W∞ in terms of the central charge c and the rank

parameter N . We choose the Virasoro subalgebra with Virasoro field T∞(z) because this

field has vanishing OPE with û(1). Note that in section 2 we discussed only W∞ algebra

which has no spin 1 field. The main reason was that including this field would produce

many composite primary fields and the computations would be much more difficult. On

the other hand, when discussing the quadratic basis, the algebraW1+∞ seems to be the one

that is more natural. We can always reduce from W1+∞ to W∞ analogously to reduction

from GL(n) to SL(n) or to reduction of Toda chain to center-of-mass system. To do it, we

just need to find combinations of fields which have vanishing OPE with U1(z).

Luckily, the fields constructed using the orthogonality of two-point functions turn out

to be not only primary with respect to T∞(z) but they have at the same time vanishing

OPE with û(1) algebra. So these are precisely the fields which we can use to make a

comparison with results of the section 2. For example, we can compute the x2 coefficient

and we find

x2=
(N − 3)(N + 1)(1 +Nα2

0 −N2α2
0)(9− 3Nα2

0 −N2α2
0)

(N−2)(N−1)(1−Nα2
0−N2α2

0)(4−2Nα2
0−N2α2

0)(17+5N+5Nα2
0−5N3α2

0)
(3.110)

which using the identification (3.22) is the same as (2.49). This implies in particular that

the parameter N that we introduced in (2.49) and which determines when W∞ can reduce

to WN is the same as parameter N that is given by the number of free bosons in free field

representation (3.5).

Triality in quadratic basis. We saw earlier that there is a natural choice of stress-

energy tensor T1+∞(z) (3.20) and with respect to this field all the fields in W1+∞ have the

canonical engineering dimensions. Furthermore, we can construct a sequence of primary

fields Wj(z) such that they have vanishing two-point functions with composite primaries

constructed from fields of lower spin. As discussed in section 2, this basis has the property

that up to overall rescaling of the primary generators the structure constants are manifestly

invariant under the triality transformations.

We can use this transformation between the primary basis and the quadratic U -basis

to express the nonlinear action of triality symmetry on the fields in the quadratic basis.

Since the resulting equations are quite complicated, we only describe in words how it works.

First we invert the expressions for Wj(z) fields in terms of Uk(z). The resulting formula ex-

presses Uj(z) which is not invariant under the triality transformations as (normal-ordered)
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polynomials in Wk(z) and their derivatives. The Wk(z) are themselves invariant under

triality, but the coefficients are not. This is the origin of the non-trivial transformation

properties of U -fields. If we now permute λj in coefficients, say exchange λ1 ↔ λ2, we

obtain another set of U -fields which must again satisfy the quadratic OPE, with structure

constants obtained from C lmjk (α0, N) by exchange λ1 ↔ λ2. In this way, we obtain three

different quadratic bases of W1+∞. The transformation from one U -basis to another one is

non-linear and the fact that OPE between these non-linearly transformed fields are again

quadratic when expressed in terms of the new fields seems to be rather non-trivial.

One might hope that understanding the triality action on U -bases could shed some

light on the old problem of the null states in the Virasoro algebra. The famous formula

of [62] which was later put in nice algebraic form by [63, 64] is formally very similar to the

transformation between W -basis and U -basis of WN [65]. The triality could give a clue for

this connection, since for example for the fixed value of N where Uj with j > N decouple

their triality images Ũk can still become null for a specific value of the central charge and

thus giving us operators generating the null states.

4 Representation theory

Finally we are ready to use the commutation relations of W1+∞ that were found in the

previous section to learn something about the representation theory of W1+∞. One could

ask many different questions but we start with the simplest one — for which values of

parameters ofW1+∞ we have vacuum representation with ‘maximal’ number of null states.

4.1 Virasoro algebra

Let us recall what we know about the Virasoro algebra. The representations that one

usually considers are the highest weight representations. To construct the irreducible high-

est weight representations of Virasoro algebra, we proceed in two steps. First step is the

construction of so-called Verma module. We split the Virasoro algebra Vir as vector space

into two parts,22

Vir = Vir<0 ⊕Vir≥0 (4.1)

where Vir<0 are linear combinations of negative modes Lk, k < 0, and Vir≥0 are linear

combinations of zero mode L0 and positive modes Lk, k > 0. Note that both Vir<0 and

Vir≥0 are subalgebras of the Virasoro algebra (they are closed under the Lie bracket).

To construct the Verma module, we start with the highest weight vector |h〉 which is

a one-dimensional representation Fh of Vir≥0,

Lk |h〉 = δk,0h |h〉 (4.2)

and take

Mh = U(Vir)⊗U(Vir≥0) Fh. (4.3)

22Note that as is usually done we treat the central charge c as a number, although to get Lie algebra it

should be a central element. For W-algebras this is not a problem since they are not Lie algebras anyway.
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Here U(Vir) is the universal enveloping algebra of the Virasoro algebra. This is the formal

construction of Virasoro Verma module Mh with highest weight h. In other words, the

Verma module is obtained by acting on the highest weight vector |h〉 by arbitrary finite

products of mode operators Lk and using only the commutation relations of the Virasoro

algebra and the highest weight relations (4.2). The important point is that there are no

other relations that we are allowed to use. It is easy to see using the Poincaré-Birkhoff-Witt

theorem that as a vector space the Verma module is isomorphic to U(Vir<0).

The representations we are mainly interested in are not the Verma modules but the

irreducible highest weight representations. The nice fact about the Verma modules is that

any irreducible highest weight representation is a quotient of a Verma module. Further-

more, any highest weight subrepresentation of Verma module is again a Verma module

(with a different highest weight). So to construct an irreducible highest weight represen-

tation we only need to take the quotient of the Verma module by sum of all of its proper

Verma submodules. Stated differently, to get the irreducible highest weight representation

we need to remove all the ‘null states’. In this second step we are imposing all other re-

lations between the Virasoro generators that hold in the irreducible module but are not

consequence of the commutation relations themselves.

For generic values of the central charge c and parameter h the Verma module is irre-

ducible. But for special values of c and h there are indeed some null states in the Verma

module and we only get an irreducible representation if we remove them. The result for

the Virasoro algebra is as follows: first we parametrize the central charge in terms of

parameter t

c = 13− 6t− 6t−1. (4.4)

The Verma module of Virasoro algebra with central charge c(t) and highest weight h is

reducible if and only if h takes one of values

hrs =
r2 − 1

4
t+

s2 − 1

4
t−1 − rs− 1

2
(4.5)

where r and s are non-negative integers [52]. For h of this form there is always a Verma

submodule with highest weight h+ rs (but there can also be other Verma submodules).

To study the singular vectors in Verma modules systematically we introduce the Gram

matrix. We then choose an arbitrary basis of Verma module. For Virasoro algebra the

conventional choice is the basis given by vectors

L−nr · · ·L−n3L−n2L−n1 |h〉 (4.6)

with n1 ≤ n2 ≤ · · · ≤ nr. With respect to the natural hermitian conjugation [52, 66]23 we

have L†k = L−k and the dual basis

〈h|Lm1Lm2Lm3 · · ·Lms , (4.7)

23One could in fact use the involutive anti-automorphism of the Virasoro algebra mapping Lk → L−k but

not taking complex conjugate of coefficients. Since the matrix elements are real, we get the same matrix as

if we use the hermitian conjugation. The Gram matrix is in this context often called the Shapovalov form.
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m1 < m2 < · · · < ms. The Gram matrix is the matrix of inner products between elements

of this basis. The inner products between two vectors can be nonzero only if the level is

the same,
∑

j nj =
∑

kmk. This means that the matrix of inner products decomposes into

blocks of finite size, one for each level l, and the size of each block is the number of partitions

of l. The usefulness of introducing the Gram matrix lies in the fact that the Verma module

with highest weight h has Verma submodule at level l if and only if the corresponding level

l block of the Gram matrix is degenerate. So by computing determinants of these matrices

of inner products, we can easily determine for a given c the values of h such that there are

null states in the corresponding Verma module. These determinants have been guessed for

Virasoro algebra by Kac and proved in [67]. The result which was already stated above is:

for every value of c the Verma module is reducible if and only if the highest weight h is

one of (4.5).

We would like to apply this procedure to the Verma module with h = 0. But the

problem is that for r = s = 1 we get h11 = 0, so the h = 0 Verma module is always reducible

for any value of the central charge c. In fact, we always have a null state at level rs = 1,

L−1 |0〉 = 0 (4.8)

in the irreducible vacuum representation which just expresses the translation invariance of

the vacuum. For generic values of the central charge there are no other Verma submodules

in the vacuum representation — all the null states are descendants of (4.8). But there is

an interesting discrete set of values of c for which there are additional Verma submodules

in the h = 0 Verma module. These are the Virasoro minimal models.

To find this special discrete set of values of c, we modify the construction of Shapovalov

form above. We split the Virasoro algebra in different way,

Vir = Vir<−1 ⊕Vir≥−1 (4.9)

and build the vacuum Verma module on state |0〉 such that

Lk |0〉 = 0, k ≥ −1 (4.10)

by acting on it with products of Virasoro modes Lk, k ≤ −2. In this way we explicitly

exclude the states which would be descendants of L−1 |0〉 in the h = 0 Verma module.

Just as before, we can introduce the corresponding Shapovalov form and compute its

determinant. This is now only a function of c and its zeros are precisely the values of

central charges of the Virasoro minimal models,

c = 1− 6
(p− p′)2

pp′
(4.11)

with p, p′ ≥ 2 coprime.

4.2 Null states in vacuum representation of W1+∞

Now we apply the procedure explained in the previous section to W1+∞. We focus only

on the vacuum representation. Generic representations can be much more wild than in the
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case of finitely generated W-algebras. The reason being that the natural generalization of

the highest weight representations (4.2) would be representations built on highest weight

vector |u1, u2, . . .〉 such that

Us,k |u1, u2, . . .〉 = 0, k > 0 (4.12)

Us,0 |u1, u2, . . .〉 = us |u1, u2, . . .〉 (4.13)

where Us,k is the k-th mode of field Us(z). The states in this Verma module would be

generated by acting on this vector with products of negative mode operators and using the

commutation relations (3.60). But the problem is that already at level 1 there are infinite

number of states (corresponding to the infinite set of generators). One cannot for example

write the formal character of the Verma module. Although one can think of some ways

to get around this problem (like using some refined characters which would distinguish

various states and remove the infinite degeneracy), here we will only focus on the vacuum

character which does not suffer from these difficulties.

The key simplification is that for each dimension s field Us(z) the vacuum is annihilated

by all mode operators Us,k with k > −s (2.18). This is needed to have well-defined operator-

state correspondence. So what we consider are the vacuum Verma modules built on the

highest weight state |0〉 which satisfies

Us,k |0〉 = 0, k > −s. (4.14)

This removes the infinite degeneracy and we can proceed as in the case of the Virasoro

algebra. Level by level, we can compute the Shapovalov form and study its zeros. There

are few differences from the Virasoro case: first, we want to work in U -basis, where the

generating fields are not quasiprimary — they do not transform as simply under special

conformal transformations or the inversion as the quasiprimary fields. But the definition of

conjugation depends on transformation under the inversion. The consequence of this will be

that the Shapovalov form that we will compute will not be a symmetric matrix. The second

difference is that for Virasoro algebra we had just the central charge as parameter. The

zeros of Shapovalov form were solutions to algebraic equations in c so the Virasoro minimal

models formed a discrete set of central charges. This would as well apply to any WN . For

for W1+∞ we have two parameters describing the algebra, so the zeros of Shapovalov form

will be curves in the space of parameters. So will call the discrete intersections of pairs of

these curves the minimal models.

Let us now present the results of the calculation. We implemented the computation of

determinant of Shapovalov form in Mathematica, using the commutation relations (3.60).

Since we are studying zeros of quadratic form, the overall normalization is basis dependent.

Our choice of basis of level l states will be

Us1,m1Us2,m2 · · ·Usk,mk
|0〉 (4.15)

with sj ≤ sj+1 and mj ≤ mj+1 if sj = sj+1.
24 Furthermore, we always have mj ≤ −sj . By

the generalized Poincaré-Birkhoff-Witt theorem this set of states is a basis of the vacuum

24The ordering here is the reverse of the one that is conventionally used in Virasoro algebra.
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level 1 2 3 4 5 6 7 8

prefactor N 2N3 6N6 384N13 ∼ N24 ∼ N45 ∼ N77 ∼ N128

(N − 1)M(0, 1) 0 1 3 8 17 37 71 138

(N − 2)M(0, 2) 0 0 1 3 8 19 41 85

(N + 1)M(0,−1) 0 0 0 1 3 10 23 54

(N − 3)M(0, 3) 0 0 0 1 3 8 19 43

(N − 4)M(0, 4) 0 0 0 0 1 3 8 19

N3M(1, 2)M(1,−1)M(−1,−2) 0 0 0 0 0 1 3 10

(N − 5)M(0, 5) 0 0 0 0 0 1 3 8

(N − 6)M(0, 6) 0 0 0 0 0 0 1 3

(N − 7)M(0, 7) 0 0 0 0 0 0 0 1

N3M(1, 3)M(2,−1)M(−2,−3) 0 0 0 0 0 0 0 1

Table 2. Determinant of Shapovalov form for vacuum representation at low levels.

Verma module. We will choose the dual basis analogously,

〈0|Us1,m1Us2,m2 · · ·Usl,ml
(4.16)

with sj ≥ sj+1 and mj ≤ mj+1 if sj = sj+1. Again, we have mj ≥ sj . As explained above,

we cannot anymore expect the matrix to be symmetric. The construction could be modified

to make the matrix symmetric, but the zeros would anyway not depend on this (basically

because of the triangularity of the W1+∞ algebra). So computing the determinant of

Shapovalov form with respect to this basis level by level, we find up to level 8 polynomials

as given in the table 2. Here we introduced the polynomials

M(j, k) ≡ (j − k)2 − jkα2
0 − (j + k)Nα2

0 −N2α2
0 = (j − k)2 − α2

0(N + j)(N + k). (4.17)

For example, at level 4 we have the polynomial

384N13(N − 3)(N − 2)3(N − 1)8(N + 1)(1−Nα2
0 −N2α2

0)
8×

× (4− 2Nα2
0 −N2α2

0)
3(9− 3Nα2

0 −N2α2
0)(1 +Nα2

0 −N2α2
0). (4.18)

The polynomials M(j, k) themselves are not triality invariant, but we can form triality-

invariant products

N3M(j, k)M(j − k,−k)M(k − j,−j). (4.19)

and these in fact are the factors that we found up to level 8.

The power of N in the prefactor given in the first line of the table can be explained

as follows: the fields Uj as defined in (3.5) are not triality invariant. We can add to them

combinations of lower dimension fields to make them primary as explained in section 3.9.2.

If we want Wj(z) to be triality invariant, the coefficient of Uj(z) should be chosen propor-

tional to N
j−2
2 . Since in the computation of the Kac determinant we are using the U -fields

and not the properly normalized W -fields, we get from each mode operator Us,j an extra

factor of N
2−j
2 . Taking this into account, we can write down the function that counts these
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Figure 1. Vanishing curves of the Kac determinant for W1+∞. The blue curves are the Virasoro

N = 2 curve and its triality images, the orange curves are the W3 N = 3 curve and its triality

images. The brown curves show the triality orbit of the first unitary minimal model curve.

extra factors of N :

z
d

dz

 ∞∏
s=1

∞∏
j=s

1

1−z2−sqj

∼q+3q2+6q3+13q4+24q5+45q6+77q7+128q8+201q9+ · · · . (4.20)

This explains all the powers of N up to level 8.

It would be nice to understand the powers of various factors as a function of level.

For zeros of the form (N − j)M(0, j) with j > 0 these powers are the number of plane

partitions of the level of height more than j. For example, the numbers of plane partitions

of height more than 2 are

0, 0, 1, 3, 8, 19, 41, 85, 167, 319, 588, 1066, . . . . (4.21)

which nicely matches the third row of the table above. The reason for appearance of

these exponents is clear. For N integer our W1+∞ consistently truncates to W1+N . The

number of states in the generic vacuum representation of this algebra is the number of

plane partitions with height less than or equal to N . The null states of W1+∞ at N integer

are exactly those states that are factored out when restricting to W1+N .

Plots. When making the plots of W1+∞ parameter space, which has complex dimension

two, we can restrict only to real subspace of real dimension two, since this is where all

the intersection occur. This is like in the case of Virasoro algebra where we have minimal

models at real values of the central charge. The space of parameters of W1+∞ can be

parametrized by triples (λ1, λ2, λ3) subject to a quadratic equation (2.50). This defines a

quadratic surface of a mixed signature if we consider λj to be real. Since the triality group

S3 acts in the space of λ parameters by permuting the coordinate axes, we will project

the cone to two dimensional plane along the (1, 1, 1) axis to respect the symmetry. One
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Figure 2. Intersection of vanishing curves are shown as black dots. The red dots represent the

triality orbit of the Ising model. The blue lines are the rays connecting Ising model points to the

origin. We can see other minimal models lying in these rays.

possible parametrization is

x =
1

3
(2λ1 − λ2 − λ3) (4.22)

y =
1√
3

(λ2 − λ3) . (4.23)

In (x, y) plane the triality acts by 120◦ rotations and by reflections with respect to the x

axis. The inverse transformation is

(λ1, λ2, λ3) =

(
x,−x

2
+

√
3y

2
,−x

2
−
√

3y

2

)
±
√
x2 + y2

2
(1, 1, 1) (4.24)

(there are two preimages, one from each half of the cone).

Minimal models. Now as discussed above, zeros of these polynomials give us curves in

two-dimensional parameter space of W1+∞ where additional null states appear in the vac-

uum Verma module. We call the discrete intersections of these curves the W1+∞ minimal

models. Let us look for example at the curve N = 2 which corresponds to Virasoro plus

û(1) truncation of W1+∞. We find the minimal models of table 3.

Note that apart from real Virasoro minimal models we also see here theories with

c = −2,−7,−25/2, . . . for which the Virasoro Verma module is already irreducible. These

models are not Virasoro minimal models in the strict sense, but they have extra null states

which are descendants of L−1 |0〉, so it is not surprising that they appear in this table.

Similarly, the intersections with N = 3 are the W3 minimal models of table 4.

In this way we should see WN minimal models for every N as special cases of W1+∞.

But there are also intersections of curves which don’t have an integer value of (λ1, λ2, λ3).

Up to level 8 where we have computed the vacuum Kac determinant, there are up to triality

– 45 –



J
H
E
P
0
9
(
2
0
1
5
)
1
1
6

c α2
0 level minimal model λ parameters

0 1/6 2 (2, 3), trivial (1, 2,−2/3)

−2 1/2 3 (1, 2) (2, 2,−1)

−22/5 9/10 4 (2, 5), Lee-Yang, W3 (2, 3,−6/5)

−7 4/3 5 (1, 3) (2, 4,−4/3)

1/2 1/12 6 (3, 4), Ising (2, 2/3,−1/2)

−68/7 25/14 6 (2, 7) (2, 5,−10/7)

−25/2 9/4 7 (1, 4) (2, 6,−3/2)

−3/5 4/15 8 (3, 5) (2, 4/3,−4/5)

−46/3 49/18 8 (2, 9) (2, 7,−14/9)

Table 3. Minimal models on N = 2 curve (Virasoro algebra minimal models).

c α2
0 level minimal model λ parameters

0 1/12 2 (3, 4), trivial (1, 3,−3/4)

−22/5 4/15 3 (3, 5), Lee-Yang, Virasoro (2, 3,−6/5)

−2 1/6 4 (2, 3) (3, 3/2,−1)

−10 1/2 4 (1, 2) (3, 3,−3/2)

−114/7 16/21 5 (3, 7) (3, 4,−12/7)

4/5 1/20 6 (4, 5), first nontrivial unitary (3, 3/4,−3/5)

−23 25/24 6 (3, 8) (3, 5,−15/8)

−30 4/3 7 (1, 3) (3, 6,−2)

−186/5 49/30 8 (3, 10) (3, 7,−21/10)

−98/5 9/10 8 (2, 5) (3, 9/2,−9/5)

Table 4. Minimal models on N = 3 curve (W3 algebra minimal models).

62 different intersection points. Most of these are induced from WN minimal models, but

there are 5 models,

(−1,−1, 1/2), (−3,−3, 3/2), (−5,−5, 5/2), (−1,−1/2, 1/3), (−1,−1/3, 1/4), (1/2, 1/3,−1/5)

(4.25)

which do not come from any WN minimal model. There are also 8 W1 minimal models(
1, k,− k

k + 1

)
(4.26)

with k = 1, . . . , 7 and (1, 1/2,−1/3).

As explained in section (3.8) about coproduct, there is a way of realizing W1+∞ rep-

resentations in tensor product of two representations of W1+∞ if the λ-parameters are

proportional (lie on the same line through the origin in the λ-space). This colinearity

follows from the condition of these theories to have the same value of α2
0. Although it

is perhaps not very surprising, it is nice to see that composing in this way two minimal
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models produces again a minimal model. This is illustrated in figure 2. For example, the

Ising model has λ-parameters (
2,

2

3
,−1

2

)
(4.27)

and there are 7 other minimal models (with null states up to level 8) with the same value

of α2
0: (

1,
1

3
,−1

4

)
× {−1, 0, 2, 3, 4, 5, 6, 7} (4.28)

The reason that say (1, 1/3,−1/4) is not in this list is probably because we are looking

only at null states at low level (otherwise it could be generated by taking combinations of

other models on this line).

To understand W1+∞ models better, one would either need a formula for zeros of

vacuum Kac determinant at all levels or combine information about WN minimal models,

which is something that we know much better. For instance, we know that the unitary

minimal models of WN have central charge

cN,k = (N − 1)

(
1− N(N + 1)

(N + k)(N + k + 1)

)
(4.29)

which is exactly the value of the central charge at the intersection of WN curve with

curve M(k, k + 1) = 0. Figure 1 shows these curves. The brown curves are zeros

of M(1, 2)M(1,−1)M(−1,−2). They form a nice triality-invariant shape in the two-

dimensional projection of λ-parameter space. The blue curve shows zeros of (N−2)M(0, 2)

which are the curves on which all u(1) plus Virasoro truncations of W1+∞ lie. The orange

curves are similarly W1+3 truncations. The Ising model lies on the intersection of the

Virasoro curve and the first unitary minimal model curve, together with the non-unitary

minimal model with central charge c = −68/7.

Summary. To summarize, we verified that the commutation relations (3.60) in U -basis

can be used to compute the vacuum Kac determinant for W1+∞. We expected the result

to be triality invariant, which is not a priori obvious since the triality symmetry is not

manifest in U -basis computations. Luckily, the results were triality invariant (see for

example figure 1) and furthermore consistent with everything we know about the properties

of WN vacuum representation.

As side-product, we found new minimal models of W1+∞ which do not come from

WN minimal models and we also found indications of an interesting additive structure of

W1+∞ minimal models compatible with coproduct constructed using the free field rep-

resentation of WN . Of course there are many other things to understand, starting from

the character formula for vacuum representation to generalizing the Kac determinant to

representations which are not the vacuum representation. This is not as simple as in WN

because already at level one the W1+∞ Verma module has an infinite number of states,

while the interesting WN minimal models have of course only a finite number of states at

any level. Having infinite possible null state already at level 1 can make the continuation

from WN to W1+∞ non-trivial so one has to consider some quasi-finiteness conditions for

representations like in [68].
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5 Directions for further study

Linear bases. It is known that for certain values of parameters there exist generating

sets of fields which have linear singular part of the OPE among themselves (linear bases).

In fact, the oldest constructions of W1+∞ by [38–40] are precisely in these linear bases.

Preliminary analysis shows that N = 0 and N = 1 are not the only cases where the

W1+∞ linearizes. Furthermore, for α0 = 0 (which is triality equivalent to N = 0) the

transformation between the quadratic U -basis and the linear basis is analogous to the

transformation between different bases of the symmetric functions [69]. Understanding this

could lead to a better understanding of the triality in this special case and to simplification

of the structure constants of W1+∞.

Integrability. There are many connections between two-dimensional conformal field the-

ory and two-dimensional integrable field theories. One of these connections is the presence

of the infinite number of commuting conserved charges that can be constructed from the

Virasoro field [70–72]. The procedure of finding commuting charges constructed from fields

of higher scaling dimension works also for W1+∞ so it would be interesting if we can learn

something new from this.

More about representation theory. There are many questions that one can ask about

representation theory of W1+∞. There are many results known for WN but because there

is an infinite number of generating fields in W1+∞, the representation theory should be

richer. This was noticed already in [43] where some simple representations of W∞ were

studied. The representation theory of W1+∞ must include everything we know about WN

in a smooth way. Furthermore, the triality symmetry is not visible when one considers

only WN and should play an important role. The understanding of modular invariance of

W∞ representations would be very useful in the context of Gaberdiel-Gopakumar higher-

spin-CFT duality.

OPE algebra and other W-algebras. One of the important conclusions of this article

is that the usual approach of expanding operator products at one of two points need

not be the most efficient way of describing the chiral algebra. We introduced bilocal

combinations of fields which were regular and this enabled us to write down a closed-

form expression for the structure constants of W1+∞. Furthermore, we haven’t lost any

information and the computations that could in principle be complicated in the standard

approach were quite simple (like the computation of commutation relations of modes or

all the correlation functions). We got rid of all derivatives in the expansion and instead

of specifying coefficients of all these fields, it is enough just to specify the matrix Dlm
jk .

One can ask how general is this description of W-algebra. Clearly all WN algebras and in

particular the Virasoro algebra and the affine Lie algebras can be specified in this way. To

see how general this property is, one can try to find other algebras having this quadratic

basis. We don’t know yet what are the consistency conditions on Dlm
jk . But the discussion of

correlation functions clearly shows that already the consistency of the three-point functions

gives us conditions on Dlm
jk .
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This reformulation of the usual OPE could perhaps be useful for understanding the

space of W-algebras. So far not much is known about the space of the possible chiral

algebras. As explained in the beginning of this article, there are some procedures which

produce a W-algebra, but generally we don’t know anything about the space of theories

with given field content (dimensions of generating fields). Usually there is either a discrete

set or a one-parameter family of algebras like in the case of Virasoro algebra, WN or affine

Lie algebras. But W∞ is an example of two-parametric family of algebras. By extending

the field content, one could expect even higher dimensional parameter spaces.

Higher products of operators. It would be very useful to find some more canonical

normal ordering of fields. The interesting transformations in W1+∞ like the one between

the primary basis and U -basis or the action of triality on various U -bases are non-linear.

If we want to write down a formula for such transformations, it would be nice to first

have some canonical bases for the non-linear combinations of fields. The usual normal

ordering prescription (2.3) suffers from various problems like the lack of commutativity

and complicated expressions for associativity conditions. The OPE in U -basis is expressed

more simply in terms of bilocal fields Ujk(z, w) introduced in (3.55) and the coincident

limit of these Ujk(z, w) as z → w gives us quadratic product of Uj and Uk which has many

nice properties compared to (UjUk). But it is not clear if and how this quadratic product

can be generalized to higher powers.

Combinatorics of plane partitions, topological strings. The interesting observa-

tion [45] that the vacuum character ofW1+∞ is the MacMahon function connects the theory

to combinatorics of plane partitions. Also the triality symmetry S3 is mirrored naturally

by S3 symmetry of plane partitions. But the similarity goes further. One can easily check

that the character of W1+N which is the irreducible character of W1+∞(λ, c) at λ = N for

generic c is a function that counts the number of partitions which are bounded from one

direction by N . It would be nice to see if any of the structures found in W1+∞ could be

naturally interpreted in the combinatorial language of plane partitions.

As noted in [45], MacMahon function counting plane partition also appears in topo-

logical strings [73–76].

Four-dimensional N = 2 supersymmetric theories. W-algebras play an important

role in 4d-2d correspondence between 4d N = 2 supersymmetric gauge theory and 2d

conformal field theory [77–80]. For example, the instanton partition function for theories

with gauge group SU(N) correspond to conformal blocks of WN . Another construction is

that of chiral algebra of BPS operators of [81, 82]. In these constructions, the value of N is

always taken to be an integer — it would be interesting to see if considering the universal

algebras like W∞ and the symmetries similar to triality (which require continuation in N)

could tell us something new about the space of N = 2 theories or about geometry of the

instanton moduli spaces.

Kac-Moody algebras at critical level. Another appearance of W-algebras is in the

context of the representation theory of affine Lie algebras [83, 84]. If we consider the

affine Lie algebra ŝl(N), there are two places were the classical WN (the Gelfand-Dickey
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algebra) appears. One is in the classical limit of the infinite level, while the other appears

at the critical level (which for sl(N) is at k = −N).25 For general algebra these two are

related by the Langlands duality. From the point of view of quantum W1+∞, this duality

is what triality degenerates to in the classical limit. So in some sense triality in W1+∞ is

the quantum analogue of the classical Langlands duality. A similar phenomenon was also

observed in [53] in the context of We
∞ algebra with only even spin generators. There the

symmetry connects two Langlands dual algebras, Bn and Cn.

Vasiliev theory and higher spin gravities. The algebraW∞ is the symmetry algebra

of Gaberdiel-Gopakumar holographic duality between the three dimensional AdS higher

spin gravity and two dimensional conformal field theory. The question is what can we

learn about three dimensional higher spin theories if we understand the two dimensional

dual theory. There are two ways of approaching the classical limit where both theories

can be compared. One possible limit is the ’t Hooft limit studied in [45]. In this limit

the CFT side has a certain class of light states whose bulk duals are not understood. In

different, semiclassical limit [59] there are no light states, but one is forced to consider

the non-unitary limit of the CFT. What triality tells us about these two limits is that

the symmetry algebra is equivalent in both cases and what differs is the spectrum, the

representation content of the theory. The restrictions on spectra should come from the

requirement of the modular invariance, but so far this is not understood.

Another interesting consequence of the triality is the duality between the bulk solu-

tions and scalar perturbations in the semiclassical limit. In [59] the highest weight rep-

resentations of WN labeled by two Young diagrams (Λ+,Λ−) were identified with scalar

perturbations parametrized by Λ− on top of the background parametrized by Λ+. But the

Z2 subgroup of the triality symmetry exchanges these two labels. So one may imagine that

the quantized version of the bulk theory has an interesting S-duality symmetry. Thinking

of the bulk solutions as being sourced by some heavy particles, the duality might just

exchange the two species of particles. Depending on the semiclassical limit chosen, one

species of particles would become heavy and the other light. The ’t Hooft limit treats both

labels Λ+ and Λ− symmetrically and one could interpret the light states in the ’t Hooft

limit as bound states of the form (Λ,Λ) with large binding energy.
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A Structure constants in primary basis

For completeness, we list here all of the structure constants of W∞ in the primary basis

for primaries Wj(z)Wk(w) up to spin j + k ≤ 10. Because of the field redefinitions, the

exact values for the structure constants are very non-canonical. To simplify the formulas,

in this appendix we rescale the fields such that

C4
33 = x

C0
33 = 1

C0
44 = 1

C5
34 = 1

C6
35 = 1

C7
36 = 1

C8
78 = 1

and furthermore shift the primary fields W6(w), W7(w) and W8(w) such that

C
[33]
35 = 0

C
[34]
36 = 0

C
[35]
37 = 0

C
[44]
37 = 0

C
[33]′′

37 = 0

C
[35]′

37 = 0.

This fixes completely all possible redefinitions of these fields (although in very non-canonical

way). By shifting the primary fields, we can reconstruct from these data the structure

constants with arbitrary other choice of primaries. Assuming the choice above, the first

group of structure constants is

C4
44 =

3(c+ 3)x

c+ 2
− 288(c+ 10)

c(5c+ 22)x

C6
44 =

4

5x

C5
45 =

5(c+ 7)(17c+ 126)x

2(c+ 2)(7c+ 114)
− 720(c+ 10)

c(5c+ 22)x

C7
45 =

2

3x
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C8
46 =

4

7x

C0
55 =

5(c+ 7)(5c+ 22)x2

(c+ 2)(7c+ 114)
− 60

c

C6
55 =

5(37c2 + 425c+ 2202)x

3(c+ 2)(7c+ 114)
− 60(19c+ 218)

c(5c+ 22)x

C8
55 =

10

21x

C
[34]′

45 =
240(c+ 7)x

(c+ 2)(7c+ 114)
− 2880

c(5c+ 22)x

C
[35]′

55 =
60(3797c3 + 82090c2 + 387832c− 306880)x

7(c+ 2)(c+ 24)(7c+ 114)(11c+ 350)
− 46080(73c2 + 1149c− 850)

7c(c+ 24)(5c+ 22)(11c+ 350)x
.

The structure constants in this group are independent of the shift of primary fields. In the

next group we have structure constants

C3
34 = x

C4
35 = −60

c
+

5(c+ 7)(5c+ 22)x2

(c+ 2)(7c+ 114)

C3
45 = −60

c
+

5(c+ 7)(5c+ 22)x2

(c+ 2)(7c+ 114)

C4
55 =

43200(c+ 10)

c2(c+ 22)x
+

25(c+ 7)2(5c+ 22)(17c+ 126)x3

2(c+ 2)2(7c+ 114)2
− 150(c+ 7)(41c+ 366)x

c(c+ 2)(7c+ 114)
.

The structure constants in this group are related to the previous ones by relations like

C4
55C

0
44 = C5

45C
0
55.

The third group of structure constants that we list are those that have shift-independent

left hand side and composite fields on the right-hand side

C
[33]
44 =

30(5c+ 22)

(c+ 2)(7c+ 114)

C
[34]
45 =

560(c+ 7)(c+ 10)x

(c+ 2)(c+ 24)(7c+ 114)
− 6720(c+ 10)

c(c+ 24)(5c+ 22)x

C
[33]
55 =

75(c+ 7)(5c+ 22)(39c+ 178)x2

2(c+ 2)2(7c+ 114)2
− 450(39c+ 178)

c(c+ 2)(7c+ 114)

C
[35]
55 =

25(3343c3 + 92550c2 + 614104c+ 2418752x

7(c+ 2)(c+ 24)(7c+ 114)(11c+ 350)
− 9600(c+ 10)(169c+ 3370)

7c(c+ 24)(5c+ 22)(11c+ 350)x

C
[44]
55 =

400(c+ 7)(11c+ 166)x2

7(c+ 2)(c+ 24)(7c+ 114)
− 4800(11c+ 166)

7c(c+ 24)(5c+ 22)

C
[33]′′

55 =
100(c+ 7)(5c+ 22)(193c3 − 12430c2 − 299960c+ 243744)x2

63(c+ 2)2(c+ 24)(5c− 4)(7c+ 114)2

− 400(193c3 − 12430c2 − 299960c+ 243744)

21c(c+ 2)(c+ 24)(5c− 4)(7c+ 114)
.
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Note that since these coefficients are non-zero, it is clear that one cannot eliminate the com-

posite primary operators from r.h.s. of the OPE of all primaries at once. The penultimate

group are the structure constants

C3
36 =

5(c+ 7)(5c+ 22)(7c− 8)x3

6(c+ 2)(c+ 24)(7c+ 114)
− 10(7c− 8)x

c(c+ 24)

C5
36 =

35(c+ 7)(7c2 + 122c+ 688)x2

4(c+ 2)(c+ 24)(7c+ 114)
− 960(c+ 10)2

c(c+ 24)(5c+ 22)

C4
46 =

5(c+7)(5c+22)(7c2+82c+288)x3

(c+2)2(c+24)(7c+114)
+

46080(c+10)2

c2(c+24)(5c+22)x
− 60(113c3+3100c2+26724c+77632)x

c(c+2)(c+24)(7c+114)

C4
37 =

23040(c+ 10)2(29c− 60)

c2(c+ 24)(5c+ 22)(11c+ 350)

+
5(c+7)(5c+22)(6860c5+233021c4+2210045c3+2684318c2−18804472c+ 11668160)x4

12(c+2)2(c+23)(c+24)(5c−4)(7c+114)(11c+350)

− 5(103700c6+5037443c5+82080149c4+484133372c3+156571028c2−4060675888c+2813946240)x2

c(c+2)(c+23)(c+24)(5c−4)(7c+114)(11c+350)

C6
37 =

(1372c4+57159c3+985274c2+8331408c+27861120)x2

(c+2)(c+24)(7c+114)(11c+350)
− 18(1323c3+52400c2+759236c+3957600)

c(c+24)(5c+22)(11c+350)

C6
46 =

(147c3 + 4237c2 + 46786c+ 181360)x

2(c+ 2)(c+ 24)(7c+ 114)
− 192(7c2 + 195c+ 1628)

c(c+ 24)(5c+ 22)x
.

If we chose the spin 6 and spin 7 primaries to have diagonal two-point functions, the struc-

ture constants C3
36 and C4

37 would vanish. But this would make other formulas more com-

plicated. Furthermore, to compute the two-point functions of primaries directly we need

to go to higher order of the computation. Finally, the remaining structure constants are

C
[34]′

36 =
1920(2c− 1)

c(c+ 24)(5c+ 22)
− 160(c+ 7)(2c− 1)x2

(c+ 2)(c+ 24)(7c+ 114)

C
[33]
46 =

120(c+ 7)(2c− 1)(5c+ 22)(7c+ 68)x2

(c+ 2)2(c+ 24)(7c+ 114)2
− 1440(2c− 1)(7c+ 68)

c(c+ 2)(c+ 24)(7c+ 114)

C
[33]
37 =

15(c+ 7)(2c− 1)(5c+ 22)(7c+ 68)(167c2 + 2186c− 1392)x3

4(c+ 2)2(c+ 23)(c+ 24)(5c− 4)(7c+ 114)2

− 45(2c− 1)(7c+ 68)(167c2 + 2186c− 1392)x

c(c+ 2)(c+ 23)(c+ 24)(5c− 4)(7c+ 114)

C
[35]
46 =

15(8611c3+301020c2+3170988c+11305504)x

7(c+2)(c+24)(7c+114)(11c+350)
− 11520(c+10)(169c+3370)

7c(c+24)(5c+22)(11c+350)x

C
[44]
46 =

15360(2c− 1)

7c(c+ 24)(5c+ 22)
− 1280(c+ 7)(2c− 1)x2

7(c+ 2)(c+ 24)(7c+ 114)

C
[33]′′

46 =
640(c+7)(2c−1)(5c+22)(29c2+533c− 870)x2

21(c+2)2(c+24)(5c−4)(7c+114)2
− 2560(2c−1)(29c2+533c−870)

7c(c+2)(c+24)(5c−4)(7c+114)

C
[35]′

46 =
2304(499c2 − 1404c− 184900)

7c(c+24)(5c+22)(11c+350)x
− 3(28961c3+239956c2 − 7359452c− 62692000)x

7(c+2)(c+24)(7c+114)(11c+350)

C
[35]′

37 =
2304(73c2 + 1149c− 850)

c(c+ 24)(5c+ 22)(11c+ 350)
− 3(3797c3 + 82090c2 + 387832c− 306880)x2

(c+ 2)(c+ 24)(7c+ 114)(11c+ 350)
.

The main purpose of giving these structure constants explicitly is to show how complicated

the OPEs are if we use the primary fields as generating fields of W∞ but also to illustrate

the manifest triality invariance of these expressions.
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A.1 Composite primary fields

In our computation of the OPE in the primary basis there were four composite primary

fields which involved derivatives of primaries and were obtained from the higher order

regular terms in the OPE. These were denoted by [W3W4]
(1), [W3W3]

(2) and [W3W5]
(1)

and [W3W4]
(2). Let us show the explicit expressions for two of these: [W3W4]

(1) can be

obtained using OPEconf command OPEPPole[-1][W3,W4] with result

[W3W4]
(1) =

(323c2 + 1578c− 608)C3
34(T

(3)W3)

42(c+ 2)(5c− 4)(7c+ 114)
+

(151c2 + 336c− 796)C3
34(T

′′W3)

7(c+ 2)(5c− 4)7c+ 114)

+
(245c2 + 396c+ 244)C3

34(T
′W ′′3 )

14(c+ 2)(5c− 4)(7c+ 114)
+

5(43c2 − 261c− 34)C3
34(TW

(3)
3 )

42(c+ 2)(5c− 4)(7c+ 114)

− 6(127c+ 18)C3
34(T

′(TW3))

7(c+ 2)(5c− 4)(7c+ 114)
+

4(127c+ 18)C3
34(T (TW ′3))

7(c+ 2)(5c− 4)(7c+ 114)
− 3C5

34(T
′W5)

7(c+ 7)

+
6C5

34(TW
′
5)

35(c+ 7)
+

4

7
(W ′3W4)−

3

7
(W3W

′
4) +

(5c+ 32)C5
34W

(3)
5

210(c+ 7)

+
(5c3 − 245c2 + 616c+ 92)(C3

34)
2W

(5)
3

280(c+ 2)(5c− 4)(7c+ 114)

and [W3W3]
(2) is obtained similarly using OPEPPole[-2][W3,W3] with result

[W3W3]
(2) = −108(T (W3W3))

13c+ 516
+

3(c+ 48)(W ′′3W3)

13c+ 516
− (7c+ 228)(W ′3W

′
3)

2(13c+ 516)

− 18(4c2 + 211c− 4083)C4
33(T

′′W4)

(c+ 31)(13c+ 516)(55c− 6)
+

18(5c2 − 218c− 4218)C4
33(T

′W ′4)

(c+ 31)(13c+ 516)(55c− 6)

+
(805c2 + 18649c+ 28254)C4

33(TW
′′
4 )

(c+ 31)(13c+ 516)(55c− 6)
+

12(1927c− 3543)C4
33(T (TW4))

(c+ 31)(13c+ 516)(55c− 6)

+
(35c3 + 1883c2 + 31434c− 36504)C4

33W
(4)
4

16(c+ 31)(13c+ 516)(55c− 6)

+
24(1861c2 + 14814c+ 50184)C0

33(T
′′(TT ))

c(3c+ 46)(5c+ 3)(5c+ 22)(13c+ 516)

+
6(6895c2 + 80424c− 67212)C0

33(T
′(T ′T ))

c(3c+ 46)(5c+ 3)(5c+ 22)(13c+ 516)

+
(805c3 + 29516c2 + 197676c+ 169488)C0

33(T
(4)T )

2c(3c+ 46)(5c+ 3)(5c+ 22)(13c+ 516)

+
9(149c3 + 6116c2 + 77580c− 85392)C0

33(T
′′T ′′)

4c(3c+ 46)(5c+ 3)(5c+ 22)(13c+ 516)

+
(935c3 + 61940c2 + 793908c+ 767376)C0

33(T
(3)T ′)

2c(3c+ 46)(5c+ 3)(5c+ 22)(13c+ 516)

+
144(1919c− 642)C0

33(T (T (TT )))

c(3c+ 46)(5c+ 3)(5c+ 22)(13c+ 516)

+
(175c4 + 15990c3 + 178120c2 − 721656c− 19152)C0

33T
(6)

240c(3c+ 46)(5c+ 3)(5c+ 22)(13c+ 516)
.
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B OPE in quadratic basis

Although this article is trying to convince the reader that the quadratic basis of W1+∞ has

its advantages over the primary basis, still the OPEs are not very simple. This appendix

shows some of these for the reader to get an idea how they look like. For the OPEs of W3

algebra we need (3.29), (3.41) and

U3(z)U3(w)∼
1
6N(N − 1)(N − 2)(1 + 28α2

0 − 18Nα2
0 + 12α4

0 − 72Nα4
0 + 36N2α4

0

(z − w)6

+
−(N − 2)(1 +Nα2

0 −N2α2
0)U2(w)

(z − w)4
+
−(N − 2)(1 +Nα2

0 −N2α2
0)U2(z)

(z − w)4

+
−(N − 1)(N − 2)α0(1−N − 5Nα2

0 − 3N2α2
0)U1(z)

(z − w)5

+
(N − 1)(N − 2)α0(1−N − 5Nα2

0 − 3N2α2
0)U1(w)

(z − w)5

+
1
2(N − 1)(N − 2)(1 + 6α2

0 − 4Nα2
0)(U1(z)U1(w))(w)

(z − w)4

+
2α0U3(w)

(z − w)3
+
−2α0U3(z)

(z − w)3
+
−2U4(w)

(z − w)2
+
−2U4(z)

(z − w)2

+
−(N − 1)(N − 2)α0(U1(z)U2(w))

(z − w)3
+

(N − 1)(N − 2)α0(U2(z)U1(w))

(z − w)3

−
1
2(N − 1)2(N − 2)α0U

′′
1

(z − w)3
+
−3

2(N + 1)N2(N − 1)(N − 2)α3
0U
′′
1 (w)

(z − w)3

+
−1

6(N − 1)2(N − 2)α0U
′′′
1 (w)

(z − w)2
+
−1

6N(N−1)(N−2)α0(1+6Nα2
0)U

′′′
1 (w)

(z−w)2

+
− 1

24(N−1)2(N−2)α0U
(4)
1 (w)

z−w
+
− 1

24N(N−1)(N−2)α0(1+6Nα2
0)U

(4)
1 (w)

z−w

+
−(U1(z)U3(w))

(z − w)2
+
−(U3(z)U1(w))

(z − w)2
+

1
6(N − 1)(N − 2)α0U

′′′
1 (w)

(z − w)2

+
1
24(N−1)(N−2)α0U

(4)
1 (w)

z−w
+

(N−2)

(z−w)2

(
(U2U2)(w)− 1

2
(N−1)(U ′′1U1)(w)

)
+

(N − 2)

z − w

(
(U ′2U2)(w)− 1

6
(N − 1)(U ′′′1 U1)(w)

)
.

B.1 Bilocal fields

To write down W4, we must know the OPE of U3(z)U4(w) and U4(z)U4(w). We can

compute these from (3.43), but to write the singular part, we need the bilocal fields up to

dimension 7.

U0j(z, w) = Uj(w)

U1j(z, w) = (U1Uj)(w)+(z−w)(U ′1Uj)(w)+
(z−w)2

2
(U ′′1 Uj)(w)+· · ·

= (U1(z)Uj(w))
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U22(z, w) = (U2U2)(w)−N−1

2
(U ′′1 U1)(w)+

1

2
U ′′2 (w)−N(N−1)α0

6
U

(3)
1 (w)

+(z−w)

(
(U ′2U2)(w)−N−1

6
(U

(3)
1 U1)(w)+

1

6
U

(3)
2 (w)−N(N−1)α0

24
U

(4)
1 (w)

)
+(z−w)2

(
1

2
(U ′′2 U2)(w)−N−1

24
(U

(4)
1 U1)(w)+

1

24
U

(4)
2 (w)−N(N−1)α0

120
U

(5)
1 (w)

)
+(z−w)3

(
1

6
(U

(3)
2 Uw)(w)−N−1

120
(U

(5)
1 U1)(w)+

1

120
U

(5)
2 (w)−N(N−1)α0

720
U

(6)
1 (w)

)
+· · ·

U23(z, w) = (U2U3)(w)−N−2

2
(U ′′1 U2)(w)− (N−1)(N−2)α0

6
(U

(3)
1 U1)(w)+

1

2
U ′′3 (w)

−N(N−1)(N−2)α2
0

24
U

(4)
1 (w)+(z−w)

(
(U ′2U3)(w)−N−2

6
(U

(3)
1 U2)(w)

− (N−1)(N−2)α0

24
(U

(4)
1 U1)(w)+

1

6
U

(3)
3 (w)−N(N−1)(N−2)α2

0

120
U

(5)
1 (w)

)
+(z−w)2

(
1

2
(U ′′2 U3)(w)−N−2

24
(U

(4)
1 U2)(w)− (N−1)(N−2)α0

120
(U

(5)
1 U1)(w)

+
1

24
U

(4)
3 (w)−N(N−1)(N−2)α2

0

720
U

(6)
1 (w)

)
+· · ·

U24(z, w) = (U2U4)(w)−N−3

2
(U ′′1 U3)(w)− (N−2)(N−3)α0

6
(U

(3)
1 U2)(w)

− (N−1)(N−2)(N−3)α2
0

24
(U

(4)
1 U1)(w)+

1

2
U ′′4 (w)−N(N−1)(N−2)(N−3)α3

0

120
U

(5)
1 (w)

+(z−w)

(
(U ′2U4)(w)−N−3

6
(U

(3)
1 U3)(w)− (N−2)(N−3)α0

24
(U

(4)
1 U2)(w)

− (N−1)(N−2)(N−3)α2
0

120
(U

(5)
1 U1)(w)+

1

6
U

(3)
4 (w)−N(N−1)(N−2)(N−3)α3

0

720
U

(6)
1 (w)

)
+· · ·

U25(z, w) = (U2U5)(w)−N−4

2
(U ′′1 U4)(w)− (N−3)(N−4)α0

6
(U

(3)
1 U3)(w)

− (N−2)(N−3)(N−4)α2
0

24
(U

(4)
1 U2)(w)− (N−1)(N−2)(N−3)(N−4)α3

0

120
(U

(5)
1 U1)(w)

+
1

2
U ′′5 (w)−N(N−1)(N−2)(N−3)(N−4)α4

0

720
U

(6)
1 (w)+· · ·

U33(z, w) = (U3U3)(w)+
1

2
(U ′′1 U3)(w)−N−2

2
(U ′′2 U2)(w)+

(N−1)(N−2)α0

6
(U

(3)
1 U2)(w)

+
(N−1)(N−2)(1−6α2

0+4Nα2
0)

48
(U

(4)
1 U1)(w)+U ′′4 (w)+

α0

3
U

(3)
3 (w)

−N(N−1)(N−2)α2
0

24
U

(4)
2 (w)+

(N−1)(N−2)α0(1−5Nα2
0+3N2α2

0)

120
U

(5)
1 (w)

− (N−1)(N−2)α0

6
(U1U

(3)
2 )(w)+

1

2
(U1U

′′
3 )(w)

+(z−w)

(
(U ′3U3)(w)+

1

6
(U

(3)
1 U3)(w)−N−2

6
(U

(3)
2 U2)(w)+

(N−1)(N−2)α0

24
(U

(4)
1 U2)(w)

+
(N−1)(N−2)(1−6α2

0+4Nα2
0)

240
(U

(5)
1 U1)(w)+

1

3
U

(3)
4 (w)

+
α0

12
U

(4)
3 (w)−N(N−1)(N−2)α2

0

120
U

(5)
2 (w)+

(N−1)(N−2)α0(1−5Nα2
0+3N2α2

0)

720
U

(6)
1 (w)

− (N−1)(N−2)α0

24
(U1U

(4)
2 )(w)+

1

6
(U1U

(3)
3 )(w)

)
+· · ·
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U34(z, w) = (U3U4)(w)+(U ′′1 U4)(w)−N−3

2
(U ′′2 U3)(w)+

N(N−3)α0

6
(U

(3)
1 U3)(w)

− (N−2)(N−3)α0

6
(U

(3)
2 U2)(w)+

(N−2)(N−3)(1−4α2
0+4Nα2

0)

48
(U

(4)
1 U2)(w)

+
(N−1)(N−2)(N−3)α0(1−4α2

0+3Nα2
0)

120
(U

(5)
1 U1)(w)+U ′′5 (w)+

α0

3
U

(3)
4 (w)

−N(N−1)(N−2)(N−3)α3
0

120
U

(5)
2 (w)− (N−1)(N−2)(N−3)α2

0

24
(U1U

(4)
2 )(w)

+
(N−1)(N−2)(N−3)α2

0(N+2−12Nα2
0+8N2α2

0)

1400
U

(6)
1 (w)+

1

2
(U1U

′′
4 )(w)+· · · .

B.2 Structure constants

Here we give some structure constants of W1+∞ in quadratic basis. We leave out those

structure constants C lmjk that are trivial due to

C lmjk = δljδ
m
k , j + k = l +m (B.1)

or

C lmjk = 0, j + k = l +m+ 1 (B.2)

and also those related to others by symmetry

C lmjk = (−1)j+k−l−mCmlkj (B.3)

and the shift symmetry

C lmjk (α0, N) = C l+1,m+1
j+1,k+1 (α0, N + 1). (B.4)

The remaining independent structure constants C lmjk up to j + k < 6 and j = k = 3 are

C00
11 = N

C00
21 = −N(N − 1)α0

C10
21 = N − 1

C01
21 = 0

C00
31 = N(N − 1)(N − 2)α2

0

C10
31 = −(N − 1)(N − 2)α0

C20
31 = N − 2

C01
31 = 0

C02
31 = 0

C00
22 =

1

2
N(N − 1)(1 + 2α2

0 − 4Nα2
0)

C10
22 = N(N − 1)α0

C20
22 = −1

C00
41 = −N(N − 1)(N − 2)(N − 3)α3

0

C10
41 = (N − 1)(N − 2)(N − 3)α2

0
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C20
41 = −(N − 2)(N − 3)α0

C30
41 = N − 3

C01
41 = 0

C02
41 = 0

C03
41 = 0

C00
32 = −N(N − 1)(N − 2)α0(1 + α2

0 − 3Nα2
0)

C10
32 =

1

2
(N − 1)(N − 2)(1− 4Nα2

0)

C20
32 = (N − 2)(N + 1)α0

C30
32 = −2

C01
32 = N(N − 1)(N − 2)α2

0

C02
32 = 0

C03
32 = −1

C00
33 =

1

6
(N − 2)(N − 1)N

(
12α4

0 + 28α2
0 + 36α4

0N
2 − 72α4

0N − 18α2
0N + 1

)
C10
33 = −(N − 1)(N − 2)α0

(
3α2

0N
2 − 5α2

0N −N + 1
)

C20
33 = (N − 2)

(
α2
0N

2 − α2
0N − 1

)
C30
33 = −2α0

C40
33 = −2.
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