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Abstract Vibration analysis of nonlocal nanobeams

based on Euler–Bernoulli and Timoshenko beam theories

is considered. Nonlocal nanobeams are important in the

bending, buckling and vibration analyses of beam-like

elements in microelectromechanical or nanoelectrome-

chanical devices. Expressions for free vibration of Euler–

Bernoulli and Timoshenko nanobeams are established

within the framework of Eringen’s nonlocal elasticity

theory. The problem has been solved previously using

finite element method, Chebyshev polynomials in Ray-

leigh–Ritz method and using other numerical methods. In

this study, numerical results for free vibration of nano-

beams have been presented using simple polynomials and

orthonormal polynomials in the Rayleigh–Ritz method.

The advantage of the method is that one can easily han-

dle the specified boundary conditions at the edges. To

validate the present analysis, a comparison study is carried

out with the results of the existing literature. The proposed

method is also validated by convergence studies. Fre-

quency parameters are found for different scaling effect

parameters and boundary conditions. The study highlights

that small scale effects considerably influence the free

vibration of nanobeams. Nonlocal frequency parameters of

nanobeams are smaller when compared to the corre-

sponding local ones. Deflection shapes of nonlocal

clamped Euler–Bernoulli nanobeams are also incorporated

for different scaling effect parameters, which are affected

by the small scale effect. Obtained numerical solutions

provide a better representation of the vibration behavior of

short and stubby micro/nanobeams where the effects of

small scale, transverse shear deformation and rotary inertia

are significant.

Keywords Euler–Bernoulli nanobeams �
Timoshenko nanobeams � Rayleigh–Ritz method �
Gram-Schmidt process

Introduction

Recently nanomaterials have encouraged the interest of

the scientific researchers in physics, chemistry and

engineering. These nanomaterials have special properties

(mechanical, chemical, electrical, optical and electronic)

resulting from their nanoscale dimensions. Because of the

desirable properties (Dai et al. 1996; Bachtold et al. 2001),

the nanomaterials are perceived to be the components for

various nanoelectromechanical systems and nanocompos-

ites. Some of the common examples of these nanomaterials

are nanoparticles, nanowires and nanotubes (viz., carbon

nanotubes, ZnO nanotubes), etc. Small scale effects and the

atomic forces must be incorporated in the realistic design

of the nanostructures [viz., nanoresonantors (peng et al.

2006), nanoactuators (Dubey et al. 2004), nanomachines

(pennadam et al. 2004) and nano-optomechanical systems]

to achieve solutions with acceptable accuracy. Both

experimental and atomistic simulation results show that

when the dimensions of the structures become small then

the ‘size effect’ has significant role in the mechanical

properties (Ruud et al. 1994). Ignoring the small scale

effects in sensitive nanodesigning fields may cause com-

pletely incorrect solutions and hence improper designs.

Though atomistic methods (Chowdhury et al. 2010a, b)

are able to capture the small scale effects and atomic for-

ces, these approaches are computationally prohibitive for
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nanostructures with large number of atoms. Thus, initially

analyses have been generally carried out using classical

mechanics. Extensive research over the past decade has

shown that the analyses of nanostructures using classical

mechanics are inadequate since these theories could not

capture the small scale effect in the mechanical properties.

For example, Wang and Hu (2005) showed that the

decrease in phase velocities of wave propagation could not

be predicted by classical beam theories when the wave

number is so large that microstructure of carbon nanotubes

has a significant influence on the flexural wave dispersion.

Therefore, recently various efforts have been carried out to

bring the scale effects within the formulation by amending

the traditional classical continuum mechanics. Nonlocal

elasticity theory for the first time was introduced by

Eringen (1972). Recent literature shows that the nonlocal

elasticity theory which includes small scale effect arising at

nanoscale level is being increasingly used for reliable and

quick analysis of nanostructures (Wang et al. 2008; Wang

2005; Zhang et al. 2005; Shen 2011; Lu et al. 2006;

Challamel and Wang 2008) like nanobeams, nanoplates,

nanorings, carbon nanotubes, graphenes, nanoswitches and

microtubules. Aydogdu (2009) proposed a general nonlocal

beam theory to study bending, buckling and free vibration

of nanobeams. Integral equation approach has been

employed by Xu (2006) to investigate the free transverse

vibrations of nano-to-micron scale beams and the author

found that the nonlocal effect on the natural frequencies

and vibrating modes is negligible for microbeams while it

plays a crucial role in nanobeams. Peddieson et al. (2003)

formulated nonlocal version of Euler–Bernoulli beam the-

ory. Authors have tried to find out numerical and analytical

solutions for various types of nanobeams based on nonlocal

continuum mechanics. Free vibration of Euler–Bernoulli

and Timoshenko nanobeams based on nonlocal continuum

mechanics has been solved analytically by Wang et al.

(2007). Authors have given the frequency parameters for

different scaling effect parameters and boundary conditions

as Simply Supported–Simply Supported (SS), Clamped–

Simply Supported (CS), Clamped–Clamped (CC) and

Cantilever (CF). They have given first five mode shapes of

clamped nanobeams based on nonlocal Timoshenko beam

theory for various values of the scaling effect parameter.

Naguleswaran (2002) presented results for transverse

vibration of an Euler–Bernoulli uniform beam when it

carries several particles. Civalek and Akgoz (2010) ana-

lysed free vibration of microtubules based on Euler–Ber-

noulli beam theory using Differential Quadrature (DQ)

method. Nonlocal elasticity model has also been used to

study free transverse vibration of cracked Euler–Bernoulli

nanobeams by Loya et al. (2009). Investigations have also

been carried out in the vibration of multiwalled carbon

nanotubes. Ansari and Ramezannezhad (2011) studied

nonlocal Timoshenko beam model for investigating the

large amplitude vibrations of embedded multiwalled

carbon nanotubes including thermal effects. Murmu and

Adhikari (2010) developed an analytical method to inves-

tigate transverse vibration of double-nanobeam systems

using nonlocal elasticity theory.

Earlier investigations mainly focused on the use of

classical mechanics in the vibration of nanobeams, which

lack the accountability of the effects arising from the small

scale. Thus, analysis of nanostructures has been investi-

gated using nonlocal elasticity theory. As such, the prob-

lems have been solved by few authors using finite element

method (Eltaher et al. 2012), Chebyshev polynomials in

Rayleigh–Ritz method (Mohammadi and Ghannadpour

2011), meshless method (Roque et al. 2011), etc. Earlier

methods may not be straightforward to problems with

complicating effects. Handling of all sets of boundary

conditions is another problem to analyse. Therefore, vari-

ous efforts have been carried out for finding the solution of

nanobeams based on nonlocal theory. This paper mainly

focuses on solving the governing differential equations of

Euler–Bernoulli and Timoshenko nanobeams by an effi-

cient way. As such Rayleigh–Ritz method with simple

polynomials and orthonormal polynomials has been used in

this investigation. Use of boundary characteristic orthog-

onal polynomials in the Rayleigh–Ritz method makes the

procedure easier to handle. This is because of the fact that

most of the elements of mass and stiffness matrices of the

generalized Eigen value problem become either zero or one

due to orthonormality of the assumed shape functions. As a

result, the computations become easier and efficient.

Though this method has been used in vibration of classical

beams and plates (Bhat 1985; Singh and Chakraverty

1994a, b, c; Chakraverty et al. 1999; Stiharu and Bhat

1997; Chakraverty 2009), it has not yet been reported for

vibration of nanobeams. It may be noted that the kinetic

and potential energy expressions used in the Rayleigh–Ritz

method are as such not simple as compared to classical

beams and plates. This is due to the fact that governing

differential equations of nanobeams should be handled

considering the nonlocal theory as mentioned above.

In this paper, investigation is carried out to understand

the small scale effects in the free vibration of nonlocal

nanobeams based on Euler–Bernoulli and Timoshenko

beam theories. The solution procedure includes the trans-

formation of the governing equations from physical

domain to computational domain using simple polynomials

and boundary characteristic orthogonal polynomials in the

Rayleigh–Ritz method. Results from our study in special

cases are compared and are found to be in good agreement.

Investigations with some new boundary conditions are also

incorporated. As the mode shapes are useful for engineers

to design the structures (they represent the shape that the
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structures will vibrate in free motion), so deflection graphs

for nonlocal CC Euler–Bernoulli nanobeams with various

scaling effect parameters are given.

Theoretical formulation of nonlocal Euler–Bernoulli

beam theory

Based on Euler–Bernoulli beam theory, the strain–dis-

placement relation is given by

exx ¼ �z
d2w

dx2
ð1Þ

where x is the longitudinal coordinate measured from the

left end of the beam, exx the normal strain, z the coordinate

measured from the mid-plane of the beam and w the

transverse displacement.

The strain energy U is given by

U ¼ 1

2

ZL

0

Z

A

rxx exx dAdx ð2Þ

where rxx is the normal stress, L the length of the beam and

A the cross-sectional area of the beam.

Substituting Eq. (1) into Eq. (2), the strain energy may

be expressed as

U ¼ � 1

2

ZL

0

M
d2w

dx2
dx ð3Þ

where M is the bending moment and is given by

M ¼
Z

A

rxx zdA ð4Þ

Assuming free harmonic motion, the kinetic energy T is

given by

T ¼ 1

2

ZL

0

qAx2w2dx ð5Þ

where x is the circular frequency of vibration and q the

mass density of the beam material.

For an elastic material in one dimensional case, Erin-

gen’s nonlocal constitutive relation may be written as

(Wang et al. 2007)

rxx � ðe0aÞ2 d2rxx

dx2
¼ Eexx ð6Þ

where E is the Young’s modulus and e0a is the scale

coefficient which incorporates the small scale effect. It

may be noted that a is the internal characteristic length

(e.g., lattice parameter, C–C bond length and granular

distance) and e0 is a constant, which is to be experimentally

determined or approximated by matching the dispersion

curves of plane waves with those of atomic lattice

dynamics.

Multiplying Eq. (6) by ZdA and integrating over the area

A yields

M � ðe0aÞ2 d2M

dx2
¼ �EI

d2w

dx2
ð7Þ

where I is the second moment of area.

The governing equation of motion (Civalek and Akgoz

2010) is given by

d 2M

dx 2
¼ �q A x2 w ð8Þ

Substituting Eq. (8) into Eq. (7), we have

M ¼ �EI
d2w

dx2
� ðe0aÞ2qAx2w ð9Þ

Theoretical formulation of nonlocal Timoshenko beam

theory

Based on the nonlocal Timoshenko beam theory, the Strain

energy U is given by (Wang et al. 2007)

U ¼ 1

2

ZL

0

Z

A

rxxexx þ rxz cxz

� �
dAdx ð10Þ

where x is the longitudinal coordinate measured from the

left end of the beam, z the coordinate measured from

the mid-plane of the beam,rxx the normal stress, rxz the

transverse shear stress, exx the normal strain, cxz the trans-

verse shear strain, L the length of beam and A the cross

sectional area of the beam.

The strain-displacement relations are given by

exx ¼ z
d/
dx

ð11Þ

cxz ¼ / þ dw

dx
ð12Þ

where w is the transverse displacement and / the rotation

due to bending.

Substituting Eqs. (11) and (12) into Eq. (10), the strain

energy may be expressed as

U ¼ 1

2

ZL

0

M
d/
dx

þ Q / þ dw

dx

� �� �
dx ð13Þ

where M and Q are the bending moment and shear force,

respectively, and are given as

M ¼
Z

A

rxxzdA
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Q ¼
Z

A

rxzdA

For an elastic material in one dimensional case, the

nonlocal constitutive relation may be simplified as

rxx � ðe0aÞ2 d2rxx

dx2
¼ Eexx ð14Þ

The constitutive relation for the shear stress and strain

may be written as

rxz ¼ Gcxz ð15Þ

where G is the shear modulus.

Multiplying Eq. (14) by zdA and integrating the result

over the area A yields

M � ðe0aÞ2 d2M

dx2
¼ EI

d/
dx

ð16Þ

where I is the second moment of area.

Also integrating Eq. (15) over the area, one may obtain

Q ¼ ksGA / þ dw

dx

� �

where ks is the shear correction in the Timoshenko beam

theory to compensate the error in assuming a constant shear

strain (stress) through the thickness of the beam.

Governing equations for the vibration behavior of

Timoshenko nanobeams are given by Wang et al. (2007)

dM

dx
¼ Q � qIx2/ ð17Þ

dQ

dx
¼ �qAx2w ð18Þ

where q is the mass density of the beam material and x the

circular frequency of vibration.

Hence nonlocal bending moment M may be expressed

as

M ¼ EI
d/
dx

� ðe0aÞ2 qAx2w þ qIx2 d/
dx

� �
ð19Þ

Assuming free harmonic motion and including the effect

of rotary inertia, the kinetic energy T is given by

T ¼ 1

2

ZL

0

qAx2w2 þ qIx2/2
� �

dx ð20Þ

Solution methodology

Using simple polynomials and orthonormal polynomials

as basis functions in the Rayleigh–Ritz method, the fre-

quency parameters for nanobeams have been computed.

In this method, displacement and rotation due to bending

functions are represented by a series of admissible

functions.

We introduce the following nondimensional terms

X ¼ x
L
;W ¼ w

L
; a ¼ e 0 a

L
= scaling effect parameter,

n ¼ L
ffiffiffi
A

pffiffi
I

p = slenderness ratio, s ¼ 1
n2, k 2 ¼ q A x 2 L 4

E I
= fre-

quency parameter and X ¼ E I
ks G A L 2 = shear deformation

parameter.

Let us assume W and / as

WðXÞ ¼
Xn

i¼1

ci ui ð21Þ

/ðXÞ ¼
Xn

i¼1

diwi ð22Þ

where ci and di are the unknown coefficients to be

determined and n is the order of approximation to get

desired accuracy. It may be noted that ui and wi are

admissible functions and can be represented as

/i ¼ gbXi�1; i ¼ 1; 2; . . .; n

wi ¼ gbXi�1; i ¼ 1; 2; . . .; n

where gb is the nondimensional boundary polynomial

expression for a nanobeam with varying boundary

conditions and is expressed as:

gb ¼ Xpð1 � XÞq ð23Þ

In Eq. (23), p and q take the values 0, 1 or 2 according to

Free, simply supported or clamped boundary conditions,

respectively. It may be noted that one may easily handle

the boundary conditions of the problem by assigning

various values of p and q as mentioned.

Solution for vibration of Euler–Bernoulli nanobeams

Substituting Eq. (21) into Eqs. (3) and (5) and differenti-

ating partially with respect to unknown coefficients cj, a

generalized Eigen value problem will be obtained as

K½ � Yf g ¼ k2 M½ � Yf g ð24Þ

where Yf g ¼ c1c2. . .cn½ �T , and the matrices [K] and [M] are

given in ‘‘Appendix’’.

Solution for vibration of Timoshenko nanobeams

Again substituting Eqs. (21) and (22) into Eqs. (10) and

(20) and differentiating partially with respect to the

unknown coefficients cj and dj, the following generalized

Eigen value problem will be obtained

K½ � Yf g ¼ k2 M½ � Yf g ð25Þ
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where Yf g ¼ c1 c2. . .cn d1d2. . .dn½ �T and the matrices [K]

and [M] are again given in ‘‘Appendix’’.

Method of solution using orthonormal polynomials

Displacement and rotation due to bending functions may be

expressed as

WðXÞ ¼
Xn

i¼1

ciûi ð26Þ

/ðXÞ ¼
Xn

i¼1

diŵi ð27Þ

where ci and di are unknown coefficients and n is the order

of approximation to get desired accuracy. It may be noted

that ûi and ŵi are orthonormal polynomials, which may be

obtained using any orthogonalisation process such as

three term recurrence relation or Gram-Schmidt process.

Gram-Schmidt process is used here to find orthonormal

polynomials with the help of linearly independent set of

functions hi ¼ gbXi�1, where gb is defined as in Eq. (23).

The procedure works as follows:

u1 ¼ h1

ui ¼ hi �
Xi�1

j¼1

bijuj

where

bij ¼
hhi;uji
huj;uji

Here h:; :i denotes the inner product of the functions say

ui and uj and is defined as

ui;uj

� �
¼

Z1

0

uiðXÞujðXÞdX

The norm of the function say ui is given as

jjuijj ¼ ui;uih i1=2¼
Z1

0

uiðXÞuiðXÞdX

2
4

3
5

1=2

Then the orthonormal polynomials may be obtained as

ûi ¼ ui=jjuijj

similarly ŵi may also be obtained.

Above procedure has been used here to get generalized

eigen value problem as

K½ � Yf g ¼ k2 M½ � Yf g

It may be noted that following property is satisfied due

to orthonormality

ûi; ûj

� �
¼ dij ¼

1 if i ¼ j

0 if i 6¼ j

	

Matrices [K] and [M] are same as in Eq. (25). But due to

orthonormality property in the matrix M, the sub matrix M1

(as given in ‘‘Appendix’’) will be an identity matrix.

Moreover, first part of each expression for elements of

matrices K4 and M4 will either be zero or one. In view of

the above, the computations of the eigen value problem

will reduce to a great extent.

Numerical results and discussions

Frequency parameters for single walled nanotube (SWNT)

have been computed by Rayleigh–Ritz method taking

Table 1 Convergence of first three frequency parameters for Euler–Bernoulli nanobeams with a = 0.5 and L/d = 10 (SS and CS)

n B.C.

SS CS

First Second Third First Second Third

3 2.3026 3.8475 5.0587 2.7928 3.9140 5.6488

4 2.3026 3.4668 5.0587 2.7900 3.8530 4.8090

5 2.3022 3.4688 4.3231 2.7899 3.8341 4.6708

6 2.3022 3.4604 4.3231 2.7899 3.8327 4.6194

7 2.3022 3.4604 4.2945 2.7899 3.8325 4.6122

8 2.3022 3.4604 4.2945 2.7899 3.8325 4.6106

9 2.3022 3.4604 4.2941 2.7899 3.8325 4.6105

10 2.3022 3.4604 4.2941 2.7899 3.8325 4.6105

11 2.3022 3.4604 4.2941 2.7899 3.8325 4.6105
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simple polynomials as well as orthonormal polynomials.

Different boundary polynomial expressions are considered

to handle various boundary conditions at the edges. In the

numerical evaluations, following material and geometrical

parameters of SWNT have been used: rod diameter,

d = 0.678 nm; length of beam, L = 10d; thickness of tube,

t = 0.066; shear correction factor, ks = 0.563; Young’s

modulus, E = 5.5 TPa; shear modulus, G = E/[2(1 ? v)];

Poisson’s ratio m = 0.19 and second moment of area

I = pd4/64.

In this study, frequency parameters of both Euler–

Bernoulli and Timoshenko nanobeams are computed. The

results are investigated for different scaling effect para-

meters and boundary conditions. Firstly, the frequency

parameters are computed taking simple polynomials of the

form Xi�1 in the Rayleigh–Ritz method. Then the poly-

nomials are orthonormalised by Gram-Schmidt process and

are used in the Rayleigh–Ritz method to obtain frequency

parameters. Table 1 shows the convergence studies of

first three frequency parameters (
ffiffiffi
k

p
) for SS and CS

Euler–Bernoulli nanobeams taking a ¼ 0:5 and L ¼ 10d.

Similarly convergence studies of first three frequency

parameters for SS and CS Timoshenko nanobeams are

tabulated in Table 2 for a ¼ 0:5 and L ¼ 10d: In these

tables, it is observed that the frequency parameters are

close to the results of Wang et al. (2007) as the value of n

increases. In Table 3, first four frequency parameters of

Table 2 Convergence of first three frequency parameters for Timoshenko nanobeams with a = 0.5 and L/d = 10 (SS and CS)

n B.C.

SS CS

First Second Third First Second Third

3 2.3867 3.6631 10.4677 2.7315 4.1148 6.8252

4 2.2760 3.6630 4.5482 2.7210 3.6916 4.8857

5 2.2760 3.3477 4.5481 2.7186 3.6521 4.3489

6 2.2756 3.3477 4.0425 2.7186 3.6373 4.2753

7 2.2756 3.3423 4.0425 2.7186 3.6364 4.2391

8 2.2756 3.3426 4.0212 2.7186 3.6362 4.2352

9 2.2756 3.3423 4.0212 2.7186 3.6362 4.2341

10 2.2756 3.3423 4.0209 2.7186 3.6362 4.2341

11 2.2756 3.3423 4.0209 2.7186 3.6362 4.2341

Table 3 First four frequency parameters of Euler–Bernoulli nanobeams for different scaling effect parameters and boundary conditions (SS, CS

and CC)

Frequency

parameter

a ¼ 0 a ¼ 0:1 a ¼ 0:3 a ¼ 0:5 a ¼ 0:7

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Simply supported–Simply supported

1 3.1416 3.1416 3.0685 3.0685 2.6800 2.6800 2.3022 2.3022 2.0212 2.0212

2 6.2832 6.2832 5.7817 5.7817 4.3013 4.3013 3.4604 3.4604 2.9585 2.9585

3 9.4248 9.4248 8.0400 8.0400 5.4423 5.4423 4.2941 4.2941 3.6486 3.6486

4 12.566 12.566 9.9162 9.9162 6.3630 6.3630 4.9820 4.9820 4.2234 4.2234

Clamped–Simply supported

1 3.9266 3.9266 3.8209 3.8209 3.2828 3.2828 2.7899 2.7899 2.4364 2.4364

2 7.0686 7.0686 6.4649 6.4649 4.7668 4.7668 3.8325 3.8325 3.2776 3.2776

3 10.210 10.210 8.6517 8.6517 5.8371 5.8371 4.6105 4.6105 3.9201 3.9201

4 13.252 13.252 10.469 10.469 6.7145 6.7145 5.2633 5.2633 4.4645 4.4645

Clamped–Clamped

1 4.7300 4.7300 4.5945 4.5945 3.9184 3.9184 3.3153 3.3153 2.8893 2.8893

2 7.8532 7.8532 7.1402 7.1402 5.1963 5.1963 4.1561 4.1561 3.5462 3.5462

3 10.996 10.996 9.2583 9.2583 6.2317 6.2317 4.9328 4.9328 4.1996 4.1996

4 14.137 14.137 11.016 11.016 7.0482 7.0482 5.5213 5.5213 4.6817 4.6817
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Euler–Bernoulli nanobeams are presented for different end

conditions and scaling effect parameters. Present results are

compared with results of Wang et al. (2007) and are found

to be in good agreement. Frequency parameters for local

Euler–Bernoulli nanobeams are also incorporated in this

table. Similarly the results of Timoshenko nanobeams

subjected to various boundary conditions are given in

Table 4 for different scaling effect parameters. Again the

results of Wang et al. (2007) are considered for comparison

of obtained frequency parameters of Timoshenko nano-

beams. From Tables (3) and (4), it can be clearly seen that

the nonlocal results are smaller than the corresponding

local ones. Frequency parameters for Free–Free (FF) and

Simply Supported–Free (SF) are also given in Table 5 for

different scaling effect parameters. It may be noted that the

frequency parameters obtained using orthonormalised

polynomials are same as that of using simple polynomials.

But here the computations become more efficient and less

time is required for the execution of the program. It is due

to the fact (as pointed out earlier also) that the matrix

elements containing ûi and ûj become zero for i not equal

to j and 1 for i equal to j due to the orthonormality. One of

the interesting facts in this analysis is that CC nanobeams

have highest frequency parameters than other boundary

conditions. It helps the design engineers to obtain desired

frequency parameters as per the application.

The behavior of the scaling effect parameter on the

frequency parameter is shown in Fig. 1 for SS, CS and CC

Table 4 First four frequency parameters of Timoshenko nanobeams for different scaling effect parameters and boundary conditions (SS, CS

and CC)

Frequency

parameter

a ¼ 0 a ¼ 0:1 a ¼ 0:2 a ¼ 0:5 a ¼ 0:7

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Present (Wang et al.

2007)

Simply Supported–Simply Supported

1 3.0742 3.0929 3.0072 3.0243 2.6412 2.6538 2.2756 2.2867 2.0004 2.0212

2 5.8274 5.9399 5.4400 5.5304 4.1357 4.2058 3.3423 3.4037 2.8615 2.9585

3 8.1757 8.4444 7.2662 7.4699 5.0744 5.2444 4.0209 4.1644 3.4206 3.6485

4 10.181 10.626 8.6490 8.9874 5.7373 6.0228 4.5083 4.7436 3.8257 4.7273

Clamped–Simply supported

1 3.7336 3.7845 3.6476 3.6939 3.1784 3.2115 2.7186 2.7471 2.3780 2.4059

2 6.2945 6.4728 5.8915 6.0348 4.4926 4.6013 3.6362 3.7312 3.1160 3.2776

3 8.4762 8.1212 7.5816 7.8456 5.3307 5.5482 4.2341 4.4185 3.6059 3.9201

4 10.361 10.880 8.8744 9.2751 5.9286 6.2641 4.6686 4.9460 4.9652 4.4644

Clamped–Clamped

1 4.3980 4.4491 4.3026 4.3471 3.7578 3.7895 3.2091 3.2420 2.8051 2.8383

2 6.7711 6.9524 6.3507 6.4952 4.8196 4.9428 3.8824 3.9940 3.3196 3.4192

3 8.8185 9.1626 7.9274 8.1969 5.6082 5.8460 4.4708 4.4769 3.8142 3.9961

4 10.614 11.113 9.1456 9.5447 6.1194 6.4762 4.8152 5.1131 4.0879 4.3455

Table 5 First four frequency parameters of Timoshenko nanobeams for different scaling effect parameters and some new boundary conditions

(Simply supported–Free and Free–Free)

Frequency parameter a ¼ 0 a ¼ 0:1 a ¼ 0:3 a ¼ 0:5 a ¼ 0:7

Simply supported–Free (SF)

1 0.0009 0.0008 0.0001 0.0001 0.0001

2 3.8065 3.7118 3.2121 2.7378 2.3931

3 6.4684 6.0146 4.5340 3.6575 3.1302

4 8.7295 7.7276 5.3708 4.2542 3.6193

Free–Free (FF)

1 0.0009 0.0008 0.0008 0.0004 0.0004

2 4.5443 4.4253 3.8029 3.2201 2.8043

3 7.0857 6.5603 4.8810 3.9150 3.3428

4 9.2673 8.1717 5.6529 4.4805 3.8132
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Euler–Bernoulli nanobeams. Figure 2 shows the variation

in the frequency parameter with the scaling effect param-

eter for SS, CS and CC Timoshenko nanobeams. In these

figures, first four frequency parameters are shown for both

Euler–Bernoulli and Timoshenko nanobeams. Figures 1

and 2 depict that frequency parameters are over predicted,

when local beam model is considered for vibration analysis

of nanobeams. As the scaling effect parameter increases,
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Fig. 1 Variation of small scale effect on the frequency parameter for

Euler–Bernoulli nanobeams with L/d = 10. a Simply Supported–

Simply Supported, b Clamped–Simply Supported, c Clamped–

Clamped
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Fig. 2 Variation of small scale effect on the frequency parameter for

Timoshenko nanobeams with L/d = 10. a Simply Supported–Simply

Supported, b Clamped–Simply Supported, c Clamped–Clamped
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the frequency parameters for nonlocal nanobeams become

smaller than those of its local counterpart. This reduction

can be clearly seen when we consider higher vibration

modes. The reduction is due to the fact that the nonlocal

model may be viewed as atoms linked by elastic springs

while in case of local continuum model, the spring constant

is assumed to take an infinite value. So small scale effect

makes the nanobeams more flexible and nonlocal impact
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Fig. 3 First five deflection shapes of Clamped–Clamped nanobeams based on nonlocal Euler–Bernoulli beam model with scaling effect

parameters as 0, 0.3 and 0.5. a First deflection, b Second deflection, c Third deflection, d Fourth deflection, and e Fifth deflection
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cannot be neglected. As such, nonlocal theory should be

used for better predictions of high natural frequency of

micro and nanobeams. Mode shapes are useful for engi-

neers to design the structures, because they represent the

shape that the structures will vibrate in free motion.

Sometimes, the knowledge of higher modes is necessary

before finalizing the design of an engineering system.

Thus, while studying vibration problems viz. beam, plate or

shell, one may always see the tabulation of the higher

frequencies in the open literature. As such, the present

investigators have reported first few higher modes in Fig. 3

for benchmarking the results, which may help the

researchers of nanotechnology. In Fig. 3, we have given

first five deflections of nonlocal CC Euler–Bernoulli

nanobeams with scaling effect parameters as 0, 0.3 and 0.6.

It can be seen that mode shapes are affected by the effect of

small length scale. By understanding the modes of vibra-

tion, we can better design the structures as per the need.

Conclusions

In this paper, an efficient numerical method is developed

for free vibration of Euler–Bernoulli and Timoshenko

nanobeams based on Eringen’s nonlocal elasticity theory.

Small scale effect, transverse shear deformation and rotary

inertia are taken into consideration in nonlocal Timoshenko

beam theory, which play a vital role while dealing with

micro/nanobeams that are short, stubby and especially

when the frequencies are high. Vibration characteristics of

Euler–Bernoulli and Timoshenko nanobeams have been

computed using simple polynomials and orthonormal

polynomials in the Rayleigh–Ritz method. Results for

different scaling effect parameters and boundary conditions

are given in tables. Convergence studies of both Euler–

Bernoulli and Timoshenko nanobeams are reported for

SS and CS boundary conditions taking scaling effect

parameter as 0.5. Variations of frequency parameters with

scaling effect parameters are shown in figures. Results are

also tabulated for some new boundary conditions (SF and

FF). Present results are compared with that of Wang et al.

(2007) and it is observed that there is an excellence

agreement. Deflection graphs of nonlocal CC Euler–Ber-

noulli nanobeams are plotted for different scaling effect

parameters. Numerical solutions presented herein may be

useful to design engineers in microelectromechanical and

nanoelectromechanical devices. From this analysis, it may

be concluded that the solutions obtained by the proposed

method may easily be extended to various other compli-

cated nanodomains.
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Appendix

Stiffness and mass matrices of nonlocal Euler–Bernoulli

nanobeams used in Eq. (24) are given below
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Following are stiffness and mass matrices of nonlocal

Timoshenko nanobeams used in Eq. (25).

K ¼ K1 K2

K3 K4
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