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Abstract

The Popularity-Similarity (PS) model sustains that clustering and hierarchy, properties
common to most networks representing complex systems, are the result of an
optimisation process in which nodes seek to form ties, not only with the most
connected (popular) system components, but also with those that are similar to them.
This model has a geometric interpretation in hyperbolic space, where distances
between nodes abstract popularity-similarity trade-offs and the formation of scale-free
and strongly clustered networks can be accurately described.
Current methods for mapping networks to hyperbolic space are based on maximum
likelihood estimations or manifold learning. The former approach is very accurate but
slow; the latter improves efficiency at the cost of accuracy. Here, we analyse the
strengths and limitations of both strategies and assess the advantages of combining
them to efficiently embed big networks, allowing for their examination from a
geometric perspective. Our evaluations in artificial and real networks support the idea
that hyperbolic distance constraints play a significant role in the formation of edges
between nodes. This means that challenging problems in network science, like link
prediction or community detection, could be more easily addressed under this
geometric framework.

Keywords: Complex networks, Hyperbolic geometry, Manifold learning, Maximum
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Introduction
The network representation of many complex systems, like the Internet or the pro-
tein interactome, shows characteristics commonly present in geometric objects; scale
invariance and self-similarity amongst them (Barabási and Albert 1999; Song et al.
2006; Goh et al. 2006; Serrano et al. 2008). It is then no surprise that several models,
aimed at mimicking the evolution and formation of these networks, assume the exis-
tence of a hidden geometry underlying their structure and shaping their topology
(Aste et al. 2005; Aste et al. 2012; Boguñá et al. 2009; Dall and Christensen 2002; Ferretti
and Cortelezzi 2011; Krioukov et al. 2010; Papadopoulos et al. 2012; Serrano et al. 2008)
(we refer the reader to (Barthélemy 2011) for an extensive review on the subject).
Of special interest is the so-called Popularity-Similarity (PS) model, which sustains that

strong clustering and scale-free node degree distributions are the result of an optimisation
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process involving two measures of attractiveness: node popularity and similarity between
nodes (Papadopoulos et al. 2012). On the one hand, popularity reflects the ability of a
node to attract connections from other nodes over time, and it is thus associated with its
seniority status in the system. On the other, nodes that are similar simply tend to connect,
regardless of their rank.
The PS model has a geometric interpretation in hyperbolic space, where the trade-offs

that new nodes have to optimise when joining a system are abstracted by the hyper-
bolic distance between them and existing ones (Krioukov et al. 2010; Papadopoulos et al.
2012). In this model, a network lies within a hyperbolic disc of radius R ∼ lnN , where
N is the total number of nodes. The popularity dimension is represented by radial node
coordinates ri, with senior nodes in close proximity to the disc’s centre. The similarity
dimension is associated with the angular positioning of nodes θi and short hyperbolic dis-
tances between them (approximately xij = ri + rj + 2 ln(θij/2) for any two nodes i and j
separated by an angle θij) correspond to high probabilities of link formation.
With the simplest version of themodel, we can produce networks with scaling exponent

γ = 2 in the so-called cold-temperature regime (T = 0), where their clustering is the
strongest possible (Krioukov et al. 2010; Papadopoulos et al. 2012). To increase the value
of γ , we can simulate popularity fading by moving senior nodes away from the disc’s
centre. To decrease clustering, networks can be submitted to higher temperatures (T > 0,
see Methods). These additional mechanisms give place to a very versatile model to study
network dynamics (Papadopoulos et al. 2012).
If the PS model can generate networks that are similar to those we observe in nature

and engineering (Krioukov et al. 2010; Papadopoulos et al. 2012), does it mean that pack-
ets travelling the Internet, signals going from receptors to transcription factors in the cell
or messages between people in social networks traverse the hyperbolic geometry under-
lying each of these systems? To answer this question, we need a means to map them to
hyperbolic space, to then check whether hyperbolically close nodes tend to connect more
than distant ones, and assess whether information travels efficiently through the network
topology.
In 2015, Papadopoulos and colleagues introduced HyperMap, a Maximum Likelihood

Estimation (MLE) approach, in which the space of PS models with the same structural
properties as the network of interest is explored, in search for the one that better fits
its topology (see Methods and (Papadopoulos F et al. 2015b; Papadopoulos et al. 2015a)
for more details). This search is very accurate, albeit computationally demanding (see
Fig. 1a, b), which means that HyperMap requires of correction steps or heuristics in order
to make it suitable for big networks (Papadopoulos et al. 2015a).
Inspired by the well-established field of non-linear dimensionality reduction inMachine

Learning (Cayton 2005), we recently put forward the Laplacian-based Network Embed-
ding or LaBNE (Alanis-Lobato et al. 2016). In manifold learning, most algorithms rely
on the construction of a mesh or network connecting nearby samples contained in a
high-dimensional manifold (Cayton 2005; Zemel and Carreira-Perpiñán 2004). If there is
really a hyperbolic geometry underlying a complex network, it should lie on a hyperbolic
plane, with nodes drifting away from the space origin. Thus, the network itself can be
seen as the mesh that connects samples (nodes in this case) that are close to each other
(Papadopoulos et al. 2012) and serve as the basis to recover the hyperbolic coordinates
of its nodes (see Methods and (Alanis-Lobato et al. 2016) for more details). LaBNE is
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Fig. 1 Issues with hyperbolic embeddings by LaBNE. a An artificial network produced by the PS model, with
500 nodes, 2m = 10, γ = 2.5 and T = 0.3, is mapped to hyperbolic space with LaBNE and HyperMap. Even
when LaBNE’s embedding is extremely fast and its inferred node positions, indicated with colours, coincide
with those from the input network, panel b shows that HyperMap is more accurate, because the probability
of finding connected nodes at small hyperbolic distances is higher than if LaBNE’s coordinates are used. We
illustrate the reasons for this with the simple 5-node network of panel c and its embedding by LaBNE.
Despite the fact that the inferred and real angular coordinates, together with the corresponding hyperbolic
distances, are highly correlated (Pearson correlations of 0.97 and 0.98, respectively), it is clear that the angular
positions of nodes 2, 3 and 4 are smaller than they should be. This is a consequence of LaBNE’s aim to map
connected nodes as close as possible in the embedding space, disregarding that disconnected nodes should
be far from each other. Although this does not have a big impact in Euclidean embeddings, it can be very
problematic in hyperbolic space. Panel d shows how the hyperbolic distance between nodes 1 and 2
changes dramatically, even for small changes in the angular coordinate of the latter

extremely fast (see Fig. 1a), but highly depends on topological information to carry out
good embeddings. This means that the higher the average node degree (2m) and clus-
tering coefficient (c̄) of a network, the better the results it achieves (Alanis-Lobato et al.
2016). In addition, LaBNE’s aim tomap connected nodes as close as possible to each other
in the embedding space, disregarding that disconnected nodes should be far apart (Shaw
and Jebara 2009), can lead to inaccuracies when associating short hyperbolic distances
with connections between nodes (see Fig. 1b-d).
In the present article, we assess the pros and cons of both strategies and introduce a

hybrid approach that pursues a more efficient and accurate network embedding into the
two-dimensional hyperbolic plane H

2, represented by the interior of a Euclidean circle
(Krioukov et al. 2010). We carry out analyses on artificial and real networks and, based on
the results, discuss the strengths and limitations of these hyperbolic mapping techniques.

Results
LaBNE+HM and its performance in artificial networks

Given the drawbacks and limitations of both HyperMap and LaBNE, we aimed at com-
bining them to improve LaBNE’s accuracy and reduce HyperMap’s execution times.
We focused on undirected, unweighted, single-component networks and assumed that
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they are scale-free (with scaling exponent γ ∈[2, 3]) and have a clustering coefficient c̄
significantly larger than expected by chance.
LaBNE+HyperMap (LaBNE+HM), our proposed approach, uses LaBNE to quickly draft

a first geometric configuration of a network of interest in H
2. This draft is then passed

on to HyperMap, which refines the embedding and produces the final mapping to hyper-
bolic space. LaBNE+HM profits from LaBNE’s fast embeddings and significantly reduces
the search space of HyperMap, which instead of trying to find the best angular coordinate
of each node in the range [0, 2π ], now only needs to focus on a window around the angles
found by LaBNE (see Fig. 2). The size of this window depends on the quality of LaBNE’s
embeddings, which, as above-mentioned, are better in networks with high 2m and c̄
(low T). This means that the window should be narrow in strongly clustered networks,
but wider if they are sparser. This has an impact on LaBNE+HM’s execution time, which
should be expected to behave as LaBNE if the window is close to 0 and as HyperMap if
it is close to 2π . It is also important to mention that, due to rotational invariance of dis-
tances, the set of hyperbolic coordinates responsible for the edges observed in a network
is not unique (Alanis-Lobato et al. 2016). Therefore, the goal of the proposed technique
is not to find a specific set of coordinates, but the one that corresponds better with
the hyperbolic, distance-dependent connection probabilities that produce the network of
interest.
To investigate the performance of LaBNE, HyperMap and LaBNE+HM in a controlled

manner, we generated artificial networks with different structural characteristics using
the PS model (N = 500, 2m = 10, γ = {2.25, 2.5, 2.75} and T = {0, 0.3, 0.6, 0.9}). Based
on the above-mentioned rationale regarding LaBNE+HM’s required window for different
temperatures, we used windows w = π/36 radians (5◦) for T = 0, w = π/6 radians (30◦)
for T = 0.3, w = π/4 radians (45◦) for T = 0.6 and w = π/3 radians (60◦) for T = 0.9
in our analyses. For each node i, different angles separated by 1/i radians are considered
within such windows (here i = {1, 2, . . . ,N} is the rank of each node, when they are sorted
decreasingly by degree).

Fig. 2 LaBNE+HM. An undirected, unweighted, single-component network with scale-free node degree
distribution and strong clustering can be input to LaBNE+HM to reveal the hyperbolic geometry underlying
it. A first hyperbolic arrangement of nodes is obtained by LaBNE (a manifold learning approach), which is later
refined by HyperMap (a maximum likelihood estimation approach). In LaBNE+HM, the space of possible PS
models that HyperMap has to explore is greatly reduced, as it only needs to search for appropriate node
angular coordinates in a small window around the angles found by LaBNE. In the schematic, the angular
coordinate of a node is refined by increasing its value
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As described in the Methods, new nodes in the PS model acquire radial coordinates
rt = 2 ln t that depend on their birth-time t. This means that the probability of find-
ing a node that is close to the centre of the hyperbolic circle containing the network,
is exponentially lower than the probability to find a peripheral node (Alanis-Lobato and
Andrade-Navarro 2016). When a new node is added to the system and the existing ones
change their radial position according to rs(t) = βrs + (1 − β)rt , with β = 1/(γ − 1),
their seniority is attenuated by increasing their distances to every newly added node
(Papadopoulos et al. 2012). Consequently, LaBNE, HyperMap and LaBNE+HM obtain
radial coordinates for the N nodes in a network via ri = 2β ln(i) + 2(1 − β) ln(N), where
nodes i = {1, 2, . . . ,N} are the network nodes sorted decreasingly by degree. Figure 3a,
Additional file 1: Figures S1a and S2a (γ = {2.5, 2.25, 2.75} respectively) show that this is
a good strategy, as inferred radial coordinates are practically the same as the ones from
the input networks.
To verify whether the similarity dimension is also properly inferred, we measured pair-

wise hyperbolic distances between nodes, using the coordinates found by each technique,
and computed the fraction of connected node pairs amongst all pairs separated by a cer-
tain distance. When distances are short, this fraction should be close to 1, when they are
long it should be close to 0. Figure 3b, Additional file 1: Figures S1b and S2b show that
this is indeed the case for LaBNE+HM and HyperMap, but LaBNE’s coordinates suffer
from the problems discussed in Fig. 1, especially in networks with low c̄ (high T).
One of the big advantages of revealing the geometry underlying a complex network is

that it enables the analysis of its navigation efficiency. An important function of complex
systems is the routing of information or signals (that we refer to as packets here) without
global knowledge of the network topology, avoiding loss of the packet and following short
paths (Boguñá et al. 2009; Papadopoulos et al. 2010). We check if it is possible to send
packets from a source node to a target one using only local topological information, i.e.
the address of the source’s direct neighbours (encoded by their hyperbolic coordinates)
and the address of the target. The source node ships a packet to the direct neighbour
that is hyperbolically closer to the target node, the recipient neighbour does the same
with its direct neighbours and so on, until the packet reaches the target. This process
is known as greedy routing (Kleinberg 2007; Krioukov et al. 2010; Papadopoulos et al.
2010). If, in the delivery process, a neighbour sends the packet to the previously visited
node, i.e. it falls into a loop, the packet is dropped and the delivery is flagged as unsuc-
cessful. For each artificial network, we considered 1000 source-target pairs and measured
the percentage of successfully delivered packets and the hop stretch, i.e. the length of the
utilised greedy path divided by the length of the shortest path between source and target
(Krioukov et al. 2010). As we can see in Fig. 3c, Additional file 1: Figures S1c and S2c,
routing efficiency is very high (close to 100%, i.e. almost no packets were dropped) in het-
erogeneous and strongly clustered networks (low γ and T, Additional file 1: Figure S1c)
and is reduced in networks with high γ and T (Additional file 1: Figure S2c). LaBNE’s per-
formance is highly affected in the latter case (efficiency below 70%), but it is the best in
the former (practically 100% efficiency). Coordinates inferred by LaBNE+HMandHyper-
Map allow for efficient navigability in practically all the analysed cases (efficiency above
80%). Moreover, greedy paths are optimal for all techniques, as evidenced by the average
hop stretches being close to 1, which indicates that greedy paths are also shortest paths
(Fig. 3d, Additional file 1: Figures S1d and S2d).
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Fig. 3 Benchmarking on artificial networks (γ = 2.5). Artificial networks with N = 500 nodes, average node
degree 2m = 10, scaling exponent γ = 2.5 and temperature T = {0, 0.3, 0.6, 0.9} were embedded to
hyperbolic space with LaBNE, HyperMap and LaBNE+HM. a Real vs inferred radial coordinates in the four
networks. Only LaBNE’s coordinates are shown, because all the methods follow the same strategy to infer
them. b Connection probabilities as a function of hyperbolic distances measured with the coordinates
inferred by each method. c Greedy routing efficiency when the inferred hyperbolic coordinates are used as
addresses to send packets between 1000 randomly selected source-target pairs. d Hop stretch of successful
packet deliveries for the considered source-target pairs. Red diamonds indicate the average hop stretch. e
Time needed by each method to embed the networks to hyperbolic space

Finally, we recorded the amount of time required by each embedding technique to map
the considered networks into H

2. From Fig. 3e, Additional file 1: Figures S1e and S2e, we
can conclude that LaBNE+HM represents a very good trade-off between accuracy and
embedding time.
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Performance in real networks

Given the accuracy and time performance achieved by LaBNE+HM in artificial networks,
we used it to infer the hyperbolic coordinates of nodes in three real ones (see Table 1
and Methods) and repeated the analyses of the previous section. As already discussed,
the width of the window used by the HyperMap part of LaBNE+HM depends on the
quality of the embedding produced by LaBNE, which is better if the input network has
high clustering and average node degree. Consequently, the three real networks analysed
here were chosen to investigate the performance of LaBNE, HyperMap and LaBNE+HM
in the low, medium and high clustering coefficient scenarios (see Table 1). Furthermore,
these datasets represent complex systems from different domains: the high quality human
protein interactome (PIN) models the relationships between proteins in the human cell
(low c̄, high T), in the Pretty-Good-Privacy network (PGP) users share encryption keys
with people they trust (medium c̄ andT) and the US airport network (AIR) connects cities
in the US if there is a flight between them (high c̄, low T). The Methods and Additional
file 1: Figure S3 describe how temperatures were determined for each network, based on
their actual clustering coefficients. Taking the obtained temperatures as a reference, in
order to apply LaBNE+HM on the three real networks we considered windows w = 5π/3
radians (300◦) for the PIN, w = π/4 radians (45◦) for the PGP and w = π/12 radians
(15◦) for the AIR (see Methods for strategies to choose w).
In the PS model, radial coordinates are directly proportional to node birth-times, i.e. if

a node i is close to the origin of the hyperbolic circle (ri → 0), it means that it was born
early in the evolution of the complex system (Papadopoulos et al. 2012). We could not
test if this is the case in the PGP or the AIR, as the considered network snapshots lack
node birth-time information. However, it was possible to deduce approximate birth-times
for the proteins of the PIN (see Methods). Node radial coordinates inferred by LaBNE,
HyperMap and LaBNE+HM were compared to actual protein birth-times and, as shown
in Additional file 1: Figure S4, nodes that are close to the centre of the hyperbolic space
are older than peripheral ones. This shows that, even when the identity of the network
nodes is unknown, we can have an idea of their history in the system under study, based
merely on their degree and, consequently, their inferred radial positions.
When it comes to connection probabilities, navigation efficiency and greedy path opti-

mality, the results on real networks agree with what we observed in the previous section.
LaBNE struggles with performing a good embedding of the PIN (low c̄), but improves in
the PGP and the AIR (medium and high c̄). This is reflected in the low connection proba-
bility at short hyperbolic distances and the poor routing efficiency in the protein network,
whereas these indicators are better in the other two systems (see Fig. 4a-c). HyperMap,
on the other hand, is quite stable in all three cases, but it required days to complete the
embeddings (see Fig. 4a-d). LaBNE+HM is in the middle of these two extremes, with

Table 1 The three real networks analysed in this paper: the high quality protein interaction network
(PIN), the Pretty-Good-Privacy web of trust (PGP) and the US airport network (AIR)

Network N L 2m γ c̄ T

PIN 10824 66154 12.22 2.66 0.18 0.77

PGP 14367 37900 5.28 2.14 0.47 0.43

AIR 500 2980 11.92 2.01 0.73 0.15

The number of nodes N and links L, average node degree 2m, scaling exponent γ , clustering coefficient c̄ and inferred network
temperature T are reported for each network
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Fig. 4 Benchmarking on real networks. a Connection probabilities as a function of hyperbolic distances
measured with the coordinates inferred by each method. b Greedy routing efficiency when the inferred
hyperbolic coordinates are used as addresses to send packets between 1000 randomly selected
source-target pairs. c Hop stretch of successful packet deliveries for the considered source-target pairs. Red
diamonds indicate the average hop stretch. d Time needed by each method to embed each real network to
hyperbolic space

much better performance than LaBNE in terms of connectivity and greedy routing and
shorter execution times in general (see Fig. 4a-d). It is also clear how the coordinates
inferred by LaBNE impact LaBNE+HM’s results. In the PIN, it was necessary to probe
for better angular coordinates in a very wide window, which in practical terms resulted
in neglecting LaBNE’s angles and finding new ones from scratch, increasing execution
time (see Fig. 4a-d). At the other extreme, the AIR does not need much angle refinement
because the configuration passed on to HyperMap is already good, which derives in a very
fast yet accurate embedding (see Fig. 4a-d).
To conclude, it is worth noting that greedy routing efficiency is quite poor in the PGP

and neither HyperMap, nor LaBNE or LaBNE+HM can find hyperbolic coordinates that
increase the percentage of successfully delivered packets in this network (see Fig. 4b,c).
This may be explained by the fact that the PGP is the only assortative network from
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the three analysed (Papadopoulos et al. 2012). In assortative networks, nodes of similar
degrees tend to be connected, as opposed to disassortative networks, where high-degree
nodes tend to connect with low-degree ones (Newman 2002). As shown by Krioukov
and colleagues, heterogeneity is a key feature of more navigable networks, because rout-
ing paths follow a zoom-in-zoom-out hierarchical pattern (Krioukov et al. 2010). They
exhibit a greedy behaviour that takes a packet from a source node towards the centre of
the hyperbolic space, where high-degree nodes lie (zoom-out coarse grain search). These
nodes at the top of the network hierarchy process and ship the packet back to the periph-
ery of the hyperbolic plane, towards low-degree nodes, until the packet reaches its target
(zoom-in fine grain search) (Boguñá et al. 2009; Cannistraci et al. 1613; Krioukov et al.
2010). In an assortative network, this hierarchy is less clear and a packet may get stuck on
its way to the target, reducing routing efficiency.
Interestingly, in the AIR, with all the characteristics of a navigable network (high hetero-

geneity, clustering and disassortativity), routing efficiency only reaches 61% (see Fig. 4b).
Since this network is comprised of only the 500 busiest airports in the US, from a total
of 19512 airport facilities listed by the Federal Aviation Administration (http://www.faa.
gov/), the over-representation of hub airports can lead to packets being unable to leave
them and reach their less-connected peripheral targets.

Conclusions
Scale-invariance, self-similarity and strong clustering, properties present in com-
plex systems and geometric objects alike, have led to the proposal that the net-
work representations of the former lie on a geometric space, where distance con-
straints play important roles in the formation of links between system components
(Boguñá et al. 2009; Cannistraci et al. 2013b; Krioukov et al. 2010; Papadopoulos et al.
2012). Our results and those of others support the idea that hyperbolic space is a good
candidate to host complex networks, as it allows for the precise description of their for-
mation and function (Alanis-Lobato et al. 2016; Krioukov et al. 2010; Papadopoulos et al.
2012; Papadopoulos F et al. 2015b; Papadopoulos et al. 2015a).
In consequence, efficient methods to embed networks into this space are needed. In this

article we exploit the strengths of two such methods, LaBNE and HyperMap, to quickly
obtain accurate embeddings of artificial and real networks. Although it is difficult to val-
idate this claim in the latter case, we have tested the performance of these embedding
techniques from a node birth-time, connectivity and navigability perspective. Further-
more, we have shown that good embeddings to H

2 are possible in a short amount of
time, especially in heterogeneous, dense and strongly clustered networks. Our work also
highlights the strengths and limitations of LaBNE and HyperMap, and their impact on
LaBNE+HM, the proposed hybrid approach that takes LaBNE’s embeddings and refines
them with HyperMap.
It should be noted that techniques for embedding networks to generic low-dimensional

spaces have been proposed to facilitate their visualisation and analysis (Belkin and Niyogi
2001; Cannistraci et al. 2013b; Cayton 2005; Kuchaiev et al. 2009; Newman and Peixoto
2015; Tenenbaum 2000; You et al. 2010; Zemel and Carreira-Perpiñán 2004). Neverthe-
less, LaBNE, HyperMap and LaBNE+HM deal specifically with the embedding to the
two-dimensional hyperbolic plane. As our results suggest, this space provides an accu-
rate reflection of the geometry of real networks (Alanis-Lobato et al. 2016; Krioukov

http://www.faa.gov/
http://www.faa.gov/
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et al. 2010; Papadopoulos et al. 2012) and facilitates their visual inspection and analysis.
This prompts us to further improve existing hyperbolic mapping techniques, as massive
networks with billions of nodes become more and more common in the age of Big Data.

Methods
The PS model

The PS model (Papadopoulos et al. 2012) on the hyperbolic plane of curvature K = −1 is
formulated as follows: (1) initially the network is empty; (2) at time t ≥ 1, a new node t
appears at coordinates (rt , θt) with rt = 2 ln t and θt uniformly distributed on [0, 2π ], and
every existing node s < t increases its radial coordinate according to rs(t) = βrs+(1−β)rt
with β = 1/(γ − 1) ∈[0, 1]; (3) new node t picks a randomly chosen node s < t that is not
already connected to it and links with it with probability p(xst) = 1/

[
1 + e(xst−Rt)/2T

]
,

where parameter T, the network temperature, controls the network’s clustering coef-
ficient, Rt = rt − 2 ln

[
2T(1−e−(1−β)rt/2)
m(1−β) sin(πT)

]
is the current radius of the hyperbolic circle

containing the network, xst = rs + rt + 2 ln(θst/2) is the hyperbolic distance between
nodes s and t and θst is the angle between the nodes; (4) repeat step 3 until node t gets
connected to m different nodes; (5) repeat steps 1-4 until the network is comprised of N
nodes. Note that if T → 0, Rt = rt − 2 ln

[
2(1−e−(1−β)rt/2)

πm(1−β)

]
. In addition, if β = 1, existing

nodes do not change their radial coordinates and Rt = rt − 2 ln
(

Trt
m sin(πT)

)
.

HyperMap

HyperMap (Papadopoulos F et al. 2015b) is aMaximum Likelihood Estimationmethod to
embed a network to hyperbolic space. It finds node coordinates by replaying the network’s
hyperbolic growth and, at each step, maximising the likelihood that it was produced by
the PS model (Papadopoulos F et al. 2015b). For embedding to the hyperbolic plane of
curvature K = −1 it works as follows: (1) nodes are sorted decreasingly by degree and
labelled i = {1, 2, . . . ,N} from the top of the sorted list; (2) node i = 1 is born and
assigned radial coordinate r1 = 0 and a random angular coordinate θ1 ∈[0, 2π ]; (3) for
each node i = {2, 3, . . . ,N}: (3.1) node i is born and assigned radial coordinate ri = 2 ln i;
(3.2) the radial coordinate of every existing node j < i is increased according to rj(i) =
βrj+(1−β)ri; (3.3) node i is assigned the angular coordinate θi maximising the likelihood
Li
L = ∏

1≤j<i p(xij)αij(1 − p(xij))1−αij . β and p(xij) are defined as in the PS model and αij
is 1 if nodes i and j are connected and 0 otherwise. The maximisation of Li

L is performed
numerically by trying different values of θ in [0, 2π ], separated by intervals �θ = 1/i, and
then choosing the one that produces the greatest Li

L.
Since the angular coordinates yielded by this link-based likelihood are not very accu-

rate for small i (i.e. for high degree nodes) (Papadopoulos F et al. 2015b), the fast version
of HyperMap used in this paper uses information on the final number of common neigh-
bours between these old nodes via the maximisation of the log-likelihood lnLi

CN =
(i − 1) ln 1√

2π − ∑i−1
j=1 ln σ(i, j, θi, θj) − ∑i−1

j=1
ntij−μ(i,j,θi,θj)
2σ 2(i,j,θi,θj)

, where μ is the mean number of
common neighbours nij between i and j and σ 2 is the associated variance (Papadopoulos
et al. 2015a). This hybrid version of HyperMap is O(N3) and to speed it up, Papadopou-
los and colleagues resort to the following heuristic: for nodes i with degree ki < kspeedup,
an initial estimate θ initi of their angular coordinate is computed by considering only the
previous nodes j < i that are their neighbours; these estimates are then refined, searching
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for the final θi within a small region around θ initi . The fast hybrid version of HyperMap
with kspeedup = 10 is the one used throughout this work and is the one that refines
LaBNE’s embeddings in LaBNE+HM. We refer the reader to (Papadopoulos et al. 2015a)
for more details on the speed-up heuristic and the derivation of Li

CN . Finally, even when
correction steps can be used together with the fast hybrid HyperMap, their effect on this
method has been reported not to be significant (Papadopoulos et al. 2015a) and they are
not considered here.

LaBNE

Let us consider only undirected, unweighted, single-component networks, as LaBNE is
only applicable to such networks (Alanis-Lobato et al. 2016; Belkin and Niyogi 2001).
Moreover, let us assume that these networks are scale-free (with scaling exponent γ ∈
[2, 3]) and have a clustering coefficient c̄ that is significantly bigger than expected by
chance. These networks are graphs G = (V ,E) with N = |V | nodes and L = |E|
edges connecting them. An undirected, unweighted graph can be represented by an
N × N adjacency matrix Ai,j = Aj,i ∀i, j, whose entries are 1 if there is an edge between
nodes i and j and 0 otherwise. The graph Laplacian is a transformation of A given
by L = D − A, where D is a matrix with the node degrees on its diagonal and 0
elsewhere.
The Laplacian-based embedding of a complex network to the two-dimensional hyper-

bolic plane H2, represented by the interior of a Euclidean circle (Krioukov et al. 2010), is
given by theN×2matrix Y =[ y1, y2] where the ith row, Yi, provides the embedding coor-
dinates of node i. This corresponds tominimising 1

2
∑

i,j Ai,j||Yi−Yj||2 = tr(YTLY ), which
reduces to Yemb = minYTDY=Itr(YTLY ) with D as defined above, I the identity matrix,
MT the transpose ofM and tr(M) the trace ofM. Finally, Yemb, the matrix that minimises
this objective function, is formed by the two eigenvectors with smallest non-zero eigen-
values that solve the generalised eigenvalue problem LY = λDY (see (Alanis-Lobato et al.
2016) for a detailed derivation of this result).
To complete the mapping to H

2, angular node coordinates are obtained via θ =
arctan(y2/y1) and radial coordinates are chosen so as to resemble the rank of each node
according to its degree. This is achieved via ri = 2β ln(i) + 2(1 − β) ln(N), where nodes
i = {1, 2, . . . ,N} are the network nodes sorted decreasingly by degree and β = 1/(γ − 1)
(Krioukov et al. 2010; Papadopoulos et al. 2012). Finally, to further refine the embedding,
angular coordinates are re-adjusted by spreading them uniformly in [0, 2π ], based on the
order of the angles inferred initially.
The strategy followed by LaBNE is valid, because the native representation of H2, in

which the hyperbolic space is contained in a Euclidean disc and Euclidean and hyper-
bolic distances from the origin are equivalent, is a conformal model. This means that
Euclidean angular separations between nodes are equivalent to hyperbolic ones (Krioukov
et al. 2010). On the other hand, the radial arrangement of nodes corresponds to a quasi-
uniform distribution of radial coordinates in the disc (Krioukov et al. 2010; Alanis-Lobato
and Andrade-Navarro 2016).

Network datasets

For the three network datasets used in this paper, self-loops and multiple edges were
discarded and only the largest connected component was considered.
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The high-quality protein interaction network (PIN) is a stringent subset of the Human
Integrated Protein-Protein Interaction rEference (HIPPIE) (Schaefer et al. 2012; Alanis-
Lobato et al. 2016). HIPPIE retrieves interactions between human proteins from major
expert-curated databases and calculates a score for each one, reflecting its combined
experimental evidence. This score is a function of the number of studies support-
ing the interaction, the quality of the experimental techniques used to measure it
and the number of organisms in which the orthologs of the interacting human pro-
teins interact as well. In this paper, only interactions with confidence scores ≥ 0.72
(the upper quartile of all scores) in release 2.0 were considered. The raw version
of this network is available at http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
download.php. To determine the birth-time of the PIN nodes, proteins from the man-
ually curated database SwissProt were clustered based on near full-length similarity
and/or high threshold of sequence identity using FastaHerder2 (Mier and Andrade-
Navarro 2016). If proteins from two evolutionarily distant organisms are present in
one cluster, this suggests that the protein family is ancient. The minimum common
taxonomy from all proteins that are part of a cluster was taken as an indication
of the cluster’s age. Each node of the PIN was assigned to one of the following
age clusters: Cellular organisms, Metazoa, Chordata, Mammalia, Euarchontoglires or
Primates.
Pretty-Good-Privacy (PGP) is a data encryption and decryption program for secure

data communication. In a PGP web of trust, each user (node) knows the public key of a
group of people he trusts. When user A wants so send information to user B, this infor-
mation is encrypted with B’s public key and signed with A’s private key. When B receives
the information, he verifies that the message is coming from one of the users he trusts and
decrypts it with his private key (Schneier 1996). This encryption and decryption event,
forms a directed link between users A and B. In this article, however, the edge direc-
tionality of this network is not considered. This is not a problem for the interpretation
of the network if we assume that by sharing a key, two users reciprocally endorse their
trust in each other (Papadopoulos et al. 2012). From the four temporal snapshots of the
undirected PGP network collected by Jörgen Cederlöf (Cederlöf 2003), only the one cor-
responding to the period between April and October 2003 was used here. The raw PGP
data is available at http://www.lysator.liu.se/~jc/wotsap/wots2/.
The airport network (AIR) corresponds to the connections between the 500 busiest

commercial airports in the United States. Two airports are linked if there was a flight
scheduled between them in 2002. This dataset was used in (Colizza et al. 2007) and
is available at http://opsahl.co.uk/tnet/datasets/USairport500.txt or https://sites.google.
com/site/cxnets/US_largest500_airportnetwork.txt.

Real network temperature determination

To determine an appropriate temperature for the three real networks used in this work, we
take advantage of results showing that clustering decreases almost linearly with network
temperature, until it is 0 for T = 1 (Krioukov et al. 2010; Papadopoulos et al. 2012). For
each real network, ten artificial networks, with the same structural properties as the real
system at hand, are generated with the PS model using T = 0. The clustering coefficient
of the ten networks is averaged and used as y-intercept, while the point (T = 1, c̄ = 0) is
used as x-intercept.We can then determine the equation of this line and use it to compute

http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php
http://www.lysator.liu.se/~jc/wotsap/wots2/
http://opsahl.co.uk/tnet/datasets/USairport500.txt
https://sites.google.com/site/cxnets/US_largest500_airportnetwork.txt
https://sites.google.com/site/cxnets/US_largest500_airportnetwork.txt
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a T for each real network, based on its clustering coefficient (see Table 1 and Additional
file 1: Figure S3).

Choice of window size in LaBNE+HM

The windowsw used in the artificial and real networks analysed in this paper were chosen
based on their clustering coefficients, determined temperatures and the performance of
LaBNE when applied to them. Although we consider the latter as a very good point of
reference to decide on window widths, given the speed of LaBNE, a more automated
and fast strategy would be to consider a linear or quadratic relationship between w and
temperature T ∈[0, 1], w = 2πT or w = 2πT2 for example. Note that this might result
in windows wider than needed and slower LaBNE+HM embedding times, but it would
produce very good and refined mappings in most cases.

Hardware used for experiments

All the experiments presented in this paper were executed on a Lenovo ThinkPad 64-bit
with 7.7 GB of RAM and an Intel Core i7-4600U CPU @ 2.10 GHz × 4, running Ubuntu
16.04 LTS. The only exceptions were the packet delivery and the connection probabil-
ity experiments, which were executed on nodes with 30 GB of RAM, within the Mogon
computer cluster at the Johannes Gutenberg Universität in Mainz.

Additional file

Additional file 1: Supplementary information. (PDF 539 kb)
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