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Multidisciplinary insight into clonal
expansion of HTLV-1–infected cells in adult
T-cell leukemia via modeling by
deterministic finite automata coupled with
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Abstract

Background: Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive
lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the
direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of
leukemic cells. Therefore, monitoring clonal expansion of HTLV-1–infected cells via isolation of integration sites
assists in analyzing infected individuals from early infection to the final stage of ATL development. However,
because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified.
Combining computational/mathematical modeling with experimental and clinical data of integration site–based
clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to
achieve a better understanding of ATL development.

Methods: As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory
experiments, in silico analysis and empirical modeling.

Results: We analyzed clinical samples from HTLV-1–infected individuals with a broad range of proviral loads using a
high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the
size of infected clones. We categorized clones into four size groups, “very small”, “small”, “big”, and “very big”, based
on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on
deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion.

Conclusions: Through the developed model, we have translated biological data of clonal expansion into the
formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that
combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This
kind of modeling provides a basic understanding as well as a unique perspective for clarifying the mechanisms of
clonal expansion in ATL.
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Background
Cancer is a complex disease of the genome that behaves as
a clonal evolutionary process in populations of cells [1–4].
Although cancer is a diverse and multifactorial disorder
with differing origins and degrees of malignancy, clonal ex-
pansion and the presence of Darwinian or natural selection
are generally accepted as common features [4, 5]. Since No-
well first proposed the clonal evolution theory of neoplasia
in 1976 [1], a broad range of studies have provided support
for this model. In recent years, the use of next-generation
sequencing (NGS) technologies for the investigation of
tumor genomes has generated increasing evidence that
most neoplasms grow as a clonally expanded cell popula-
tion [3, 6–8]. The vast amounts of invaluable data gener-
ated by NGS have surpassed analysis and interpretation
capacity. However, the intricate nature of clonal expansion
and evolution in cancer makes it difficult to convert the ex-
perimental and clinical data into medical practices [9, 10].
Experimental data alone are not generally sufficient enough
to address the complex problem of cancer. Consequently,
focus has shifted toward devising mathematical/computa-
tional models for simplification and extraction of
fundamental meaning from the complex biological
processes of cancer.
Adult T-cell leukemia (ATL) is a life-threatening malig-

nancy that manifests with very poor prognosis [11, 12].
ATL develops through a multistep leukemogenic process,
the nature of which remains elusive [13]. Among the differ-
ent types of cancer, ATL is a remarkably unique neoplasm
in that it is directly caused by infection with human T-cell
leukemia virus type-1 (HTLV-1), which is mainly transmit-
ted via breastfeeding [14]. HTLV-1 infection and integra-
tion of provirus into the host genome are intrinsic and
inevitable early events for ATL development [15]. HTLV-1
mainly survives in vivo by persistent clonal proliferation of
infected cells [16]. Whereas the majority of HTLV-1–in-
fected individuals remain asymptomatic carriers (ACs)
throughout their lifetime, ~5% of them develop ATL after a
long period of clinical latency [17]. Currently, there is no
clear determinant to distinguish between individuals who
will remain ACs and those who will develop ATL [18, 19].
Our Joint Study on Predisposing Factors of ATL Develop-
ment (JSPFAD) group examined ATL risk factors and dem-
onstrated that a proviral load (PVL; i.e., the percentage of
infected peripheral blood mononuclear cells) of >4% is one
of the risk factors for progression to ATL; however, PVL
alone cannot predict development of the disease [19]. Simi-
lar to other types of cancer, clonal expansion of abnormal
cells is a hallmark of ATL [20, 21]. Considering that the
incidence of large clones increases with disease progression
from the healthy AC state to the malignant states of smol-
dering (SM), chronic, or acute ATL [22–24], monitoring
clonal expansion via an accurate method of detection is of
great clinical importance [8, 23].

Generally, mutation patterns of cells can be used to
define clones and monitor clonal expansion in different
types of cancer [7]. ATL development has an advantage
in that not only the mutation pattern but also the inte-
gration site of the provirus can be used to define clones
and monitor clonal expansion [8, 23]. Individual infected
cells can be uniquely characterized based on their inte-
gration site because, typically, a single integration of
HTLV-1 occurs per host cell [25]. Detecting the clonality
dynamics, including clonal status and alterations,
requires an appropriate method for defining two main
characteristics of clones, HTLV-1 integration site and
clone size.
Research in this area would be greatly benefitted by an

easier to understanding representation and description
of how cancer develops in terms of clonal expansion,
which is expected to be provided by appropriate models.
A realistic model would provide a better understanding
of cancer and would provide a comprehensive perspec-
tive on cancer processes by integrating clinical and bio-
logical data within a mathematical and computer science
framework. As with other malignancies, suitable models
for ATL would help to simplify the dynamics of
cooperative and complex behaviors in cancer develop-
ment [26, 27]. Quantitative NGS data have the potential
for creating robust and reliable mathematical modeling
approaches [28]. Increasingly complex mathematical
models of cancerous growth (particularly of solid tu-
mors) that are based primarily on mutation patterns
have been developed [29, 30]. The prominent role of
mathematical modeling in the detailed quantitative de-
scription of diseases, and the contribution of mathemat-
ical modeling to solving biological problems have been
eloquently discussed by Tanaka and Ono [31]. Currently,
there is a broad range of theoretical models available;
however, empirical mathematical models are still limited
[30].
Several mathematical modeling studies are available in

the field of HTLV-1 research [32–38], although none of
these studies have focused on modeling clonal expansion
and its correlation with ATL development. The earliest
mathematical model for HTLV-1 explored the correl-
ation between the antiviral immune response, viral load
and viral diversity [32]. Later Stilianakis et al. used a
nonlinear differential equation and theoretical assump-
tions to describe HTLV-1 infection of CD4+ T-cells [34].
This model was further optimized to test different as-
sumptions and/or alteration of the proposed differential
equations [35–38]. Therefore, there is an obvious lack of
a data-driven mathematical model that describes the role
of clonal expansion of HTLV-1–infected cells in ATL de-
velopment. Mathematical models that are data-driven
and hypothesis-free are considered to be the most ap-
plicable in many situations and have the lowest risk of
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confirmation bias [31]. Moreover, there is currently no
computational model available for ATL development. A
model that not only reflects details of biological
phenomena like mathematical models but also allows
abstract visualization of the observed information like
computational models would be most informative to bi-
ologists [39]. Establishing suitable expressive formalisms
requires filling the gap between mathematics and com-
puter science by using advantages of both approaches.
In this study, we used deterministic finite state autom-

ata (DFA), which are a concept in automata theory [40].
Automata are the main mathematical objects in com-
puter science that are capable of applying sequential
algorithms, formalism, to system description and specifi-
cation [41, 42]. DFA can abstractly display evolutionary
processes and other phenomena with a sequential order
of events [40, 43]. DFA represent a framework to de-
scribe the behavior of clonal expansion as discrete-state
systems. Our main goal was to illustrate clonality pat-
terns and to design a conceptually clear framework
based on real biological data on clonality obtained from
individuals with different PVLs and progression states of
ATL. We also categorized the observed clone sizes ac-
curately based on our integration site–mediated clonality
analysis approach. Moreover, we propose the first well-
suited empirical model for intuitive description of clonal
expansion in ATL.

Methods
Wet laboratory experiments
HTLV-1–infected individuals harbor complex popula-
tions of infected clones and uninfected cells [8, 23].
HTLV-1 integration sites and the number of infected
cells in each clone (i.e., clone size) are two main charac-
teristics of infected clones that we monitored. Each
HTLV-1–infected cell naturally harbors only a single in-
tegration site [25]. Therefore, the number of detected
unique integration sites reflects the number of infected
clones. The most challenging aspect of our clonality ana-
lysis was measuring the number of infected cells in each
clone. We used a molecular tagging system for this pur-
pose. Tags acts as molecular barcodes which give DNA
fragment unique signatures before PCR [8]. Information
on the frequency of observed tags from the NGS data
was used to remove PCR duplicates and thereby esti-
mate the original clonal abundance in the starting sam-
ple. Because of the random design of tags, they could
theoretically provide ~65,536 variations, and thus can
uniquely mark a large number of cells in each clone.
This method has been comprehensively validated using
control samples with known clone sizes and clinical
samples [8].
In total, eighteen clinical samples were obtained from the

JSPFAD biomaterials bank of HTLV-1 carriers [44, 45].

Samples Information is provided in Table 1. The clinical
samples were collected with written informed consent as a
collaborative project of JSPFAD. The project was approved
by research ethics committee of the University of Tokyo.
Information about the disease status of samples was
obtained from the JSPFAD database in which HTLV-1–in-
fected individuals were diagnosed based on the Shimoyama
criteria [46].
To prepare the samples for sequencing, 5 μg genomic

DNA from peripheral blood mononuclear cells was
isolated using a QIAGEN DNA Blood kit. PVLs were
measured by real-time PCR using the ABI PRISM 7000
Sequence Detection System as described [19].
We used a library preparation protocol specifically

designed to isolate HTLV-1 integration sites. All infor-
mation about the design and detailed protocols has been
described [8]. In brief, the starting template DNA was
fragmented by sonication. The resulting fragments rep-
resented a size range of 300 to 700 bp as indicated by an
Agilent 2100 Bioanalyzer and DNA 7500 kit.
Fragmented DNA underwent the library construction
steps of end repair, A-tailing, adaptor ligation, size
selection and nested PCR. The generated products
contained all the specific sequences necessary for the
Illumina HiSeq 2000/2500 platform (Additional file 1:
Figure S1).

Table 1 Sample characteristics

Sample Clinical
status

PVL
(%)

DFA
machine

Final
state

Integration
sites

F1 AC 7.57 M1 q1 876

F2 AC 5.24 M1 q1 802

F3 AC 7.16 M1 q1 1473

F4 SM 6.02 M1 q1 1827

F5 SM 31.15 M4 q2 225

F6 SM 23.56 M2 q2 398

F7 SM 36.63 M4 q2 570

F8 SM 43.24 M7 q3 417

F9 Chronic 28.53 M4 q2 260

F10 Chronic 15.25 M4 q2 1345

F11 Chronic 100.70 M3 q3 73

F12 Chronic 83.81 M3 q3 65

F13 Acute 64.43 M6 q3 138

F14 Acute 27.92 M5 q3 390

F15 Acute 51.90 M3 q3 40

F16 Acute 51.42 M3 q3 19

F17 AC 1.24 ND ND 233

F18 AC 3.52 ND ND 739

DFA deterministic finite state automata, PVL proviral load, AC asymptomatic
carrier; SM smoldering, ND not determined
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In silico analysis
We analyzed the large amount of NGS data with a pipe-
line specifically designed for HTLV-1 integration sites
and clone size measurement. We processed raw sequen-
cing data according to the workflow that we previously
reported [8]. Briefly, raw data of Read-1 (100 bp for-
ward), Read-3 (100 bp reverse), and Read-2 (8 bp index)
were obtained from the Illumina HiSeq 2000/2500 plat-
form. The quality of sequencing outputs was confirmed
with the FastQC tool [47]. In the case of Read-1, the first
5 bp were trimmed, and the next 5 bp were used to de-
multiplex indexed samples. The following 23 bp, which
correspond to the long terminal repeat primer, were
then removed. The next 27 bp were subjected to a
BLAST search [48] against the long terminal repeat
reference sequence. For the BLAST output reads, the
remaining 40 bp were subjected to a BLAST search
against an HTLV-1 reference sequence [49]. Reads con-
firmed to be from HTLV-1 were removed, and the
sequences and IDs for the remaining reads, which were
considered to be human, were collected. Subsequently,
reads from Read-3 with IDs corresponding to IDs from
Read-1 were collected. The first 40 bp of Read-3 were
trimmed to have the same length as Read-1 sequences.
The paired sequences of Read-1 and Read-3 were
mapped against the human genome (version 19) by
Bowtie [50]. For each sample, two million mapped reads
were used for subsequent analysis. The 5′-mapped posi-
tions were considered to be integration sites. The output
format of isolated integration sites is chromosome:posi-
tion (strand) (e.g., chr7:9408533 (−)). Subsequently,
Read-2 information, which contained 8-bp randomly de-
signed barcodes, was used to retrieve the clone size

based on the tags. Finally, clone size was measured by
computing the frequency of unique tags per each inte-
gration site.

Expressing results via empirical modeling
Formal definition can precisely describe automata by
alphabet and formation rules in mathematics. Parame-
ters of DFA, such as the number of accept states and the
number of transitions exiting from a state, can be clearly
defined by the formal definition. In mathematical lan-
guage, a DFA is a 5-tuple where the components are (Q,
Σ, δ, q0, F). “Q” is a finite set of states. Σ is a non-empty
finite set of symbols (inputs). Transition rules are
denoted by a function called the transition function, δ:
States × Alphabet→ States (δ: Q × Σ→Q). “q0” is a start
state, where q0 ∈ Q. “F” indicates final states that are a
subset of states Q [40, 42, 51].

Results
Analyzing clonality of clinical samples by high-
throughput sequencing
Having access to the biomaterials bank of JSPFAD [44,
45], we obtained 18 samples from HTLV-1–infected in-
dividuals with PVLs ranging from 1.24 to 100.7%.
Detailed information on these samples is presented in
Table 1. The results of our clonality analysis are pre-
sented in Fig. 1, and detailed information on the integra-
tion sites and clone sizes are provided in Additional File
1: Table S1. Samples F18, F17, F1, F2, F3 and F4 showed
a uniform distribution pattern of clones with no large
difference in clone size (polyclonal pattern). The size of
the largest clone in each of these samples was 77, 112,
310, 357, 388 and 314 cells, respectively, and the PVLs

Fig. 1 Clonality of samples with various PVLs. The clonal distribution in genomic DNA samples of the analyzed individuals. Each colored segment
of a bar represents one unique integration site; the width of the segment is the clone size. Bars with segments of relatively similar sizes are
considered to have relatively uniform distribution. The samples are displayed in ascending order based on the size of their largest clones
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were 3.52, 1.24, 7.57, 5.24, 7.16 and 6.02%, respectively
(Fig. 1). F18 and F17 had PVLs lower than 4% and very
small clone sizes. Samples F5, F6, F7, F8, F9 and F10 had
non-uniform sizes (oligoclonal pattern). The size of the
largest clone in each of these samples was 1427, 1446,
1904, 2055, 2029 and 736 cells, respectively; the size of
the second-largest clone was 552, 1088, 1690, 1293, 361
and 725 cells; and the PVLs were 31.15, 23.56, 36.63,
43.24, 28.53 and 15.25% (Fig. 1, Table 1 and 2). Samples
F11, F12, F13, F14, F15 and F16 harbored a dominant
expanded clone (monoclonal pattern) with a high abso-
lute number of infected cells. The largest clone size for
each of these samples was 4883, 5377, 3721, 2848, 2634
and 4909 cells, respectively, and the PVLs were 100.7,
83.81, 64.43, 27.92, 51.9 and 51.42%, respectively (Fig. 1,
Table 1 and 2). The PVL for each sample is also shown
in the same order in Additional file 1: Figure S2. The
PVLs of the samples and the sizes of the largest clone
had a correlation of R2 = 0.785.

Defining appropriate thresholds for the absolute clone
size
Each clone contains infected cells with identical integra-
tion sites. Based on the distribution of clone sizes (abso-
lute number of infected cells in each clone) determined
for the AC and ATL samples, we defined three thresh-
olds for categorizing the clones (Fig. 2). In the simplest
assessment, a cell with replication capacity N is theoret-
ically capable of generating a colony of 2N cells [21]. The
clone sizes were densely distributed in the lower end of
the size range and sparsely distributed in the upper end
of the size range. To illustrate the pattern of clone size
distribution, we show the distribution of the top five lar-
gest clones in Additional file 1: Figure S3. Based on the
density distribution, we tested different thresholds and
selected the thresholds (27, 29, and 211) that best catego-
rized clones. Using these three thresholds, we divided
the observed clones into four distinct size groups: very
small (VS, 1–128 infected cells), small (S, 128–512 in-
fected cells), big (B, 512–2048 infected cells) and very
big (VB, >2048 infected cells). The size and category of
the top five clones across all samples are provided in
Table 2.

Taking advantage of automata theory to describe
clonality data
The DFA in this study can present the observed clones
in an ordered string based on their sizes, which is then
accepted as input and then provide a graphical output
that describes the clonality dynamics. In DFA, states and
transitions can be graphically represented by circles and
arrows, respectively. We defined the four states q0, q1,
q2 and q3 for the machines. To start the analysis, the
NGS-derived, quantified clone-size data were sorted in

ascending order. Then, based on the threshold criteria
that we described above, the sorted data were allocated
to the VS, S, B and VB groups (Table 2), which were rep-
resented by the symbols c1, c2, c3 and c4, respectively.
Our DFA read the clone size data as a finite string of
symbols as an input. The set of all inputs is denoted by
Σ* and can be any combination of c1, c2, c3, and c4. As
an automaton sees an input, it decides whether to transi-
tion from one of a sequence of states (in our case
denoted q0, q1, q2, q3, where qi ∈ Q, 0 ≤ i ≤ 3) to an-
other. The transition function δ takes the current state
and the recent symbol as its inputs. Fig. 3 illustrates the
DFA machines for clonality data obtained from HTLV-
1–infected individuals. According to the clonality data
obtained from the clinical samples (Fig. 1 and Table 2),
we designed seven DFA machines (M1–M7). To de-
scribe them informally, these machines are composed of
different combinations of VS, S, B, and VB: [M1: VS, S],
[M2: VS, B], [M3: VS, VB], [M4: VS, S, B], [M5: VS, S,
VB], [M6: VS, S, B, VB], and [M7: VS, B, VB]. We repre-
sented these machines by state diagrams and transition
tables in Fig. 3. The clonality patterns of F1, F2, F3 and
F4 are modeled by M1; the pattern of F6 is modeled by
M2; the patterns of F11, F12 and F15 are modeled by
M3; the patterns of F5, F7, F9 and F10 are modeled by
M4; the pattern of F14 is modeled by M5; the pattern of
F13 is modeled by M6; and the pattern of F8 is modeled
M7 (Fig. 3). Finally, to achieve a model describing all
clonality data, we combined these seven machines and
proposed our main machine (M) (Fig. 4). State q1 means
that the clonality pattern is polyclonal, and the patient
status is either AC or SM with low PVL. In other words,
q1 accepts any combination of c1 and c2 clone sizes.
State q2 means that the clonality pattern is oligoclonal,
and the patient status is either SM or chronic, indicating
that q2 accepts any combination of c1, c2 and c3 clone
sizes. State q3 means that the clonality pattern is mono-
clonal or largely expanded oligoclonal, and the patient
status is either SM, chronic or acute. In other words, q3
accepts any combination of c1, c2, c3 and c4. Our final
DFA (M; Fig. 4) completely represents clonal expansion
based on integration sites across all samples. DFA of AC
and SM samples with low PVLs (F1, F2, F3 and F4) ter-
minated in the final state of q1. DFA of SM and chronic
samples (F6, F5, F7, F9 and F10) terminated in the final
state of q2. DFA of SM, chronic and acute samples (F8,
F11, F12, F13, F14, F15 and F16) terminated at q3.

Discussion
Modern medicine has done much to eradicate and cure
disease, but it has been less successful in some areas,
such as cancer, which still remains one of the most com-
mon incurable diseases. Remarkable progress has been
made recently in the genomics of cancer with the advent
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of NGS technologies. However, this explosion in rapidly
generated, massive sets of loosely structured raw data
has challenged our abilities to quantitatively analyze and
draw knowledge from this information [52]. Formal
modeling can address this problem by enabling appro-
priate simplification of real data and making sense of
observed experimental data. Empirical modeling pro-
vides an accurate and complete picture of observed
complex data, and it has many applications in the life
science [53]. The merging of mathematics, computer sci-
ence and biology in empirical models can reshape these
fields by providing new ways of thinking about a prob-
lem. The virtue of mathematics in modeling is to confer
clarity and precision to explanations, and to provide
coherence and formalism to experimental observations
[54]. The quantitative and objective power of mathemat-
ics allows understanding of otherwise hidden aspects of
biological phenomena [28]. Computational models en-
able intuitive representation of the masses of biological
data via their visualization capability, which in turn facil-
itates mechanistic understanding of disease [55].
The most effective and appropriate type of mathemat-

ical/computational modeling varies for each biological
question. A practical model that is properly formulated
to explain and interpret experimental and clinical data
obtained from analyzing clonal expansion in ATL is
greatly needed. We need a model that can imitate the
components of our biological system (the clonality
patterns and clone sizes) and reflect its properties
intuitively.
In the current study, we aimed to organize and intui-

tively express data from NGS on clonal expansion of
HTLV-1–infected individuals using finite automata

theory. Finite automata theory can describe and analyze
dynamic behaviors of systems, and it is capable of simply
representing complicated processes [43, 52]. Finite au-
tomata theory, which is a well-developed formal system,
is used in processing various strings and sequences,
especially in DNA sequence processing [51]. DFA are a
subtype of finite automata theory and are simple compu-
tational structures that can formally illustrate the size
order and combination of observed clones (clonality
patterns). Our model translates the observed data into
formal mathematical language by formulating a precise
relationship between a set of clones in terms of their
sizes and presenting this relationship in an easily under-
stood state diagram.
Conventionally, clonality has been described as poly-

clonal, oligoclonal and monoclonal [56, 57]. However,
these pattern descriptions are not quantifiable. For in-
stance, it is known that the monoclonal expansion that
results in large clones is an intrinsic feature of ATL de-
velopment [20]; however, absolute clone sizes to describe
this phenomenon have not been determined. In recogni-
tion of this limitation, we categorized the observed clone
sizes into defined groups by which we could intuitively
assess the degree of clonal expansion. We defined four
groups of clonality patterns and four groups of clone
sizes. Thus we defined polyclonal as a pattern showing
different combinations and large numbers of VS and/or
S clones, oligoclonal as a pattern showing more than
one B or VB clone in combination with large numbers
of VS and/or S clones, and monoclonal as a pattern
showing a single VB or B clone in combination with a
background of VS and/or S clones. In this way, we could
attribute a meaning to the observed clone sizes and

Fig. 2 Distribution of clone sizes among the analyzed samples. Observed clone sizes were scatter plotted for each sample. The clone sizes are shown
on a logarithmic scale. The red lines indicate the three thresholds of 128, 512 and 2048 cells distinguishing the four size groups, VS, S, B and VB
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assess their contribution to ATL progression. In other
words, we quantified how large a clone must be to affect
the clinical status of an infected individual.
Generally, it is known that competition between clones

shapes their distribution [3], but we do not know how a
clone wins this competition to undergo clonal expan-
sion. Presumably, a clone needs to become large enough
to gain a fitness advantage to out-compete other clones.
Coexistence of large numbers of S and VS clones, as well
as presence of limited numbers of B or VB clones to-
gether with large numbers of S or VS clones in each
given sample was observed. Total number and type of
isolated clones are provided in Table 1, and Table 2.
Therefore, we suggest that small cell populations (VS

and S) do not have a selective advantage and can coexist
with other clones. ACs and patients with SM ATL with
low PVL harbored only VS and S clones, whereas all
dominant clones in aggressive ATL (acute) were VB. The
observed clone sizes were sorted in ascending order, and
then thresholds of 27, 29 and 211 cells were applied.
Hence, observed clone sizes were categorized into four
distinct groups. Over the threshold of 211 cells, the lar-
gest clones in the samples that had monoclonal patterns
were categorized within the same group. Within the
threshold range of 29 to 211 cells, the two largest clones
in the samples that had oligoclonal patterns were catego-
rized in the same group. Within the threshold range of
27 to 29 cells, clones in the samples that had polyclonal

Fig. 3 DFA machines for each sample. State diagrams and transition tables of the samples are represented by seven DFA machines (M1–M7). Asterisks
indicate final states
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patterns with PVLs > 4% were categorized in the same
group. Below the threshold of 27 cells, the clones in the
samples that had polyclonal patterns with PVLs < 4%
were categorized in the same group. This quantified
categorization of clone size not only is more intuitive for
biological interpretation but also facilitates the transferal
of clone size information into our model.
To convert the complex nature of data on clonal ex-

pansion into a manageable level of simplicity, borrowed
the aid of mathematics and computer science. Our pro-
posed DFA describe the clonality status of infected indi-
viduals as the output of final states q1, q2 and q3.
Transitions are described by the function δ, which speci-
fies exactly one next state for each possible combination
of state and input symbol. The rows in the transition
table indicate the states Q, the columns the input sym-
bols, and the table entries the transition function δ. We
indicated the accepting state with an asterisk in the
figures. F = q1, q2, q3 indicates the final states, which
consist of a set of states Q.
The final state of q1 represents an early stage of clonal

expansion in which clone sizes does not exceed the
threshold of 512 infected cells. AC patients with PVL >
4% and the SM ATL patients with low PVL terminated
in this state. The DFA of samples of clinically progressed
patients with SM and chronic subtypes with maximum
clone sizes of 2048 infected cells terminated at the final
state of q2. The final state of q3 included samples of the

SM, chronic and acute subtypes with clone size > 2048.
Acute samples, which represent the final stage of ATL
progression, were observed only in q3. VB clones were
observed only in the samples whose DFA terminated at
q3. In the current study, c4 (VB clone) was observed
only once in each analyzed sample. Since, presence of
more than one VB clone is theoretically possible, we put
a loop on the q3 final state of our final DFA machine. In
the case of observing such a sample, the clonality will be
defined as a largely expanded oligoclonal pattern with
q3 final state.
We conducted a cross-sectional analysis of HTLV-1–

infected individuals with a broad range of PVLs, repre-
senting different progression states of disease. Although
analyzing the same individuals over time is of great im-
portance, obtaining these kinds of samples is difficult
and needs to be addressed in future studies. However,
having access to the JSPFAD biomaterials bank allowed
us to obtain two longitudinal (2 years apart) samples
from the same individual (F12 and F16). By analyzing
these samples, we could directly examine the hypotheses
that samples with a higher final state have a higher
chance of disease progression. At the first time point
(F12) the patient was diagnosed with chronic ATL and
had a PVL of 83.81% and major clone size of 5377. At
the second time point (F16), the patient had progressed
to the acute stage and had a PVL of 51.42% and clone
size of 4909. The PVL and size of the major clone at the

Fig. 4 The main DFA machine representing clonality across all samples. Both the state diagram and transition table for all samples for machine M
are shown. q0 is the start state; c1, c2, c3, and c4 correspond to VS, S, B, and VB, respectively. Asterisks indicate final states
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second time point were presumably decreased because
of therapy. However, the major clone with integration
site of Chr9:123682855 (+) remained stable and domin-
ant over the 2-year period. The DFA for both time
points terminated in q3. Thus, it appears that reaching
the final state of q3 is a factor that can be used as a risk
indicator. Because the final state of this patient was
already q3 at the first time point, progression to the
acute stage was predicted by our DFA. As further valid-
ation of our DFA, the other patients with acute ATL also
had DFA that terminated at q3, and thus we expected
these patients to have a poor prognosis. Subsequently,
we confirmed the poor prognosis of these patients (F13,
F14, F15 and F16) by checking their clinical follow-up
data, which showed that they had all died of the disease.
However, AC patients (F1, F2 and F3) and patients with
SM ATL with low PVL (F4) who showed the final state
of q1 in the DFA remained clinically stable without dis-
ease progression in two years.
The data suggest that our final proposed machine (M)

not only describes the clonality status of patients at sin-
gle time points within a cross-sectional analysis but also
opens the door for future analyses of longitudinal sam-
ples for predictive purposes. The predictive ability of this
model with larger numbers of samples from the same in-
dividuals over time still needs to be examined.
We believe our model is an appropriate empirical

model for this system because it uses real biological data
without theoretical assumptions as well as the fewest
number of variables and the simplest set of relationships
to explain the clonality status of samples. This model
has the potential to provide insight into clonal expansion
of ATL, but we are still far from understanding exactly
when, where and at which step clonal expansion and
transformation occur and how they can be controlled.
However, our multidisciplinary strategy for translating
the data of clonal expansion into the computable lan-
guage of mathematics via modeling opens new avenues
to approach these relevant questions in future studies.
Currently, ATL patients are categorized into different

subtypes of disease progression based on clinical mani-
festations [46]. These standard clinical criteria for
diagnosis mainly include organ involvement, leukemic
manifestation, and levels of lactate dehydrogenase and
calcium [58]. However, molecular features that represent
the disease status remain to be characterized. Consider-
ing that in clinical practice distinct therapeutic strategies
are used for the treatment of different subtypes of ATL,
accurate subtype classification is of great importance.
Thus, there is demand for more robust classification of
ATL subtypes mediated by a genomic feature, such as
HTLV-1 clonal composition. This kind of analysis would
be also helpful in clinical decision-making, such as mon-
itoring the outcome of therapeutic interventions, based

on analysis of the clonality status of patients before and
after therapy [59]. In this respect, constructing an empir-
ical model of clonal expansion would be one of the pri-
mary steps towards developing a powerful software tool
for automated analysis and interpretation of individual
clonality, which holds great promise for molecular
diagnostics and personalized therapeutic interventions.

Conclusions
We used HTLV-1 integration sites as a stable fingerprint
to identify infected cells and accurately monitor their
clonal expansion. We isolated large numbers of integra-
tion sites and quantified the clone sizes of eighteen clin-
ical samples by our high throughput and validated
methodology. We defined a threshold system that cate-
gorizes the size of clones into discrete groups based on
the number of infected cells in each clone. We could
quantify polyclonal, oligoclonal and monoclonal patterns
using this categorization. We found that harboring larger
clones was strongly associated with the progression of a
patient to the more aggressive type of ATL, whereas
smaller clones were observed across all samples and had
little impact on progression. All samples with low PVLs
(<10%) had smaller clones, however those with higher
PVL had both smaller clones and one or two dominant
larger clones. For the first time, we suggested DFA as a
formalism that can represent sequential order of clones.
We found that our DFA accurately reflect the true
patterns of clonal expansion for each sample. Analyzing
a large cohort of clinical samples from the same patients
over time with the appropriate formal models will pro-
vide new insights into the clonal expansion of ATL and
will allow for possible clinical applications of clonality in
molecular diagnostics and predictions of prognosis.

Additional files

Additional file 1: Table S1. Five largest clones and their integration-site
positions for each sample. Figure S1. Overview of the library preparation
for sequencing and data analysis. We used a specific pipeline to isolate
integration sites from the raw NGS data. In the case of Read-1, the first 5 bp
were trimmed, the next 5 bp were used to de-multiplex indexed samples,
the 23 bp corresponding to the LTR primer were removed, the next 27 bp
were subjected to a BLAST search against the long terminal repeat (LTR)
reference sequence, and the remaining 40 bp were subjected to a BLAST
search against an HTLV-1 reference sequence. Reads confirmed to be from
HTLV-1 were removed, and the remaining reads were considered to be
human. Using Bowtie, we then aligned those reads to the human genome
(hg19). Subsequently, we retrieved data from Read-2 (tag information) to
measure the clone sizes. The final output included information about the
integration sites and clone sizes and was input as a string of information
into our model. Finally we constructed DFA machines for each analyzed
sample. Figure S2. Distribution of PVLs across the analyzed samples. The
samples are displayed in descending order based on their largest clone size.
(F18, F17, F1, F4, F2, F3, F10, F5, F6, F7, F9, F8, F15, F14, F13, F11, F16 and
F12) on X axis. The corresponding PVLs of each sample are shown on Y axis.
The PVLs and the size of largest clones had a correlation of R2 = 0.785.
Figure S3. Clone size distribution of the five largest clones of each sample.
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The samples are displayed in ascending order based on their largest clones.
Three main patterns, polyclonal, oligoclonal and monoclonal, were observed
and categorized. The polyclonal pattern is divided (blue dashed line) into
samples with PVL≤ 4% and PVL > 4%. (PDF 386 kb)
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