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Proper holomorphic mappings between symmetrized ellipsoids

Pawe�l Zapa�lowski

Abstract. We characterize the existence of proper holomorphic mappings
in the special class of bounded (1, 2, . . . , n)-balanced domains in C

n, called
the symmetrized ellipsoids. Using this result we conclude that there are no
non-trivial proper holomorphic self-mappings in the class of symmetrized
ellipsoids. We also describe the automorphism groups of these domains.
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1. Introduction and statement of results. For n � 2 and p > 0 let

Bp,n := {(z1, . . . , zn) ∈ C
n :

n∑

j=1

|zj |2p < 1}

denote the generalized complex ellipsoid. We shall write Bn := B1,n,T := ∂B1.
Note that Bp,n is a bounded, complete Reinhardt domain.

Let πn = (πn,1, . . . , πn,n) : C
n → C

n be defined as follows

πn,k(z) =
∑

1�j1<···<jk�n

zj1 . . . zjk
, 1 � k � n, z = (z1, . . . , zn) ∈ C

n.

Note that πn is a proper holomorphic mapping with multiplicity n!, πn|Bp,n
:

Bp,n → πn(Bp,n) is proper too.
The set

Ep,n := πn(Bp,n)

is called the symmetrized (p, n)-ellipsoid. Note that Ep,n is a bounded (1, 2, . . . ,
n)-balanced domain (recall that a domain D ⊂ C

n is called the (k1, . . . , kn)-
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balanced , where k1, . . . , kn ∈ N, if (λk1z1, . . . , λ
knzn) ∈ D for any (z1, . . . , zn) ∈

D and λ ∈ B1). Geometric properties of Ep,n were studied in [12]. Here we
answer some of the open questions posed there. As the definition of the symme-
trized ellipsoid is similar to the one of the symmetrized polydisc Gn := πn(Bn

1 ),
which has drawn a lot of attention recently (see [1,4,6,10] and the references
given there), it is quite natural to ask which properties of the symmetrized
polydisc are inherited by the symmetrized ellipsoids.

Our aim is to give necessary and sufficient condition for existence of the
proper holomorphic mappings between the symmetrized ellipsoids.

Here is some notation. Let Sn denote the group of permutations of the set
{1, . . . , n}. For σ ∈ Sn, z = (z1, . . . , zn) ∈ C

n denote zσ := (zσ(1), . . . , zσ(n)).
Next, for any A ⊂ C put A∗ := A\{0}, An

∗ := (A∗)n. Moreover, for any
z = (z1, . . . , zn) ∈ C

n, w = (w1, . . . , wn) ∈ C
n, t ∈ C and r > 0 we put

zw := (z1w1, . . . , znwn), tz := (tz1, . . . , tzn), and zr := (zr
1 , . . . , z

r
n).

Remark 1. (a) Let l ∈ N. Observe that C
n � z �→ πn(zl) ∈ C

n is a sym-
metric polynomial mapping. According to the fundamental theorem of
symmetric polynomials (see, e.g., [9]) there is a unique polynomial map-
ping Pl : C

n → C
n such that πn(zl) = Pl(πn(z)), z ∈ C

n. In particular,
Pl(Ep,n) = Ep/l,n for any p > 0.

(b) Fix A,B,C ∈ C and put L := (L1, . . . , Ln) : C
n → C

n, where

Lj(z) := A
n∑

k=1

zk +Bzj + C, z = (z1, . . . , zn) ∈ C
n, j = 1, . . . , n.

Observe that πn ◦L is a symmetric polynomial mapping. According to the
fundamental theorem of symmetric polynomials there is a unique polynomial
mapping SL : C

n → C
n such that πn ◦ L = SL ◦ πn.

Now we are in position to formulate our main result.

Theorem 2. There exists proper holomorphic mapping f : Ep,n → Eq,n iff
p/q ∈ N. Furthermore, if p/q ∈ N, the only proper holomorphic mappings
f : Ep,n → Eq,n

(a) in case p �= 1, or q �= 1/(2m),m ∈ N, or n �= 2 are of the form

f = Pp/q ◦ φ, (1)

where Pp/q is as in Remark 1(a) and φ is an automorphism of Ep,n;
(b) in case p = 1, q = 1/(2m),m ∈ N, and n = 2 are of the form (1) or

f = Pm ◦ φIII ◦ P2 ◦ φII ,

where φII (resp. φIII) is the automorphism of E1,2 (resp. E1/2,2) defined
in Corollary 4.

Similar classification for the class of generalized complex ellipsoids (with
not necessarily equal exponents on each coordinate) was done in [8] (the case
of positive integer exponents) and [5] (case of positive real exponents).

An immediate consequence of Theorem 2 is the following Alexander-type
theorem for the symmetrized ellipsoids saying that every proper holomorphic
self-map of the symmetrized ellipsoid is an automorphism.
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Corollary 3. Let f : Ep,n → Ep,n be a proper holomorphic self-mapping. Then
f is an automorphism.

A theorem of that type was obtained in the case of Bn in [3] and its general-
ization on complex ellipsoids was done in [8] and [5]. Recently, a similar result
was obtained in [7] for the tetrablock, which is a (1, 1, 2)-balanced domain
in C

3. Characterization of proper holomorphic self-mappings of symmetrized
polydisc is done in [6].

Furthermore, from the proof of Theorem 2, the automorphisms group of
Ep,n may be easily derived.

Corollary 4. (a) If p �= 1 and (p, n) �= (1/2, 2) then the only automorphisms
of Ep,n are of the form

φI(z1, z2, . . . , zn) = (ζz1, ζ2z2, . . . , ζ
nzn), (z1, z2 . . . , zn) ∈ Ep,n, (2)

where ζ ∈ T.
(b) The only automorphisms of E1,n, are of the form

φII(z) =
(
SLϕII

,1(z)
n(1 − a0z1)

, . . . ,
SLϕII

,n(z)
nn(1 − a0z1)n

)
,

z = (z1, . . . , zn) ∈ E1,n, (3)

where SLϕII
= (SLϕII

,1, . . . , SLϕII
,n) is the polynomial mapping as in

Remark 1(b) induced by LϕII
= (LϕII ,1, . . . , LϕII ,n) : C

n → C
n, where

LϕII ,j(z1, . . . , zn) := ζ1

(
n∑

k=1

zk − na0

)
+ ζ2

√
1 − na2

0

(
n∑

k=1

zk − nzj

)
,

for some ζ1, ζ2 ∈ T, a0 ∈ R, a2
0 <

1
n .

(c) The only automorphisms of E1/2,2 are of the form (2) or

φIII(z1, z2) =
(
ζz1, ζ

2
(

1
4z

2
1 − z2

))
, (z1, z2) ∈ E1/2,2, (4)

where ζ ∈ T.

Remark 5. It should be mentioned that the automorphisms of the form (2)
are special cases of the automorphisms of the form (3).

2. Proofs.

Remark 6. For a (k1, . . . , kn)-balanced domain D ⊂ C
n one may define the

generalized Minkowski functional

μD(z1, . . . , zn) := inf{λ > 0 : (λ−k1z1, . . . , λ
−knzn) ∈ D}, (z1, . . . , zn) ∈ C

n.

Observe that for a (1, 2, . . . , n)-balanced domain Ep,n we have

μEp,n
(z) = max

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

|wj |2p

⎞

⎠
1/2p

: (w1, . . . , wn) ∈ π−1
n (z)

⎫
⎪⎬

⎪⎭
, z ∈ C

n.

In particular, μEp,n
is continuous.
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Proof of Theorem 2. If p/q ∈ N then f(z) := Pp/q(z) is a proper holomorphic
mapping between Ep,n and Eq,n.

Assume f : Ep,n → Eq,n is proper and holomorphic. Since μEp,n
is contin-

uous, it follows from [7] that f extends holomorphically past the boundary,
∂Ep,n, of Ep,n. Hence there is a domain V ⊂ C

n such that
• V ∩ ∂Ep,n �= ∅,
• the mapping f |V : V → f(V ) is biholomorphic,
• the mappings πn|π−1

n (V ) : π−1
n (V ) → V and πn|π−1

n (f(V )) : π−1
n (f(V )) →

f(V ) are biholomorphic.
Since πn(∂Bp,n) = ∂Ep,n, it is not restrictive to assume that for a domain
U := π−1

n (V ) ⊂ C
n

• U ∩ ∂Bp,n �= ∅,

• the mapping U � z
gp�−→ zp ∈ gp(U) is well defined and biholomorphic,

• the mapping π−1
n (f(πn(U))) � z

gq�−→ zq ∈ gq(π−1
n (f(πn(U)))) is well

defined and biholomorphic.
Hence the mapping ψ := π−1

n ◦ f ◦ πn|U : U → ψ(U) is well defined and biho-
lomorphic. Consequently, the mapping ϕ := gq ◦ ψ ◦ g−1

p |gp(U) is holomorphic
and ϕ|gp(U)∩Bn

is biholomorphic. As ϕ(gp(U)∩∂Bn) ⊂ ∂Bn, it follows from [2]
that ϕ extends to an automorphism of Bn, still denoted by ϕ = (ϕ1, . . . , ϕn).
Hence

πn(ϕ1/q(z)) = f(πn(z1/p)), z ∈ gp(U). (5)

We use the following lemma which will be proved afterwards.

Lemma 7. Let ϕ be an automorphism of Bn which satisfies (5) and let
m := 1/q, l := 1/p.
(a) If m /∈ N then m/l ∈ N and, up to permutation of variables, ϕ is of the

form

ϕI(z1, . . . , zn) = ζ(η1z1, . . . , ηnzn), (z1, . . . , zn) ∈ Bn, (6)

for some ζ, ηj ∈ T, ηm
j = 1, j = 1, . . . , n.

(b) If m ∈ N then l ∈ N and m/l ∈ N. Moreover,
(i) if l = 1 and n � 3 then, up to permutation of variables and compo-

nents, ϕ is of the form ϕII = (ϕII,1, . . . , ϕII,n), where

ϕII,j(z1, . . . , zn) =
ηj

n(1 − a0

∑n
k=1 zk)

(
ζ1

(
n∑

k=1

zk − na0

)

+ζ2
√

1 − na2
0

(
n∑

k=1

zk − nzj

))
,

(z1, . . . , zn) ∈ Bn, (7)

for some a0 ∈ R, a2
0 <

1
n , ζ1, ζ2, ηj ∈ T, ηm

j = 1, j = 1, . . . , n;
(ii) if l � 2 and n � 3 then, up to permutation of variables and compo-

nents, ϕ is of the form (6);
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(iii) if l = 1 and n = 2 then, up to permutation of variables and compo-
nents, ϕ is of the form (7); moreover, if m is even then, additionally,
up to permutation of variables and components, ϕ is of the form

ϕIII(z1, z2) =
1√

2(1 − a0(z1 + z2))(
ζ1(z1 + z2 − 2a0), ζ2

√
1 − 2a2

0(z1 − z2)
)
,

(z1, z2) ∈ B2, (8)

for some ζ1, ζ2 ∈ T and a0 ∈ R, a2
0 <

1
2 ;

(iv) if l = 2 and n = 2 then, up to permutation of variables and compo-
nents, ϕ is of the form (6) or

ϕIV (z1, z2) =
ζ√
2

(z1 + z2, η(z1 − z2)), (z1, z2) ∈ B2, (9)

for some ζ, η ∈ T, ηm = 1.

Remark 8. It should be mentioned that the automorphisms of the form (6)
are special cases of the automorphisms of the form (7).

Note that for any automorphism ϕ of Bn which satisfies (6), (7), or
(9) respectively, there is an automorphism ϕ̃ of Bn such that πn(ϕm(z)) =
πn(ϕ̃m(z)) and πn(ϕ̃l(z)) = πn(ϕ̃l(zσ)) for any z ∈ Bn, and σ ∈ Sn.

Indeed,
• in case of (6) it suffices to take ϕ̃ of the form (6) with ηj = 1, j = 1, . . . , n.

Then the relation φ ◦ πn = πn ◦ ϕ̃ defines the automorphism φI of Ep,n

of the form (2), which obviously satisfies the relation

φ(πn(z1/p)) = πn(ϕ̃1/p(z)), z ∈ Bn. (10)

• In case of (7) it suffices to take ϕ̃ of the form (7) with ηj = 1, j = 1, . . . , n.
Then the relation φ ◦ πn = πn ◦ ϕ̃ defines the automorphism φII of E1,n

of the form (3), which obviously satisfies the relation (10).
• In case of (9) it suffices to take ϕ̃ of the form (9) with η2 = 1. Then the

relation (10), which in this case has form

φ(π2(z2)) = π2(ϕ̃2(z)), z ∈ B2,

defines the automorphism φIII of E1/2,2 of the form (4).
It follows from Lemma 7 that p/q = m/l ∈ N. Consequently, using (10),

f(πn(z1/p)) = πn(ϕ1/q(z)) = πn(ϕ̃1/q(z)) = πn((ϕ̃1/p(z))p/q)

= Pp/q(πn(ϕ̃1/p(z))) = Pp/q(φ(πn(z1/p))), z ∈ gp(U).

The identity principle implies that f = Pp/q ◦ φ which ends the proof in the
case, when equality (5) is satisfied by the automorphisms of the form (6), (7),
or (9).

In the case when equality (5) is satisfied by the automorphism of the form
(8), the situation is slightly different and we proceed as follows. First observe
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that ϕIII = ϕIV ◦ ϕII , where ϕIV and ϕII are taken with η = η1 = η2 = 1.
Since m is even, m = 2m′ for some m′ ∈ N. Then the previous cases imply

f(π2(z)) = π2(ϕ2m′
III (z)) = π2(ϕ2m′

IV (ϕII(z))) = Pm′(π2(ϕ2
IV (ϕII(z))))

= Pm′(φIII(π2(ϕ2
II(z)))) = Pm′(φIII(P2(φII(π2(z))))), z ∈ g1(U),

whence f = Pm′ ◦ φIII ◦ P2 ◦ φII . �

Remark 9. Following [11] any automorphism ϕ = (ϕ1, . . . , ϕn) of the unit ball
is of the form

ϕj(z) =
∑n

k=1 qj,k(zk − ak)
R(1 −∑n

k=1 ākzk)
, z = (z1, . . . , zn) ∈ Bn, j = 1, . . . , n,

where a = (a1, . . . , an) ∈ Bn is arbitrary, Q = [qj,k] and R are respectively a
n× n matrix and a constant such that

Q̄(In − āta)tQ = In, R̄(1 − taā)R = 1,

where In is the unit n × n matrix, whereas Ā (resp. tA) is the conjugate
(resp. transpose) of an arbitrary matrix A. Moreover, a,Q, and R satisfy

⎧
⎪⎨

⎪⎩

tQQ̄− |R|2āta = In

|R|2 − tatQQ̄ā = 1
tQQ̄ā = |R|2a

. (11)

In particular, Q is unitary if a = 0.

Proof of Lemma 7. In the proof we will use the form of automorphism ϕ of
Bn as in Remark 9.

Ad (a). Assume m /∈ N. Note that the function on the right side of (5)
is well defined on any domain D ⊂ Bn ∩ C

n
∗ such that the fiber Dj := {λ ∈

C : (z1, . . . , zj−1, λ, zj+1, . . . , zn) ∈ D} is connected and simply connected for
j = 1, . . . , n. In particular, the function D � z �→ (

∏n
j=1 ϕj(z))m is holomor-

phic. Assumption m /∈ N implies that

ϕ(Bn ∩ C
n
∗ ) ⊂ C

n
∗ . (12)

We show that ϕ is of the form (6).
First we show that a = 0 and for any j ∈ {1, . . . , n} there exists a unique

k such that qj,k �= 0.
Indeed, suppose the contrary. Then either
• there are j, k1, k2 with k1 �= k2 and qj,k1 �= 0 �= qj,k2 , or
• there are j, k1 with qj,k1 �= 0 �= ak1 (since ϕ is one-to-one mapping, for

any k there is a j such that qj,k �= 0).
In both cases one may define

wk1 := ak1 −
∑

k �=k1

qj,k
qj,k1

(wk − ak) �= 0,

provided wk ∈ C∗, k �= k1, are chosen close to ak enough. Clearly, one may
assume that w := (w1, . . . , wn) ∈ Bn. Consequently, w ∈ Bn∩C

n
∗ with ϕj(w) =

0—a contradiction with (12).
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First equality in (11) implies that ϕ(z1, . . . , zn) = (ζ1zσ(1), . . . , ζnzσ(n)) for
some σ ∈ Sn and ζj ∈ T, j = 1, . . . , n. Moreover, (5) and the identity principle
imply that for any ω ∈ Sn there is τ ∈ Sn such that

(ζm
1 z

m
ω(1), . . . , ζ

m
n z

m
ω(n)) = (ζm

τ(1)z
m
τ(1), . . . , ζ

m
τ(n)z

m
τ(n)), z ∈ Bn,

whence we conclude that ζm
j = ζm

k = ζ̃ for j, k = 1, . . . , n, i.e., ϕ is of the
form (6).

Finally, observe that (5) implies that

f(πn(zl)) = πn(ζ̃zm), z ∈ gp(U).

Hence fn(z1, . . . , zn) = ζ̃nz
m/l
n . Since f is holomorphic on Ep,n, we conclude

that m/l ∈ N.
Ad (b). Assume now m ∈ N. Then πn ◦ ϕm : Bn → E1/m,n is the proper

holomorphic mapping with multiplicity n!m. Thus equality (5) extends on Bn

and implies that g1/p : Bn → Bp,n is the proper holomorphic mapping with
multiplicity 1/p = l ∈ N,m = kl, where k ∈ N is the multiplicity of f .

The equality (5) and the identity principle imply that for any σ ∈ Sn

and ξ = (ξ1, . . . , ξn) ∈ T
n, ξl

j = 1, j = 1, . . . , n, there are τ ∈ Sn and η =
(η1, . . . , ηn) ∈ T

n, ηm
j = 1, j = 1, . . . , n, such that

ϕ(z) = ηϕτ (ξzσ), z ∈ Bn. (13)

Observe that condition (13) implies that a = (a0, . . . , a0) for some a0 ∈ 1√
n

B1.
Indeed, for any σ ∈ Sn there are τ ∈ Sn and η ∈ T

n such that

0 = ϕ(a) = ηϕτ (aσ).

Hence ϕ(aσ) = 0, i.e., a = aσ.
Moreover, for l > 1ϕ is unitary. Indeed, suppose a �= 0. Then there is

ξ ∈ T
n, ξl = 1, with ξa �= a. Hence 0 = ϕ(a) = ηϕτ (ξa)—contradiction, since

ϕτ (a) = 0.
Ad (i). The equality (5) implies that z �→ πn(ϕm(z)) is symmetric polyno-

mial mapping. In particular, the polynomial

C
n � (z1, . . . , zn) �→

n∏

j=1

(
n∑

k=1

qj,k(zk − a0)

)m

(14)

is symmetric.
Let Nj := #{k : qj,k �= 0}, j = 1, 2, . . . , n, and let

NQ := min{#{z : ∃j,k ηjqj,k = z} : ηj ∈ T, ηm
j = 1, j = 1, . . . , n}.

The matrix Q̂ = Q̂(η) = [ηjqj,k] for η = (η1, . . . , ηn) ∈ T
n, ηm

j = 1, j =
1, . . . , n, such that NQ = #{z : ∃j,k ηjqj,k = z} we call the reduced matrix of
the matrix Q.

Note that the polynomial (14) has at most n different—up to multiplica-
tive constant—affine factors, i.e., factors of the form b1z1 + · · · + bnzn + b0.
Consequently, the symmetry of the polynomial (14) implies that
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(i–i) N1 = N2 = · · · = Nn = n, or
(i–ii) N1 = N2 = · · · = Nn = n− 1, or

(i–iii) N1 = N2 = · · · = Nn = 1.

We consider these cases separately.
Case (i–i). Let Nj = n, j = 1, 2, . . . , n. We consider three subcases.

• NQ = 1. Then the first equality in (11) leads to a contradiction.
• NQ = 2 and one of the entries in the reduced matrix Q̂ appears in some

row exactly once. Because of the symmetry of the polynomial (14) we
infer that it is the case in every row and in every column. Hence we may
assume that

qj,k =

{
ηjα, if j �= k

ηjβ, if j = k
, (15)

for some α, β ∈ C, α �= β. Then equalities (11) give
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n− 1)|α|2 + |β|2 = 1 + |a0|2|R|2
(n− 2)|α|2 + 2 Re(αβ̄) = |a0|2|R|2
|R|2 − n|a0|2|(n− 1)α+ β|2 = 1
ā0|(n− 1)α+ β|2 = a0|R|2

, (16)

which, after elementary calculation, implies

α =
1
n

(
ζ1√

1 − na2
0

+ ζ2

)
, β =

1
n

(
ζ1√

1 − na2
0

− (n− 1)ζ2

)

for some a0 ∈ R, a2
0 <

1
n , and ζ1, ζ2 ∈ T. Consequently,

qj,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηj

n

(
ζ1√

1−na2
0

+ ζ2

)
, if j �= k

ηj

n

(
ζ1√

1−na2
0

− (n− 1)ζ2

)
, if j = k

(17)

for some a0 ∈ R, a2
0 <

1
n , and ζ1, ζ2, ηj ∈ T, ηm

j = 1, j = 1, . . . , n. Condi-
tion (17) implies that ϕ is of the form (7).

• NQ � 2 and each of the entries in the reduced matrix Q̂ appears in some
row at least twice. Because of the symmetry of the polynomial (14) we
infer that it is the case in every row. Denote all entries of the reduced
matrix Q̂ by α1, . . . , αNQ

and let Nαj
denote the number of entries of the

matrix Q̂ equal to αj in any row. By the symmetry, the polynomial (14)
has to have n!/

∏NQ

j=1Nαj
! different factors. Since Nαj

� 2, j = 1, . . . , NQ,
we easily conclude that

n!
∏NQ

j=1Nαj
!
> n

—a contradiction.
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Case (i–ii). Suppose now that Nj = n − 1 � 2, j = 1, 2, . . . , n. Then the
symmetry of the polynomial (14) implies that for any k there is a unique
j = j(k) such that qj,k = 0. We consider two subcases.

• Assume that NQ = 2. Thus, if qj,k �= 0 then qj,k = ηjα for some ηj ∈
T, ηm

j = 1, j = 1, . . . , n, and α ∈ C∗. Hence we may assume that qj,k’s
satisfy condition (15) with α �= β = 0. Then equalities (11) give (16)
with β = 0, which, after elementary calculation, implies that α ∈ T and
a0 = ±√

n− 2/(n − 1). Note that in this case ϕ is of the form (7) with
ζ1 = ζ2 and a0 = ±√

n− 2/(n− 1).
• Assume now that NQ � 3. Then the symmetric polynomial (14) has to

have at least 2n different factors—a contradiction.

Case (i–iii). If Nj = 1, j = 1, 2, . . . , n, then for any k there is a unique
j = j(k) such that qj,k �= 0. Consequently,

ϕ(z1, . . . , zn) = (q1,σ(1)(zσ(1) − a0), . . . , qn,σ(n)(zσ(n) − a0))

for some σ ∈ Sn. First equality in (11) implies that a0 = 0 and |qj,σ(j)| =
1, j = 1, . . . , n. Repeating the argument from part (a) we conclude that ϕ is
of the form (6).

Ad (ii). We repeat the reasoning from the case (i). Since a = 0, the case
Nj = 1, j = 1, . . . , n, implies that ϕ is of the form (6).

Suppose now that Nj = N ∈ {n−1, n}, j = 1, 2, . . . , n. Equality (5) implies
that πn(ϕm(z)) = πn(ϕm(ξz)) for any z ∈ Bn and ξ = (ξ1, . . . , ξn) ∈ T

n,
ξl
j = 1, j = 1, . . . , n, l � 2.

• If N = n, then the polynomial (14) has to have at least 2n−1 different—
up to multiplicative constant—linear factors. Consequently, 2n−1 � n—a
contradiction;

• If N = n−1 �= 1, then the polynomial (14) has to have at least 2n differ-
ent—up to multiplicative constant—linear factors. Consequently, 2n �
n—a contradiction.

Ad (iii). In this case condition (13) means that for any σ ∈ S2 there are
τ ∈ S2 and η = (η1, η2) ∈ T

2, ηm
j = 1, j = 1, 2, such that

ϕ(z) = ηϕτ (zσ), z ∈ B2. (18)

Without loss of generality we may assume that σ �= id. We consider two cases.
Case τ = id. Then (18) for z = (0, a0) and z = (a0, 0) implies a0 = 0 or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1,1 = η1q1,2

q2,1 = η2q2,2

q1,2 = η1q1,1

q2,2 = η2q2,1

. (19)

If a0 = 0, then (18) for z = (0, z2), z2 �= 0, and z = (z1, 0), z1 �= 0, implies
again condition (19). Observe that η2

1 = η2
2 = 1.

Consequently, we are looking for matrix Q satisfying (11) and (19). Ele-
mentary calculation shows that
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• if m is odd, then ηj = 1, j = 1, 2, and (19) leads to contradiction with
(11);

• if m is even, then Q satisfies (11) iff η1η2 = −1 and a0 ∈ R, a2
0 <

1
2 . In

this case Q is, up to permutation of the rows, of the form

Q =
1√
2

(
ζ1√

1−2a2
0

ζ1√
1−2a2

0

ζ2 −ζ2

)
, ζ1, ζ2 ∈ T. (20)

Condition (20) implies that ϕ is of the form (8).
Case τ �= id. Then (18) for z = (0, a0) and z = ((a0, 0)) implies a0 = 0 or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1,1 = η1q2,2

q2,1 = η2q1,2

q1,2 = η1q2,1

q2,2 = η2q1,1

. (21)

If a0 = 0, then (18) for z = (0, z2), z2 �= 0, and z = (z1, 0), z1 �= 0, implies
again condition (21), which is equal to (15). Consequently, we infer that the
matrix Q is of the form (17), i.e., ϕ is of the form (7).

Ad (iv). We consider two cases.
Case σ = id, ξ = (1,−1). It follows immediately from (13) that τ �= id.

Then (13) for z = (z1, 0), z1 �= 0, and z = (0, z2), z2 �= 0, implies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1,1 = η1q1,2

q2,1 = η2q1,1

q1,2 = −η1q2,2

q2,2 = −η2q1,2

.

In particular, η1η2 = 1. Since Q is unitary, it follows that

Q =
1√
2

(
ζ1 ζ2
ηζ1 −ηζ2

)
, ζ1, ζ2, η ∈ T, ηm = 1. (22)

Case σ �= id, ξ = (1,−1). We consider two subcases.

• τ = id. Then (13) for z = (z1, 0), z1 �= 0, and z = (0, z2), z2 �= 0, implies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1,1 = −η1q1,2

q2,1 = −η2q2,2

q1,2 = η1q1,1

q2,2 = η2q2,1

.

In particular, η2
1 = η2

2 = −1, which is possible only iff 4 | m. If it is the
case, then Q is unitary iff, up to permutation of rows,

Q =
1√
2

(
ζ1 iζ1
ζ2 −iζ2

)
, ζ1, ζ2 ∈ T. (23)
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• τ �= id. Then (13) for z = (z1, 0), z1 �= 0, and z = (0, z2), z2 �= 0, implies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q1,1 = −η1q2,2

q2,1 = −η2q1,2

q1,2 = η1q2,1

q2,2 = η2q1,1

.

In particular, η1η2 = −1, whence η1 = −η̄2. then Q is unitary iff, up to
permutation of rows,

Q = ζ

(
r

√
1 − r2

−η√1 − r2 ηr

)
, ζ, η ∈ T, ηm = 1, r ∈ [0, 1]. (24)

Straightforward calculation shows that the only unitary matrices satisfying
(22) and ((23) or (24)) are, up to permutation of rows, of the form

Q =
ζ√
2

(
1 1
η −η

)
, ζ, η ∈ T, ηm = 1. (25)

It is easy to see that unitary automorphism ϕ of B2 represented by matrix
(25) satisfies condition (13). Since (13) is also satisfied by the automorphism
ϕ of the form (6), the proof of the case (iv) is finished. �
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