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The human visual system must employ mechanisms to
minimize informational redundancy whilst maximizing
dynamic range and maintaining that which is behavio-
rally relevant [1,2]. Previous research has concentrated
on two-point correlation properties, as captured by spa-
tial frequency and orientation tuning. There has been
less research into higher-order correlations although
they may inform us about cortical functioning [3]. Iso-
trigon textures can be used to probe the sensitivity of
the human visual system. The obvious structure in iso-
trigons is exclusively due to 4th and higher-order spatial
correlations [4]. Thus, in order to discriminate isotri-
gons from noise, it is necessary to identify higher-order
structure. Although artificially generated, the same
structural features that give isotrigons salience also cre-
ate salience in natural images [2].
Factor analysis can be used to infer the number of

underlying independent neurological mechanisms which
govern isotrigon discrimination. In this study, mean per-
formance functions were calculated for two subjects
using ten new isotrigons (VnL2) (Figure 1A). Two forms
of factor analysis identified 3 principal factors (Figure 1B)
[5]. Previous studies support that the number of mechan-
isms is less than 10 [6], and more likely 2-4 [7,8]. Such
mechanisms may represent some combination of recur-
sive or rectifying processes. Simple models of cortical
processing, based on recursion, can discriminate isotri-
gons [9]. The formation of recursively applied products is
physiologically plausible and can occur via dendritic
back-propagation or dendritic spiking [10].
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Figure 1 A: Mean performance functions for all subjects by texture type, presented separately according to subject and texture size.
For All16 (16x16 textures) and All32 (32x32) error bars are SE for n = 6 subjects. Glider shapes are shown in the bottom panel. B: Communalities
for 5 different factor models. As the number of factors grows, the profile of bars becomes flatter indicating that the models progressively
account for the data in a more balanced way. After nf = 3, the improvement in the reconstruction is marginal.
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