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Abstract

From the viewpoint of quantum walks, the Ihara zeta function of a finite graph can be said to be closely related to its
evolution matrix. In this note we introduce another kind of zeta function of a graph, which is closely related to, as to
say, the square of the evolution matrix of a quantum walk. Then we give to such a function two types of determinant
expressions and derive from it some geometric properties of a finite graph. As an application, we illustrate the
distribution of poles of this function comparing with those of the usual Ihara zeta function.
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1 Introduction
As the classical random walk on a graph has important
roles in various fields, the quantum walk, say QW, is
expected to play such a role in the quantum field. In fact,
we can find many studies on QW cover a wide research
area from the basic theoretical mathematics to the appli-
cation oriented fields. It has been shown, for example,
that analyzing some spatial structure [2,27,39] as an exten-
sion of quantum speed-up algorithm [15,16], and applica-
tion to a universal computation in quantum mechanical
computers [6], expressing the energy transfer on the chro-
matographic network in the photosynthetic system [30]
and so on are strongly influenced by its virtue. Besides,
approximations of QWs describing physical processes are
derived from Dirac and Schrödinger equations [5,37]. A
QW model has been also shown to be useful for describ-
ing the fundamental dynamics of the quantum multi-level
system which is irradiated by lasers [29]. The laser control
technology of quantum system is expected to be applied
for the industry as a highly-selective method for mate-
rial separation, especially, isotope-selective excitation of
diatomic molecules such as Cs133 and Cs135. Recently
by the above theoretical evidences for the usefulness and
activeness of the studies of QWs, experimental implemen-
tations of QWs are quite aggressively investigated. See
[20,33,41], for example.
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Now we shall focus on mathematical research on QW.
The starter creating studies of QW in earnest are consid-
ered as the QW on one dimensional lattice introduced by
[2]: one of the most striking properties is the spreading
property of the walker. Its standard deviation of the posi-
tion grows linearly in time, quadratically faster than the
classical randomwalk. The behaviour is clarified by a limit
theorem characterized by a new density function named
“fK function” [22,23]. The review and book on QWs are
J. Kempe [21] and N. Konno [24]. See also [1,28,40]. For a
general graph, it is usual to consider some special but typ-
ical type of QWs: the Grover walk originated in [15,16] or
the Szegedy walk in [39]. Roughly speaking, the former is
induced by the simple randomwalk and the latter by more
general random walk on a graph. In this context, the rela-
tionship between spectra of QW and that of the classical
random walk is investigated in [9,18,25,34]. From now on
we call the evolution matrices of the Grover walk and the
Szegedy walk just the Grover matrix U and the Szegedy
matrix Usz, respectively.
Recently there are some trials to apply QW to graph

isomorphism problems [9-11,35]. For graph isomorphism
problems, while spectra of the Grover matrix is consid-
ered to have almost same power as that of conventional
operator, it is suggested that the method of (U3)+, which
is the positive support of the cube of the Grover matrix
U3, outperforms the graph spectra methods, in particu-
lar, in distinguishing strongly regular graphs in [9]. What
we emphasize is that not only the Grover matrix U itself
but the positive support (Un)+ of its n-th power is an
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important operator of a graph. See also [13,18]. Mean-
while, in [25,32] the relationship between the Ihara zeta
function and the positive support (U)+ of the Grover
matrix of a graph is discussed: a matrix (U)+ derived
from QW is essentially the same as the edge-matrix in
[3,17] and the Perron-Frobenius operator in [26], both of
which are important operators in characterizing that func-
tion. The Ihara zeta functions of graphs started for regular
graphs by Y. Ihara [19] and is generalized to a general
graph. Already various success related to graph spectra is
obtained in [3,17,19,26,38].
This note is a sequel work to our previous work [18],

therein we established a general relation betweenQW and
the classical random walk; as its application, we recover
the results in [9,13,25,34] of spectral relation between
three matrices U, (U)+, (U2)+ from QW and the adja-
cency matrix AG. Our main purpose in this note is to
characterize another kind of zeta function with respect to
(U2)+, which is the positive support of the squared Grover
matrix.
To state our result precisely, let us give our setting. A

graph G is a pair of two sets (V (G),E(G)), where V (G)

stands for the set of its vertices and E(G) the set of
its unoriented edges. Assigning two orientations to each
unoriented edge in E(G), we introduce the set of all ori-
ented edges and denote it by D(G). For an oriented edge
e ∈ D(G), the origin of e, the terminus of e and the inverse
edge of e are denoted by o(e), t(e) and e−1, respectively.
Furthermore the degree of x ∈ V (G), degG x, is defined
as the number of oriented edges e such that o(e) = x;
we denote minx∈V (G) degG x and maxx∈V (G) degG x by
δ(G) and �(G), respectively. A graph G here is basically
assumed to be a connected finite graph with n vertices,
m unoriented edges and δ(G) ≥ 3; it may have multiple
edges or self-loops. For a natural number k, if degG v = k
for each vertex v ∈ V (G), then a graph G is called
k-regular.
Let us introduce the Grover matrix UG = U, which is a

special QW related to the simple random walk on G, and
the positive support F+ for a real matrix F.

Definition 1. The Grover matrix U = (
Ue, f

)
e, f∈D(G)

of G
is a 2m × 2mmatrix defined by

Ue,f =
⎧⎨
⎩
2/ degG o(e), if t( f ) = o(e) and f �= e−1,
2/ degG o(e) − 1, if f = e−1,
0, otherwise,

and the positive support F+ =
(
F+
i,j

)
of a real square

matrix F = (Fi,j) is defined by

F+
i,j =

{
1, if Fi,j > 0,
0, otherwise.

Properties of the Grover matrix can be seen in [15,16];
see also [9,13,18,25,34]. The Szegedy matrix related to a
general random walk on G is omitted since we do not
use here; its definition and properties can be seen in
[18,34,39], for instance. The spectra of the positive sup-
port U+ of the Grover matrix and (U2)+ of its square on
a regular graph G are expressed in [9], also in [13,18], by
means of those of the adjacency matrix AG of G, which
is an important matrix also in this note and defined as
follows: the adjacency matrix AG = (

ax, y
)
x,y∈V (G)

is an
n × n-matrix such that ax, y coincides with the number of
oriented edges such that o(e) = x and t(e) = y.
Now let us consider the following function ZG(u) of a

graph G for u ∈ C with |u| sufficiently small:

ZG(u) =
∏
[C]

(
1 − u|C|)−1

. (1)

In (1), if [C] runs over all equivalence classes of prime
and reduced cycles of G, then ZG(u) becomes the well-
known Ihara zeta function. Details will be seen Section 2,
therein we give a brief summary on the Ihara zeta func-
tion. Roughly speaking, we will find two matrices (U)+
and AG control this function. On the other hand, if [C]
runs over all equivalence class of prime 2-step-cycles of G,
then ZG(u) becomes a modified zeta function, say Z̃G(u),
which is the main object in this note. Precise definitions
around this can be seen in Section 3. Roughly speaking, we
will find twomatrices

(
U2)+ andAG control this function.

Our main theorem in this note is as follows:

Theorem 1 (Main Theorem). Let G be a simple con-
nected graph with n vertices, m unoriented edges and
δ(G) ≥ 3. Then

Z̃G(u) = 1/ det
(
I2m − u

(
U2)+)

,

= (1 − 2u)2(n−m) · (pG(u))−1,

and pG(1/2) = 0. If G is not bipartite, then the derivative
at u = 1/2 of pG(u) is as follows:

p′
G(1/2) = m − n

22n−2 · κ(G) · ι(G),

where κ(G) is the number of spanning trees in G and ι(G)

is the following graph invariant:

ι(G) =
∑

H∈OUCF(G)

4ω(H).

Here OUCF(G) stands for the set of all odd-unicyclic
factors in G. On the other hand, if G is bipartite, then
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p′
G(1/2) = 0 and the second derivative at u = 1/2 is as

follows:

p′′
G(1/2) = (m − n)2

22n−5 (κ(G))2.

Furthermore u = ρ is also a pole, whose order 2 or 1 if
G is bipartite or not, respectively. Here ρ is the radius of
convergence of (1).
Definitions not given here and details can be seen in

Section 3, especially in Proposition 1, Theorems 4 and 5.
Also the radius of convergence is discussed in Theorem 3.
The rest of the paper is organized as follows. In

Section 2, we present a brief survey on the Ihara zeta
function ZG(u) of a graph, which is related to (U)+.
In Section 3, we introduce and discuss a modified zeta
function Z̃G(u) related to (U2)+ on a graph G and
present two types of determinant expressions, proper-
ties of poles and geometric information derived from
Z̃G(u). In Section 4, we illustrate the distribution of poles
of Z̃G(u) for a k-regular graph comparing with those of
the Ihara zeta function.

2 The Ihara zeta function via QW
In this section, we shall summarize the results on the Ihara
zeta function of a graph.
Let G be a connected graph. A closed path or cycle of

length � inG is a sequenceC = (e0, . . . , e�−1) of � oriented
edges such that ei ∈ D(G) and t(ei) = o(ei+1) for each
i ∈ Z/�Z. Such a cycle is often called an o(e0)-cycle. We
say that a path P = (e0, · · · , e�−1) has a backtracking if
e−1
i+1 = ei for some i ∈ Z/�Z. The inverse cycle of a cycle
C = (e0, · · · , e�−1) is the cycle C−1 =

(
e−1
�−1, · · · , e−1

0

)
.

We introduce an equivalence relation between cycles.
Two cycles C1 and C2 are said to be equivalent if C1 can
be obtained from C2 by a cyclic permutation of oriented
edges. Remark that the inverse cycle of C is in general
not equivalent to C. Thus we write [C] for the equiva-
lence class which contains a cycle C. Let Br be the cycle
obtained by going r times around a cycle B: such a cycle
is called a power of B. Furthermore, a cycle C is prime if it
is not a power of a strictly smaller cycle. Besides, a cycle
C is called reduced if C has no backtracking. Note that
each equivalence class of prime and reduced cycles of a
graph G corresponds to a unique conjugacy class of the
fundamental group π1(G, v) of G at a vertex v ∈ V (G).
The Ihara zeta function of a graph G is a function of

u ∈ C with |u| sufficiently small, defined by

ZG(u) =
∏
[C]

(
1 − u|C|)−1

,

where [C] runs over all equivalence classes of prime and
reduced cycles of G and |C| is the length of a cycle C. This
function ZG(u) can be expressed as

ZG(u) = exp

⎛
⎝∑

k≥1

Nk
k
uk

⎞
⎠ ,

where Nk is the number of all reduced cycles of length k
inG. A simple proof and an estimate for the radius of con-
vergence for the power series in the above can be seen, for
instance, in [26]. The following determinant expression is
originally given in [17]; other proofs are seen in [3,26]. We
should remark T (U)+, the transposed matrix of (U)+, is
essentially the same as the edge-matrix in [3,17] and the
Perron-Frobenius operator in [26].

Theorem 2. ([17]; cf. [3,19,25,26,31,32]) LetG be a con-
nected graph with n vertices and m unoriented edges.
Then the reciprocal of the Ihara zeta function ofG is given
by

ZG(u)−1 = det
(
I2m − u(U)+

)
= (

1 − u2
)m−n fG(u).

Here we put

fG(u) = det
(
In − uAG + u2(DG − In)

)
,

where AG is the adjacency matrix of G and DG =
(dx,y)x, y∈V (G) is the degree matrix of G which is a diagonal
matrix with dx,x = degG x for x ∈ V (G). In addition, u = 1
is a pole of ZG(u) of orderm− n+ 1 and the derivative of
fG(u) at u = 1 is expressed by a graph invariant κ(G):

f ′
G(1) = 2(m − n)κ(G),

where κ(G) is the number of spanning trees in G.

The invariant κ(G) is called the complexity of G and
the complexities for various graphs are found in [4,7].
Seeing the determinant expression in the above, we
may say the Ihara zeta function ZG(u) of a graph is
derived by the positive support (U)+ of the Grover
matrix U.

3 Amodified zeta function via QW
In this section, we will discuss a modified zeta function of
a graph with respect to the positive support of the square
of the Grover matrix.
First of all, let us introduce a new notion of cycle in

a graph with respect to (U2)+. For a connected graph
G, a 2-step-cycle C̃ of length � in G is a sequence C̃ =
(e0, · · · , e�−1) of � oriented edges such that every ordered
pair (ei, ei+1) is a 2-step-arc or a 2-step-identity for each
i ∈ Z/�Z. Here a 2-step-arc (e, f ) is defined as follows:
there exists an oriented edge g( �= e−1, f −1) such that
o(g) = t(e) and t( g) = o( f ); a 2-step-identity (e, f ) is
defined as e = f . Remark that a 2-step-cycle C̃ of length 1
exists if C̃ = (e). When G is a graph with δ(G) ≥ 3, it can
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be easily checked that
(T (U2)+

)
e, f is positive if and only if

(e, f ) is a 2-step-arc or a 2-step-identity.
Similarly to the case of usual cycles in Section 2, we give

an equivalence relation between 2-step cycles. Two cycles
C̃1 and C̃2 are said to be equivalent if C̃1 can be obtained
from C̃2 by a cyclic permutation of oriented edges. Thus
we write [C̃] for the equivalence class which contains a
2-step-cycle C̃. Let B̃r be the 2-step-cycle obtained by
going r times around some 2-step-cycle B; a 2-step-cycle
C̃ is prime if it is not a multiple of a strictly smaller
2-step-cycle.
Let G be a connected graph with n vertices, m unori-

ented edges and δ(G) ≥ 3. Now let us define another kind
of zeta function of a graph related to

(
U2)+.

Definition 2. The modified zeta function of a graph G is
a function of u ∈ C with |u| sufficiently small, defined by

Z̃G(u) =
∏
[C̃]

(
1 − u|C̃|)−1

,

where [C̃] is the equivalence class of prime 2-step-cycles
and |C̃| is the length of a 2-step-cycle C̃.

From the definitions of a 2-step-cycle and an equivalence
class, applying the usual method, which can be seen in
[26,36] for instance, we can give the exponential expres-
sion and a determinant expression for the modified zeta
function Z̃G(u):

Proposition 1. Let G be a connected graph with n
vertices and m unoriented edges. Suppose that δ(G) ≥ 3.
Then

Z̃G(u) = exp

⎛
⎝∑

r≥1

Ñr
r
ur

⎞
⎠ (2)

= 1/ det
(
I2m − u

(
U2)+)

,

where Ñr is the number of all 2-step-cycles of length r.

Now let us give estimation of the radius of conver-
gence ρ of the power series in the above. Naturally, ρ

is also the singular point of Z̃G(u) nearest to the ori-
gin. Recall δ(G) and �(G) stand for minx∈V (G) degG x and
maxx∈V (G) degG x, respectively.

Theorem 3. Let G be a connected graph with δ(G) ≥
3. The radius of convergence ρ of the power series in
Proposition 1 (2) is ρ = 1/α, where α is the maximal
eigenvalue of

(
U2)+; it holds that

1/
(
(δ(G) − 1)2 + 1

) ≤ ρ ≤ 1/((�(G) − 1)2 + 1).

In particular, Z̃G(u) is a rational function of u with a pole
ρ whose order is 2 or 1 ifG is bipartite or not, respectively.

Proof. As is seen above, (U2)+ is nonnegative, that is,
all elements are nonnegative, and

(
(U2)+

)
e, f is positive if

and only if ( f , e) is a 2-step-arc or a 2-step-identity. To
apply the Perron-Frobenius theorem, let us discuss the
irreducibility of

(
U2)+. A matrixM is called irreducible if,

for each two indices i and j, there exists a positive inte-
ger k such that

(
Mk)

i, j �= 0. For the matrix
(
U2)+, it

is sufficient to see whether, for any two oriented edges
e, f ∈ D(G), e is reachable or not from f by an admissi-
ble sequence of 2-step-arcs and 2-step-identities, that is,
a sequence of oriented edges (e0, e1, e2, . . . , es−1, es) such
that e0 = f , es = e and

(
ek , ek+1

)
is a 2-step-arc or a 2-

step-identity for i = 0, . . . , s − 1. It is easily checked that
such an admissible sequence from f to e exists if and only
if there exists a reduced path from f to e of odd length in
G say an admissible odd path. Recall that a reduced path
from e1 to e� of length � inG is a sequence P = (e1, . . . , e�)
of � oriented edges such that t(ei) = o(ei+1) and e−1

i+1 �= ei
for each i = 1, . . . , � − 1. Since a graph G is finite and
connected with δ(G) ≥ 3, G has at least two unoriented
cycles. The terminology unoriented cycle used here is the
same as “cycle” in usual graph theory, that is, if C is an
unoriented cycle of length �, then V (C) = {v1, . . . , v�}
whose elements are mutually distinct, vivi+1 ∈ E(G) for
i = 1, . . . , � − 1 and v�v1 ∈ E(G). For two vertices x, y ∈
V (G), we denote by dist(x, y) the length of the shortest
path from x to y.
For two oriented edges e, f ∈D(G) such thatdist(t( f ),o(e))

is odd, we can find an admissible odd path from f to e.
In particular, if G is not bipartite, then G has at least one
unoriented cycle of odd length and of even length, respec-
tively. Hence G turns out to have an admissible odd path
between e and f for any e, f ∈ D(G); this implies (U2)+ is
irreducible. Next we assume G is bipartite; the length of
any cycle inG is even. So we set the bipartition V0 and V1:
V (G) = V0 �V1. It is obvious that an admissible odd path
between e and f exists if and only if both o(e) and o( f ) are
in the same set of bipartition, that is, o(e), o( f ) ∈ V0 or
o(e), o( f ) ∈ V1. Thus (U2)+ is not irreducible and we may
express, after rearranging rows and columns if necessary,

(U2)+ =
(
M0 0
0 M1

)
,

where M0 and M1 are m × m irreducible submatrices of
(U2)+ induced by D0 = {e ∈ D(G); o(e) ∈ V0} and D1 =
{e ∈ D(G); o(e) ∈ V1}, respectively. Remark that e ∈ D0 if
and only if e−1 ∈ D1 and that an admissible sequence from
f to e exists if and only if that from e−1 to f −1 does. Thus
the characteristic polynomials ofM0 andM1 coincide.



Higuchi et al. Pacific Journal of Mathematics for Industry 2014, 6:9 Page 5 of 8
http://www.pacific-mathforindustry.com/content/6/1/9

Now let us apply the Perron-Frobenius Theorem on
irreducible nonnegative matrices(see [12,14]). If G is not
bipartite, then (U2)+ has at least one positive eigenvalue
and the maximal positive eigenvalue α is simple. If G is
bipartite, then each ofM0 andM1 has at least one positive
eigenvalue and simple maximal eigenvalue. This implies
the maximal eigenvalues of M0 and M1 coincide, say α.
Hence

(
U2)+ has themaximal eigenvalue which is positive

and whose multiplicity is 2 when G is bipartite. In either
case, the maximal eigenvalue α is estimated as follows:

min
e∈D(G)

∑
f∈D(G)

((
U2)+)

e, f
≤ α ≤ max

e∈D(G)

∑
f∈D(G)

((
U2)+)

e, f
.

It should be noted that the value
∑

f∈D(G)

((
U2)+)

e, f
is

equal to the number of f such that ( f , e) is a 2-step-arc or
a 2-step-identity for e. Then we have

(δ(G) − 1)2 + 1 ≤ α ≤ (�(G) − 1)2 + 1.

It is obvious to see the power series (2) in Proposition 1
converges absolutely in |u| < 1/α = ρ since Ñr =
trace

[((
U2)+)r]

.

Corresponding to Theorem 2, another determinant
expression for this zeta function Z̃G(u) can be obtained.
Here and hereafter we assume G is simple, that is, G has
no multiple edges and no self-loops. Firstly we set the
following two functions hG(u) and lG(u):

hG(u) = det
(
In − √

u(1 − u)AG + u(DG − 2In)
)
,

lG(u) = det
(
In + √

u(1 − u)AG + u(DG − 2In)
)
, (3)

where we choose the branch such that
√
u(1 − u) > 0 for

0 < u < 1. HereAG andDG are, as are seen in Theorem 2,
the adjacency and degree matrices, respectively.

Theorem 4. Let G be a simple connected graph with n
vertices and m unoriented edges. Suppose that δ(G) ≥ 3.
Then the reciprocal of the modified zeta function of G is
given by

Z̃G(u)−1 = (1 − 2u)2(m−n) · hG(u) · lG(u).

Proof. It is easy to see that

(U2)+ = (U+)2 + I2m

for any simple graph G with δ(G) ≥ 3; this equality is
discussed also in [13,18]. Then we have

det
(
I2m − u

(
U2)+)

= u2m · det
(
1 − u
u

I2m − (U+)2
)
.

Corollary 2.3 in our previous paper [18] says that, for
any G with δ(G) ≥ 2, the following holds:

ϕ(λ) = det
(
λI2m − U+)

= (
λ2 − 1

)m−n det
((

λ2 − 1
)
In − λAG + DG

)
.

Also refer to [9,13,25]. It is easy to check

det
(
I2m − u

(
U2)+)

= u2m · ϕ
(√

(1 − u)/u
)

· ϕ
(
−√

(1 − u)/u
)

and

un · ϕ
(√

(1 − u)/u
)

= ((1 − 2u)/u)m−n · hG(u),

un · ϕ
(
−√

(1 − u)/u
)

= ((1 − 2u)/u)m−n · lG(u).

Combining the above, we can obtain the desired
expression.

Let us give information on a pole u = 1/2, which is a
final analogous part in Theorem 2 for the usual Ihara zeta
function.
Before stating the result, we introduce another kind of

spanning graph inG discussed in [8]: a spanning subgraph
H of G is called an odd-unicyclic factor if each connected
component ofH contains just one unoriented cycle of odd
length and V (H) = V (G). Here H may not be connected,
so we denote the number of components of H by ω(H).
The terminology unoriented cycle here is the same as in
Proof of Theorem 3. Moreover we writeOUCF(G) for the
set of all odd-unicyclic factors in G.

Theorem 5. Let G be a simple connected graph with n
vertices, m unoriented edges and δ(G) ≥ 3. Set pG(u) =
hG(u) · lG(u) for hG(u) and lG(u) defined in (3). Then
pG(1/2) = 0. If G is not bipartite, then the derivative at
u = 1/2 of pG(u) is as follows:

p′
G(1/2) = m − n

22n−2 · κ(G) · ι(G),

where κ(G) is the complexity of G which is same as in
Theorem 2 and ι(G) is the following graph invariant:

ι(G) =
∑

H∈OUCF(G)

4ω(H).

On the other hand, if G is bipartite, then p′
G(1/2) = 0 and

the second derivative at u = 1/2 is as follows:

p′′
G(1/2) = (m − n)2

22n−5 (κ(G))2.

The following corollary is a direct consequence of
Theorem 5.

Corrollary 1. LetG be a simple connected graph with n
vertices,m unoriented edges and δ(G) ≥ 3. Then u = 1/2
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is a pole of the modified zeta function Z̃G(u) whose order
is 2(m − n + 1) if G is bipartite; 2(m − n) + 1 otherwise.

Before proving Theorem 5, we give some lemmas.

Lemma 1. If G is bipartite, then hG(u) = lG(u).

Proof. It is well known that AG and −AG are unitarily
equivalent if G is bipartite. In fact, let V1 and V2 be the
bipartition of V (G): V (G) = V1 � V2. Then we put a
diagonal matrix T such that an (i, i)-element Tii = 1 if
vi ∈ V1; otherwise Tii = −1. It is easy to check that
AG = T−1(−AG)T . Therefore hG(u) = lG(u) if G is
bipartite.

Lemma 2. Let G be a simple connected graph with n
vertices. Then it holds that hG(1/2) = 0; lG(1/2) = 0 if G
is bipartite. Moreover, if G is not bipartite, then lG(1/2) =
2−nι(G).

Proof. We can see that hG(1/2) = 2−n det(DG − AG)

and lG(1/2) = 2−n det(DG + AG). It is well known that
DG − AG is a discrete Laplacian and has 0-eigenvalues.
Thus hG(1/2) = 0. If G is bipartite, it follows from
Lemma 1 that lG(1/2) = 0. Theorem 4.4 in [8] tells us
det(DG + AG) = ι(G).

Proof of Theorem 5. For pG(u) = hG(u)lG(u), using
Lemmas 1 and 2, we easily observe that, if G is bipartite,

p′(1/2) = 2 · hG(1/2) · h′
G(1/2) = 0

and

p′′(1/2) = 2 · (h′
G(1/2))2. (4)

On the other hand, if G is non-bipartite,

p′(1/2) = h′
G(1/2) · lG(1/2) + hG(1/2) · l′G(1/2)

= 2−nι(G) · h′
G(1/2). (5)

Thus let us concentrate our attention on the computation
on h′

G(1/2). ForV (G) = {v1, · · · , vn}, we write ai,j for (i, j)-
element of AG and the matrixM(u) for

In − √
u(1 − u)AG + u(DG − 2In).

In addition, let us denote the derivative of the (i, j)-
element of M(u) by m′

i,j(u) and the (i, j)-cofactor of M(u)

by Mi,j(u). Here we remark that Mi,j(1/2) coincides with
the (i, j)-cofactor of (1/2)(DG − AG); by the Matrix-Tree
Theorem ([4,7], for instance), we have

Mi,j(1/2) = 1
2n−1 κ(G).

Furthermore, remarking that

m′
i,j(u) = − 1 − 2u

2
√
u(1 − u)

ai,j + (deg vi − 2)δi,j,

we easily obtain

h′
G(1/2) =

∑
i,j

m′
i,j(1/2)Mi,j(1/2) (6)

= 1
2n−1 κ(G)

∑
i

(deg vi − 2) = m − n
2n−2 κ(G).

This completes the proof of Theorem 5.

4 Example: distribution of poles of themodified
zeta function

Throughout this section, we assume a graph G is
k-regular with n vertices and m unoriented edges:
2m = kn. Suppose further k ≥ 3.
For regular graphs, Theorem 2 was originally obtained

by [19] in the context of a p-adic analogue of the Selberg
zeta function. The concrete form in an analytic contin-
uation from Theorem 2 is as follows: for a k-regular
connected graph G with n vertices,

ZG(u) = (
1 − u2

)n−kn/2 det
(
In − uAG + (k − 1)u2In

)−1 .
(7)

Thus, in terms of eigenvalues of the adjacency matrix
AG, we know the distribution of poles of ZG(u). See
[3,17,19,38]. Consequently, all of the real poles u satisfy
1/(k − 1) ≤ |u| ≤ 1 and all of the imaginary poles u
lie on the circle whose center is the origin and radius is
1/

√
k − 1. Moreover it is concluded that u = 1/(k−1) is a

simple pole and u = −1/(k−1) is also a simple pole if and
only if G is bipartite. As is stated in Theorem 2, u = 1 is a
pole of order (kn−2n+2)/2. Usually the pole with u = ±1
or ±1/(k − 1) is called a trivial pole. If G is a Ramanujan
graph, that is, any nontrivial eigenvalue λ �= ± k ofAG sat-
isfies |λ| ≤ 2

√
k − 1, then any real pole is only trivial pole

and any other poles lie on the circle above. In this sense,
we say that the analogue of the Riemann hypothesis of the
Ihara zeta function holds for a regular graph G if and only
if G is a Ramanujan graph.
We shall investigate the distribution of poles of themod-

ified zeta function Z̃G(u) for k-regular graphs. Also in this
case, in terms of eigenvalues of the adjacency matrix AG,
we know the distribution of poles of Z̃G(u). In particular,
the eigenvalues of (U2)+ are expressed by means of those
of the adjacency matrix AG of G in [9,13,18] as follows:

Theorem 6. ([9]) Let G be a simple connected
k-regular graph with n vertices and m unoriented edges.
Suppose that k ≥ 3. The positive support

(
U2)+ has 2n

eigenvalues λ2+ of the form

λ2+ = λ2A − 2k + 4
2

± √−1λA
√
k − 1 − λ2A/4,

where λA is an eigenvalue of the adjacent matrix AG. The
remaining 2(m − n) eigenvalues of (U2)+ are 2.
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Figure 1 Poles of ZG(u) and Z̃G(u).

By Proposition 1, an analytic continuation Z̃G(u) has the
following determinant expression:

Z̃G(u) = 1/ det
(
I2m − u

(
U2)+)

=
∏

λ∈Spec
(
(U2)

+)(1 − uλ)−1;

the poles of Z̃G(u) is given by 1/λ for λ ∈ Spec
((
U2)+)

.
Using Theorem 6, we see the pole u corresponding to λA
has the following form:

u =
λ2A − 2k + 4 ± √−1λA

√
4k − 4 − λ2A

2
(
λ2A + (k − 2)2

) . (8)

Remarking that u = 1/(k2 − 2k + 2), 1/2, say trivial
poles, if λA = ±k and u = −1/(k − 2) if λA = 0, we can
see the real poles u ∈[1/(k2 −2k+2), 1/2]∪{−1/(k−2)}.
Moreover it can be easily checked that any imaginary pole
u = p + q

√−1 (p, q ∈ R) satisfies that(
p + 1

k2 − 2k

)2
+ q2 =

(
k − 1
k2 − 2k

)2
.

Let us summarize the above.

Example 1. Let G be a simple connected k-regular
graph with n vertices. Suppose that k ≥ 3. Then the pole
of the modified zeta function Z̃G(u) has the form as in
(8) with an eigenvalue λA of the adjacency matrix AG. In
particular, all of the real poles u satisfy

1
k2 − 2k + 2

≤ u ≤ 1
2

and, if 0 ∈ Spec(AG), u = −1/(k − 2); all of the imaginary
poles u lie on the circle whose center is −1/(k2 − 2k) and
radius is (k − 1)/(k2 − 2k).

Of course, we have already known in Theorem 3 and
Corollary 1 u = 1/(k2 − 2k + 2) is a pole whose order is 2
or 1 if G is bipartite or not, respectively; u = 1/2 is a pole
and its order is (k−2)n+2 or (k−2)n+1 ifG is bipartite
or not, respectively. We should remark, for this modified
zeta function Z̃G(u), all poles except trivial poles lie on the
circle above if G is a Ramanujan graph. In this sense, we
can say Z̃G(u) also has a property of the analogue of the
Riemann hypothesis. We close this note with illustrating
some figures of poles. The dots in (i) and (ii) of Figure 1
are the poles of ZG(u) and Z̃G(u) of the Petersen graph,
which is 3-regular with 10 vertices, respectively. The cir-
cles in (i) and (ii) of Figure 1 are p2 + q2 = 1/(k − 1)
and (p + 1/(k2 − 2k))2 + q2 = (

(k − 1)/(k2 − 2k)
)2

for k = 3, respectively. Since the Petersen graph is a
Ramanujan graph, all poles except trivial poles lie on the
circles.
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