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Abstract

Background: Individuals continuously exposed to malaria gradually acquire immunity that protects from severe
disease and high levels of parasitization. Acquired immunity has been incorporated into numerous models of
malaria transmission of varying levels of complexity (e.g. Bull World Health Organ 50:347, 1974; Am J Trop Med Hyg
75:19, 2006; Math Biosci 90:385–396, 1988). Most such models require prescribing inputs of mosquito biting rates or
other entomological or epidemiological information. Here, we present a model with a novel structure that uses
environmental controls of mosquito population dynamics to simulate the mosquito biting rates, malaria prevalence
as well as variability in protective immunity of the population.

Methods: A simple model of acquired immunity to malaria is presented and tested within the framework of the
Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a coupled hydrology and agent-based
entomology model. The combined model uses environmental data including rainfall, temperature, and topography
to simulate malaria prevalence and level of acquired immunity in the human population. The model is used to
demonstrate the effect of acquired immunity on malaria prevalence in two Niger villages that are hydrologically
and entomologically very different. Simulations are conducted for the year 2006 and compared to malaria
prevalence observations collected from the two villages.

Results: Blood smear samples from children show no clear difference in malaria prevalence between the two
villages despite pronounced differences in observed mosquito abundance. The similarity in prevalence is attributed
to the moderating effect of acquired immunity, which depends on prior exposure to the parasite through
infectious bites - and thus the hydrologically determined mosquito abundance. Modelling the level of acquired
immunity can affect village vulnerability to climatic anomalies.

Conclusions: The model presented has a novel structure constituting a mechanistic link between spatial and
temporal environmental variability and village-scale malaria transmission. Incorporating acquired immunity into the
model has allowed simulation of prevalence in the two villages, and isolation of the effects of acquired immunity in
dampening the difference in prevalence between the two villages. Without these effects, the difference in
prevalence between the two villages would have been significantly larger in response to the large differences in
mosquito populations and the associated biting rates.
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Background
Acquired immunity to malaria
Malaria transmission in Africa is both widespread and
highly variable. In some regions, malaria is endemic with
constantly present transmission, whereas other regions
remain relatively malaria-free but periodically erupt in
epidemics that cause suffering and death, after which the
disease recedes again. The regional variability in malaria
transmission can be affected by environmental, climatic,
and demographic factors, but parasite dynamics are also
influenced by the human immune response to the para-
site in the bloodstream [1]. Here, we consider the role of
acquired immunity to malaria in shaping malaria trans-
mission in two villages in Niger.
Naturally acquired immunity to malaria plays an im-

portant role in the transmission of the disease, but in
many ways is still poorly understood. Acquired immunity
to Plasmodium falciparum malaria develops in three stages.
The first stage is protection from severe disease, and can
develop in as few as one or two infections [2]. The second
stage is immunity to the clinical symptoms of malaria, and
develops over the first years of childhood. The third stage
is a partial protection against parasitization, and develops
around adolescence. All three stages of immunity depend
on constant transmission. When transmission decreases,
immunity weakens [3]. While all three stages of immunity
are important to the epidemiology of malaria, for the
purposes of modelling disease transmission, we are only
concerned with the immunity that protects against parasit-
ization. This immunity potentially affects transmission by
reducing the proportion of infectious mosquito bites that
result in infection, decreasing the duration of disease and
decreasing the infectivity of humans to mosquitoes.
Immune responses to the pre-erythrocytic stages have

been shown to be effective at preventing blood-stage in-
fection, forming the basis of the most advanced malaria
vaccine to date [4]. Naturally occurring immunity is not
believed to confer full protective immunity, and is often
neglected in models of disease transmission [5]. How-
ever, adults become infected at lower rates than children,
implying that immunity does provide a partial protection
against infection [6,7].
Immunity decreases parasite levels in the bloodstream,

and may lead to shorter duration of infection [8]. In a
longitudinal study of recovery rates in Nigeria, the dur-
ation of disease in infants (625 days) was 10 times as high
as in >44 year olds (52 days), suggesting that acquired
immunity increases the rate of disease clearance [6].
Others argue that there is little evidence to support this
theory, assuming instead that immunity decreases the
length of patent disease, without changing the length of
subpatent infection [9].
Gametocyte density has been correlated with the ability

to infect mosquitoes, and there is evidence that infectivity
to mosquitoes decreases with age [10-12]. However other
studies show no correlation, leading to a belief that be-
yond a bottom threshold of gametocyte density required
for transmission of the parasite to mosquitoes, increased
densities do not necessarily lead to enhanced trans-
mission [12]. A study of infectivity to mosquitoes in a
highly endemic African village found that <5, 5–15, and
>15 year old age groups contributed equally to the malaria
reservoir, indicating that people continue to be infectious
despite having low levels of parasitaemia [13]. It has also
been suggested that acquired immunity may decrease the
infectivity of gametocytes [12,14].
Beier et al. [15] noted a non-linear relationship of mal-

aria prevalence with entomological inoculation rate (EIR:
a standard measure of malaria transmission), with steadily
rising prevalence levels in the low EIR range (below ~100
infectious bites per person per year), and leveling preva-
lence at EIR values greater than 200 infectious bites per
person per year. In this range, increases in prevalence
are low compared to the increase in EIR. At EIR values
in the 200–400 range, without immunity, entire popula-
tions should be infected with the malaria parasite in a
short time. Presumably, the relatively steady 80% prevalence
observed in this high EIR range reported by Beier et al.
[15] can be explained in part by the protective effects of
acquired immunity.
Several seemingly paradoxical cases of increased mos-

quito abundances associated with lower human parasite
prevalence have been reported (e.g. [2,16,17]). These results
have been attributed to several potential causes, but it is
thought that human immunity may play a significant role in
explaining these observations. In Mali, Diuk-Wasser et al.
[16] noted a decrease in malaria prevalence in villages with
intensive irrigation and higher mosquito abundance. They
suggested intraspecific competition of subadult mosqui-
toes for limited nutrients as an explanation. The adult
mosquitoes would be smaller, shorter-lived, and thus the
vectorial capacity would be depressed. However, in addition
to the increased nutrient competition resulting from lar-
val crowding, acquired immunity may have played a role
in lowering the population prevalence in many of these
observations.

Modeling immunity to malaria
Previous malaria models have incorporated acquired im-
munity. Dietz et al. [18] developed a model that tracks
temporal variation in malaria infections and the immunity
level of populations in northern Nigeria. That model has a
compartmental structure and assumes perfect mixing, and
was successfully used for vector control decision making
during the Garki project, an extensive malaria control field
campaign in the 1970s [18]. Many similar models with a
compartmental structure exist with varying levels of
complexity and assumptions regarding the mechanisms
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of immunity, for example Aron et al. [19], Yang [20],
Filipe et al. [21] Chiyaka et al. [22], Águas et al. [23] and
Chitnis et al. [24]. Despite substantial differences in model
structures, each of the models above have been parame-
terized in order to matched observed prevalence data.
Several recent models include individual-based humans.

Smith and colleagues [25] have developed an extensive
stochastic individual-based model driven by the entomo-
logical inoculation rate (EIR), the number of infectious
bites received by each human per unit time. This model
includes modules for pre-erythrocytic immunity that de-
creases the frequency of infection [5], and parasite regu-
lating immunity at the blood stage that decreases the
infectiousness of humans to vectors [26,27]. Similarly,
individuals in a model developed by Griffin et al. [28]
are infected according to the EIR derived from a corre-
sponding compartmental model. This model includes
representation for clinical immunity and infection-blocking
immunity that developed based on the number of infec-
tious bites received, as well as a parasite regulating immun-
ity that is dependent on the individual’s age. Gu et al. [29]
developed an agent-based model of humans and female
mosquitoes to simulate the transmission of malaria incorp-
orating human immunity for a population on the coast of
Kenya. Here, we add to an individual-based model structure
by allowing the environmental determinants that influence
mosquito breeding and biting activity to vary in high reso-
lution in both space and time, allowing spatio-temporal
variability in land use and climate to affect village scale
malaria transmission. We present a simple model of im-
munity, allowing the environmental determinants that
are seen to cause spatial and temporal variability in vil-
lage scale mosquito populations to be represented, and
Figure 1 (From Bomblies et al., [30]). Shows the location of the studied
topography within the HAPEX-Sahel square degree, the subject of an inten
place from 1991 until 1993. The Niger River is seen in the bottom left of th
Zindarou’s location within the Dallol Bosso results in the village’s unique hy
typical of the Sahel.
the effects of such variability to be studied in a virtual
field environment.

Methods
Study location
Located only 30 km apart (see map, Figure 1), Banizoumbou
and Zindarou are subject to the same general climate,
shown in Figure 2, yet exhibit markedly different mosquito
abundance. The difference in mosquito abundance has
been shown to be the result of varying hydrological con-
ditions between the two villages [30]. Regional average
annual rainfall in this region of Niger is approximately
500mm and occurs exclusively during the summer mon-
soon (June – September), during which local mosquito
populations increase significantly. Banizoumbou is typ-
ical of the Sahel, in that it is arid, has deep groundwater
and has very little pooled water outside of the summer
monsoon season. However, during the summer monsoon
season, the arid Sahel landscape is dotted with turbid
ephemeral pools that constitute the preferred breeding
habitats of Anopheles gambiae sensu lato mosquitoes,
the dominant malaria vector in the region. Zindarou, on
the other hand, has shallow groundwater (depth to water
table is ~1 m) because it is located in a relic river channel
known as the Dallol Bosso. The Zindarou villagers dig
shallow garden wells to access water for their vegetable
gardens, which exposes a large water surface area to
continuous, perennial mosquito breeding. The pooling
of rainfall during the summer rains is also exacerbated
by the shallow groundwater, because infiltration causes
the shallow groundwater table to rise, creating extensive
surface expressions of groundwater [31]. Not surprisingly,
this leads to very high mosquito abundance. Figure 3
villages Banizoumbou ,Zindarou and Niger. The right panel depicts
sive international hydrology and climatology research project that took
e domain, and the “Dallol Bosso” relict river basin is seen on the right.
drology, whereas Banizoumbou has a more arid hydrology that is



Figure 2 Temperature and rainfall in Banizoumbou (red) and Zindarou (blue) in 2006. The figure on the left shows mean temperature, and
the figure on the right shows monthly rainfall. This demonstrates that the two villages have very similar climates.
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presents field observations of mosquito abundance in
the two villages, showing significantly more mosquitoes
in Zindarou than Banizoumbou for both 2005 and 2006.
The hydrological differences between Banizoumbou

and Zindarou and the associated differences in mosquito
abundance were simulated by Bomblies et al. [30] using
the highly detailed coupled hydrology and entomology
numerical model HYDREMATS (Hydrology, Entomology
and Malaria Transmission Simulator) (Figure 3). With
meteorological forcing from local meteorological stations,
the distributed hydrology model component successfully
simulated the differences in hourly surface area of breed-
ing habitat availability, and the agent-based entomology
Figure 3 (From Bomblies et al., [30]) Modeled and observed
Anopheles gambiae mosquito abundance in Banizoumbou and
Zindarou. Mosquito abundance is very different in the two similarly
sized villages, because of local hydrological differences. This is
evident in the light trap captures (markers with dashed lines) and
the simulation results (solid lines).
model component coupled to the hydrology model suc-
cessfully simulated the differences in mosquito popula-
tions that were observed using CDC light traps. Despite
being very close and subject to nearly the same rainfall
and temperature conditions, the two villages have mark-
edly different levels of entomological activity.
In this study, we use HYDREMATS (described below)

to investigate the levels of malaria prevalence in the two
villages. We do this by extending HYDREMATS to in-
clude a representation of transmission of the malaria
parasite between humans and mosquitoes. An important
aspect to malaria transmission is the semi-protective
immunity to disease that is acquired by receiving infec-
tious bites. The resulting partial immunity regulates the
density of parasites within the blood, and depends on
the intensity of transmission [32]. Therefore, acquired
human immunity exerts a moderating effect on malaria
transmission, and is expected to be a significant factor
in shaping malaria propagation through the human/
mosquito transmission cycle by a negative feedback
mechanism. It follows that for accurate model represen-
tation of linkages between environmental variability and
malaria prevalence, effects of human immunity must be
considered.

Description of HYDREMATS model
The Hydrology, Entomology and Malaria Transmission
Simulator (HYDREMATS), was developed by Bomblies et al.
[33] to simulate the village-scale response of malaria trans-
mission to hydrological and climatological determinants,
and has been used in several recent studies in West Africa
[30,34-38]. For full details about the development of the
hydrology and entomology components of HYDREMATS,
and for comparison to field observations of hydrological



Figure 4 Schematic of HYDREMATS. This schematic diagram lists
the major processes and key parameters represented by the Hydrology,
Entomology and Immunology components of HYDREMATS. The
arrows represent information that is passed from one component to
the next. Model outputs from each component are spatially and
temporally explicit.
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conditions and mosquito populations, we refer the reader
to Bomblies et al. [33]. Key features of the model are
described in Additional file 1. In this paper, we add an
immunology component to the existing hydrology and
entomology components of HYDREMATS. A schematic
diagram of this combined model is shown in Figure 4.
Hydrology is an important proximal determinant that
regulates malaria variability at a small scale, because the
occurrence and distribution of pooled water often limits
the breeding of the Anopheles mosquitoes that transmit
the malaria parasite. Although such variation also oc-
curs on a large scale, it can be quite pronounced at a
very local scale [30,31]. Most models seeking to link envir-
onmental and climatic conditions to malaria transmission
assume perfect mixing in a compartmental structure. Such
a structure does not reflect the importance of small-scale
proximal determinants that can influence entomological
activity near a village (e.g. [39,40]). High resolution hydrol-
ogy simulation can represent the important variability in
pooled water for mosquito breeding that can regulate
village-scale entomological activity [30]. In order to rep-
resent this small-scale variation in pooled water, the
hydrology component of HYDREMATS uses environ-
mental inputs to mechanistically simulate the runoff of
rainfall into water pools and the drying of these pools
due to evapotranspiration and infiltration, resulting in
the spatial distribution of water depths and tempera-
tures for each 10 meter x 10 meter grid cell, for each
1 hour timestep. These distributions serve as the inputs
for the entomology component of the model [33].
The entomology component of HYDREMATS simu-

lates individual mosquitoes and human agents. Human
individuals are assumed to be immobile and are assigned
to mapped village residences, as malaria transmission in
this region occurs primarily at night when humans are
indoors [41]. Mosquito agents have a probabilistic re-
sponse to their environment based on a prescribed set
of rules governing dispersal and discrete events includ-
ing development of larval stages, feeding, egg-laying and
death [33].
An agent-based simulation of mosquito population dy-

namics that maintains spatial structure of the population
can link malaria risk with distributed hydrology. Such a
model must track the infected status of mosquitoes and
individual humans with the transmission moderated by
an individual human’s immune status, ultimately linking
environmental conditions around an individual village to
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malaria prevalence within that village. We present such
a model in this study, and compare simulated prevalence
to field-measured malaria prevalence in Banizoumbou and
Zindarou. The resulting combination creates a mechanistic
modeling link between environmental variability (e.g. land
use patterns, hydrological variability, and climatic vari-
ability) and malaria prevalence that maintains the spatial
structure of human and mosquito populations and their
relationships with the environment. This is the most com-
prehensive malaria transmission model to our knowledge,
mechanistically simulating the hydrological, entomological,
and immunological processes involved in linking envir-
onmental forcing to indices of malaria transmission (See
Figure 4). The Liverpool Malaria Model [42] also simu-
lates processes from environmental inputs through mal-
aria prevalence, but uses a coarser spatial and temporal
resolution and compartmental structures for human and
mosquito populations, and uses 10-day accumulated rain-
fall as a proxy for pool availability rather than mechanis-
tically simulating hydrological processes.

Extension of HYDREMATS model to include
immunological processes
The hydrology and entomology components of HYDRE-
MATS were developed by Bomblies et al. [33] as an agent-
based model in which individual mosquitoes interact with
their immediate environment. In this paper, HYDREMATS
is extended to simulate the immunological processes of
malaria transmission as illustrated by Figure 4. HYDREMATS
includes a representation of infected status for both humans
and mosquitoes. Infected status is tracked as an attri-
bute of both mosquito and human individuals, and con-
tact between a sporozoite-infected, host-seeking mosquito
and a human host can result in an inoculation. Simulated
individual mosquitoes are able to acquire parasite in-
fection if they ingest an infectious blood meal, and the
infectious stage of the mosquito-borne parasite—the
sporozoite—forms after 111 degree-days above 16 degrees
C [43]. At this point, the mosquitoes are able to transmit
a new infection to the next human bloodmeal host,
completing one cycle of transmission. If animal hosts
are chosen for a bloodmeal instead of humans, no trans-
mission occurs. Once infected, mosquitoes remain infected
for life, and once the parasite has reached the sporozoite
stage within the mosquito, it remains in this stage for the
duration of the mosquito’s life. In contrast, human indi-
viduals clear the parasite at rate r, described below.
Since many details of immunity and malaria transmission

remain unknown and thus are difficult to parameterize, we
present a model with minimal parameters. Whenever pos-
sible, parameter values are taken from literature presented
in the background section. Where no exact value was
given, we assumed parameter values that are consistent
with current knowledge. Of course, model results will
depend on choice of parameters, and a perfect fit and
parameterization is not a goal of this study. Rather, we
seek to reproduce general observed trends with a simple
model to help understand the effect of immunity in high
resolution individual-based models and inform future
malaria modeling efforts of such nature.
Human immunity for each human individual is repre-

sented in HYDREMATS the index imm, which varies
from 0 (immunologically naïve) to 1 (fully developed im-
munity). Each day, the immunity (imm) of any human
individual that has received at least one infectious bite
during the previous 24 hours is raised by parameter s,
regardless of that human individual’s infected status, up
to a maximum of 1. We set parameter s to 1/60 per in-
fectious bite, reflecting the slow build up of immunity to
parasitaemia through childhood and adolescence [44].
Immunity is lost at a rate of 0.019% per day, correspond-
ing to a half- life of ten years, reflecting the protective
effects of immunity on the order of decades in the ab-
sence of exposure [32].
Each time a human individual is subjected to an infec-

tious bite, the probability of infection is given by:

b ¼ bmin‐bmaxð Þ�immþ bmax

where bmax and bmin are parameters reflecting the
probability of infection with no immunity and full im-
munity, respectively. A uniform random number is gen-
erated and compared to b to determine if the human
individual has acquired the parasite from the infectious
bite.
A recent compilation of observed values of b gave a

range between 0.01 and 0.49 [42]. We reflect this range
by setting bmax=0.5 and bmin=0.05. The non-zero value
of bmin allows even fully immune individuals to contrib-
ute to the disease reservoir [13].
The duration of a simulated human malaria infection

depends on the individual’s immunity level, such that the
duration of disease shortens as immunity increases. The
duration of each infection is exponentially distributed
with rate parameter, r, set to

r¼ rmax‐rminð Þ�aþrmin

The value for rmin is set to 1/220 days-1, which is con-
sistent with the mean duration of infection found in
immunologically naïve adults infected with malaria [45].
As we could not find a published estimate for rmax, we
assume that full immunity doubles the clearance rate and
set rmax to 1/110 days-1. The recovery rate is also affected
by superinfection, the state of an individual having two
or more concurrent malaria infections, following the
assumption made by Macdonald [46] and Dietz et al.
[18] that multiple infections can occur simultaneously
and the duration of each infection is not affected by



Yamana et al. Parasites & Vectors 2013, 6:226 Page 7 of 14
http://www.parasitesandvectors.com/content/6/1/226
the presence of other infections. Thus each infection
within a human is tracked separately and must be cleared
independently at rate r.
We did not include an effect of immunity on the prob-

ability that a mosquito is infected when biting an infected
human, due to the high uncertainty regarding the effect of
acquired immunity on human infectivity to mosquitoes.
However, this could easily be modified in the model,
should more definitive information come to light.
HYDREMATS was modified so that each human in the

village population is assigned an age, distributed according
to local demographics [47]. The initial immunity level is
proportional to an individual’s initial age, reflecting the
accumulation of immunity over time. Humans age as the
model progresses, and at each time step, they are subjected
to a probability of death equivalent to 0.0436/year. In order
to maintain a constant population size, a new child is born
into the model population each time a human dies.
Figure 5 shows a schematic of the malaria transmis-

sion model within HYDREMATS. Solid arrows represent
the progress of individual human and mosquito indi-
viduals through infectious states, and dashed arrows
indicate the transmission of malaria parasites through
mosquito bites. The parameters for the immunity model
are listed in Table 1. The sensitivity of disease prevalence
to parameter values was assessed by perturbing each par-
ameter by 10% and observing the effect on mean annual
prevalence after 10 years of simulation in Banizoumbou.
With this formulation, malaria prevalence depends on re-

sistance acquired over several years of repeated inoculations
Figure 5 Schematic of the immunology component of HYDREMATS.
HYDREMATS models individual mosquito human and mosquito
agents. The solid arrows represent processes as individual agents
become infected, dashed lines indicate the movement of malaria
parasite through mosquito bites. Each human agent has an immunity
value imm, which is a function of the past infectious bites received by
that individual. When a human is bitten by an infected mosquito, his
probability of infection is b, which is a function of imm. After a latent
period, the exposed human becomes infectious. The human then
recovers at a mean rate of r, which is also a function of imm. A mosquito
biting an infectious individual becomes infected with probability
c. If infected, he goes through a temperature-dependent latent
period and then become infectious to subsequent humans.
within a population. We stress that this is a very simple rep-
resentation of a very complex and highly developed human
immune response to the malaria parasite. Nevertheless, the
model representation of immunity captures many of the
important aspects regarding the role of immunity in mal-
aria transmission. It allows the effects of immunity on mal-
aria transmission to be incorporated into the model in a
flexible and representative manner. This formulation allows
simulated prevalence to be compared to observed preva-
lence while maintaining spatial structure.

Simulations
To assess the importance of the difference in immunity
between the two villages Banizoumbou and Zindarou, we
first conduct a simulation for each village where the im-
munity level for each individual is static, remaining at
0.2 for the duration of the simulation. Climate forcing
from 2006, recorded at the each village’s meteorological
station, was repeated twenty times in order to achieve a
steady state in malaria prevalence and immunity. We
then conducted a twenty year simulation in each village
using the dynamic immunity model described above,
where individuals acquire immunity as they accumulate
infectious bites and lose immunity in the absence of
inoculations.

Field observations
Field measurements of malaria prevalence were made in
Zindarou and Banizoumbou between December 2005
and February 2007. The populations of Zindarou and
Banizoumbou are roughly 500 and 1000, respectively,
of which approximately 20% are under the age of 5 [47].
Bimonthly blood samples were taken from approximately
25 children aged one to five years old in each village. The
sample size was decided based on financial and practical
constraints. Resulting blood smears were analyzed micro-
scopically for parasite presence. Children with observed or
reported fever were sent to a local health clinic for treat-
ment in accordance to national malaria treatment guide-
lines. Ethical clearance was obtained from the National
Ethics Committee of Niger.

Results and discussion
This study has simulated malaria transmission in two
villages, Banizoumbou and Zindarou, Niger, which are
subject to nearly identical climatic conditions, but are
hydrologically very different. Mosquito captures in both
villages during the 2006 rainy season show that abun-
dance in Zindarou is approximately ten times that of
Banizoumbou, and other years have shown the same
order-of-magnitude difference in light trap captures [33].
However, the prevalence measured in the two villages was
not significantly different, despite the order of magnitude
difference in mosquito abundance. For the period February



Table 1 Parameters for immunology component of HYDREMATS

Parameter value Percent change in prevalence parameter
value decreased by 10%

Minimum disease clearance rate parameter 1/220 days +35%

rmin

Maximum disease clearance rate parameter 1/110 days +5%

rmax

Rate of acquiring immunity 0.017 per infectious bite −4%

s

Maximum probability a human is infected when bitten
by infectious mosquito

0.5 +1%

bmax

Minimum probability a human is infected when bitten
by infectious mosquito

0.05 0%

bmin

Rate of immunity loss 0.019% per day without infectious bite +6%
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2004 – December 2006, average prevalence was 0.54,
95% CI [0.50, 0.58] in Banizoumbou and 0.56, 95% CI
[0.51, 0.61] in Zindarou. Bimonthly prevalence for the
year 2006 is shown for both villages in Figure 6. The
much higher vector population of Zindarou corresponds
to very similar prevalence to that of Banizoumbou. This
surprising result suggests that acquired immunity resists
the malaria parasite within the human population, and
that the high inoculation rate in Zindarou boosts im-
munity such that prevalence is moderated. Our simple
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Dec-05 Feb-06 Apr-06 Jun-06

Figure 6 Observed prevalence in Banizoumbou (red) and Zindarou (b
indicate 95% confidence intervals for each estimate.
immunity model captured this moderating effect, as shown
by comparison of model results to prevalence as deter-
mined by blood smears in village children.
We conducted two simulations for each village; one

with static immunity where each person’s immunity is
set at a constant level of 0.2 throughout the simulation,
and one with dynamic immunity where an individual’s
immunity level responds to infectious bites. Figure 7
shows the simulated prevalence in the static immunity
simulation for the overall population (left panel) as well
Aug-06 Oct-06 Dec-06 Feb-07

Banizombou

Zindarou

lue), for the period December 2005 – February 2007. Error bars



Figure 7 Simulated malaria prevalence using static immunity model. Banizoumbou is shown in red, and Zindarou is shown in blue. The left
panel shows overall prevalence for all age groups, and the right panel shows prevalence for children under 5. In this simulation, 2006 climate
forcing was repeated twenty times. The time step is years, and the cycle is annual. The peaks of each cycle correspond to late August.
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as for children under five (right panel). As expected, the
increased mosquito activity in Zindarou led to higher
rates of malaria transmission than in Banizoumbou, and
as a result, the prevalence levels in Zindarou are much
higher than in Banizoumbou. In both villages, there is a
strong seasonal signal in simulated prevalence, consist-
ent with increased biting during the summer monsoon
period, which peaks in mid-August in southern Niger.
Because this simulation assigns the same immunity level
to all human individuals regardless of their age, there
is little difference in simulated prevalence between chil-
dren and adults. The most notable difference is the lower
minimum prevalence in children than in adults in both
villages. This is the <5 age group and includes the con-
tinuous birth of malaria-free humans. Children born
during the dry season are likely to remain free of infec-
tion until the following transmission season, thus lower-
ing the average prevalence of this age group.
In contrast to the static immunity simulations, the dy-

namic immunity model results in higher immunity levels
in Zindarou than in Banizoumbou as a result of the greater
mosquito population in Zindarou. The resulting simulated
malaria prevalence for each village is shown in the left panel
of Figure 8. Here, the difference in prevalence between the
two villages is dramatically reduced. Banizoumbou has
relatively low prevalence for the duration of the simula-
tion. Zindarou initially has higher levels of prevalence,
until the increased transmission raises population immun-
ity and prevalence rates begin to decrease. The mean im-
munity levels in the two villages are shown in Figure 9.
Mean immunity in both villages begins at 0.2, as individ-
uals are given an initial value of a consistent with their
age. In Banizoumbou, the mean immunity level decreases
slightly to an equilibrium value between 0.16 and 0.18,
while in Zindarou the level increases in response to
greater numbers of infectious bites.
We can also compare the malaria prevalence in children

under five years old, shown in the right panel of Figure 9.
In this age group, we see greater differences in prevalence
between the two villages. In Banizoumbou malaria preva-
lence in the <5 year old group is very similar to prevalence
in adults, as even adults do not have very high levels of
immunity. In contrast, the higher inoculation rate in
Zindarou leads to higher immunity in adults, so the
prevalence in <5 year olds is higher than the general
population.
The simulated prevalence levels in Zindarou were be-

tween 20% and 70%, which is consistent with the field
observations of prevalence. However, the simulations in
Banizoumbou underestimated prevalence, ranging from
8% in the dry season to 30% at the peak of the malaria
season. As a result, our simulations show higher preva-
lence in Zindarou than in Banizoumbou, while field
observations do now show a significant difference in
prevalence between the two villages. Despite not perfectly
replicating the observed prevalence in the two villages,
our simulations support the hypothesis that acquired
immunity to malaria dampens the difference in prevalence
between the two villages that may have been expected
given the difference in mosquito populations. In the static
immunity simulations, the mean annual prevalence was 59
percentage points higher in Zindarou than in Banizoumbou.
In the dynamic immunity simulation, the difference in
prevalence between the two villages drops to 22 percent-
age points.
The improved ability of the model to simulate observed

prevalence compared to prevalence without immunity un-
derscores the importance of the negative feedback associated



Figure 8 Simulated malaria prevalence using dynamic static immunity model. Banizoumbou is shown in red, and Zindarou is shown in blue.
The left panel shows overall prevalence for all age groups, and the right panel shows prevalence for children under 5. In this simulation, 2006 climate
forcing was repeated twenty times. The time step is years, and the cycle is annual. The peaks of each cycle correspond to late August.
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with immunity in the linkage of environmental variability
and malaria. However, there are several factors that may
be contributing to the difference between simulated and
observed prevalence. One possible source of error is the
parameterization of the entomology model. While the
model properly reproduces relative differences observed
in mosquitoes captured by light traps in each village
[30], it is not possible to compare the number of simu-
lated mosquitoes to total mosquito population in the
village. It is possible that both villages have more mosqui-
toes than are simulated under current parameterization.
Figure 9 Simulated mean immunity level using the dynamic immunit
simulations using static immunity, the immunity in both villages remained
Another possible source of error is the parameterization
of the immunity model. In our sensitivity analysis, we
found that the model was most sensitive to disease clear-
ance rate in people with no immunity (rmin). A longer
mean duration of infection would lead to higher preva-
lence in both villages, especially in Banizoumbou, where
the lower immunity rates mean that the recovery rate is
closer to rmin than in Zindarou, where higher immunity
rates increase the recovery rate. While the parameter rmin
was set to 1/220 day-1 based on data from immunologically
naïve adults [45], it is certainly possible that the clearance
y model in Banizoumbou (red) and Zindarou (blue). In the
at 0.2 for the duration of the simulation.
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rate is different in the study population. For example, one
study estimated the mean duration of infection in children
1–4 years old to be 625 days [6]. A third possible source of
error is the sampling of village children for the prevalence
data. Children testing positive for malaria at each bi-weekly
sampling were treated with anti-malarial drugs. Because
there were twice as many children in Banizoumbou com-
pared to Zindarou, it was more likely for a child selected
for testing in Zindarou to have been tested and treated in
the past. Also, the relatively small sample size leads to a
wide variance in prevalence estimates.
The model sensitivity analysis indicated greatest sensi-

tivity to the value of rmin, with a 35% increase in preva-
lence when the minimum recovery rate was decreased
by 10%. The duration of infection is important in sustain-
ing malaria transmission in areas with low and highly sea-
sonal transmission [29]. Long infections carry the parasite
over from one transmission season to the next. The sensi-
tivity analysis showed low sensitivity to other parameter
values, with no perturbation leading to more than 6%
change in mean prevalence. Results of the sensitivity ana-
lysis are shown in Figure 10 and Table 1.
The combined model we presented here, which includes

a simple representation of acquired immunity, completes a
mechanistic modeling linkage between hydrological vari-
ability and village-scale malaria dynamics. While malaria
models incorporating immunity are not new, the presented
model has a novel structure that allows the spatially- and
Figure 10 Sensitivity of model results to parameter values. Each parame
simulation under original parameterization (blue) and perturbed parameter (g
temporally-varying environmental controls of mosquito
population dynamics to determine prevalence as well as
variability in protective immunity of the population.
This is the only model to our knowledge that provides
an explicit link from environmental inputs to malaria
prevalence through modelling hydrological, entomological
and immunological processes.
While the simulation of overall village prevalence

shown in this study could have been achieved using one
of the many existing compartmental models of malaria
transmission [18-24] driven by the time-series of mos-
quito biting rates simulated by HYDREMATS, we devel-
oped an individual-based model in order to provide a
framework for using spatially-explicit individual based
models to link environmental variability to malaria trans-
mission in human populations, with the ultimate goal of
simulating the impact of environmental changes (changes
in regional climate, climate variability and land use) on
malaria transmission in human populations at the vil-
lage scale. The spatially explicit structure of this model
allows the spatial relationships between developmental
habitat and human population to be maintained. Such a
structure is important when simulating the individual
mosquitoes that make up a population and ultimately
deliver the inoculations leading to malaria prevalence
and immunity, because their behavioral decisions depend
on their immediate environment and thus distributed
land use and hydrology characteristics. Pooled water
ter was decreased by 10%. Prevalence in Banizoumbou after 10 years of
reen) are shown.
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some distance from a village will host far fewer subadult
mosquitoes than pooled water close to the village or
within the village itself because the proximity of pools
to human hosts makes them much more easily access-
ible to ovipositing female mosquitoes and hence more
likely to be utilized for breeding. In short, a person’s
location within a village can influence malaria risk, as
risk is heterogeneous [48,49]. Flight distances of mos-
quitoes from developmental habitat to human blood meal
hosts also affects the chances of encounters leading to in-
oculations, which the presented spatial model represents.
The number of inoculations thus depends on spatial rela-
tionships of hosts and habitat, and in turn affects the
immunity and prevalence levels. The model presented
represents a mechanistic linkage between spatial and
temporal environmental variability and malaria preva-
lence in human populations. By tracking the past expos-
ure of each individual human, the individual-based
approach provides a more realistic representation of the
processes of malaria transmission than compartmental
models.
The moderating effect of immunity on malaria prevalence

has been shown by others. Dietz et al. [18] compared two
Nigerian villages and found that despite significant dif-
ferences in vectorial capacity there were only modest
differences in malaria prevalence. This information was
used in developing the immunity and superinfection as-
pects of their malaria transmission model. An entomo-
logical and parasitological survey in The Gambia found
a negative correlation between vector abundance and
malaria prevalence, suggesting substantial differences in
immunity between neighboring villages [50]. Macdonald
[51] also emphasized the importance of acquired immun-
ity in regulating malaria transmission in the context of
field observations and modeling results, and cautioned
against incomplete anti-malaria interventions that weaken
a population’s immunity, an effect that is now called re-
bound malaria and has been observed following interven-
tions [52-54]. Our results are consistent with observations
that large differences in EIR do not necessarily lead to
changes in prevalence [15].
Simulated malaria prevalence in the human population

is useful for comparison to field observations; however,
a more useful metric for the vulnerability of a village
population to malaria epidemics stemming from climate
variability, is the immunity level. Zindarou has higher
immunity levels than Banizoumbou due to the large
number of inoculations resulting from higher vectorial
capacity. Anomalously wet climate conditions would boost
mosquito populations, and would plague each with higher-
than-normal mosquito abundance. Zindarou, with a higher
immunity level, would be able to withstand the increased
force of infection more than Banizoumbou. The greater
immunological defense in Zindarou protects the human
population more than in Banizoumbou. Climatic vari-
ability brings about differences in vectorial capacity, and
the resulting changes in rates of malaria inoculation
boost the immune response, which wanes slowly. Re-
peated years of high vectorial capacity bring about high
population immunity, and several years without high levels
of transmission can cause immunity levels to wane. Such
conditions can make populations very susceptible to devas-
tating malaria epidemics when conditions shift back to
promote more intensive biting pressure.

Conclusion
A simple representation of malaria transmission and the
acquired immunity to malaria was developed and embed-
ded in an agent-based model of host-vector-parasite inter-
actions surrounding two villages in Niger, allowing us to
simulate prevalence in the two villages, and to observe
the effects of acquired immunity. Although the simulated
prevalence does not exactly match observations, it does
show how acquired immunity dampens the effect of in-
creased biting. Without the effects of immunity, Zindarou
would have much higher prevalence than Banizoumbou.
However, when we include the effect of immunity, preva-
lence in Zindarou significantly decreases and approaches
Banizoumbou levels. We attribute the lack of discernible
difference in measured prevalence between the villages
despite pronounced differences in vector abundance to
the moderating effect of acquired immunity. Although
model and field data from this study suggest that village
scale malaria prevalence is largely independent of hydro-
logic conditions, according to the model the danger to the
community depends on the level of acquired immunity,
which in turn depends on hydrologically driven mosquito
abundance over previous years. Greater acquired immun-
ity in wet Zindarou resulting from more inoculations than
in dry Banizoumbou renders the villagers more resilient
and less vulnerable to malaria epidemics associated with
climate anomalies (e.g. unusually wet years) than their
counterparts in Banizoumbou.
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