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Chapter 2

Intel’s Embedded Solutions: 
from Management to 
Security

Security is, I would say, our top priority because for all the exciting things 
you will be able to do with computers—organizing your lives, staying 
in touch with people, being creative—if we don’t solve these security 
problems, then people will hold back.

—Bill Gates

Teflon, the famous chemical, was discovered by Roy Plunkett of E. I. du Pont de Nemours 
and Company (commonly shortened to DuPont), in 1938 and trademarked in 1945. 
Teflon’s major application today is in manufacturing nonstick cookware. However, it was 
not intended for helping grandmas make delicious pancakes when it was first discovered. 
For decades, it has been used in artillery shell fuses and the production of nuclear 
materials.

Temper foam was invented in 1966 by Chiharu Kubokawa and Charles A. Yost of 
NASA’s Ames Research Center to protect astronauts’ bodies when they are hurtling 
toward the earth. Today, temper foam is used to make mattresses that people sleep on 
every night.

The list of old inventions finding new applications in new domains goes on. The new 
applications benefit a much wider population and improve more people’s quality of life.

When Intel’s Active Management Technology (AMT) first appeared in 2005, it was 
marketed as an advanced system management feature for Intel 82573E series gigabit 
Ethernet controllers. In 2007, a new embedded coprocessor, namely the management 
engine, was introduced. Originally, the management engine was designed primarily 
for implementing the AMT rather than running security applications. At that time, the 
main problem that was supposed to be resolved by the embedded engine and AMT was 
the high expense and difficulty of system management by network administrators. The 
management engine was a component of Intel chipsets with vPro technology. The Intel 
AMT implementation was moved from gigabit Ethernet controllers to the management 
engine and became a feature of vPro.
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Intel AMT is not the only application on the management engine. The first security 
application on the engine was the integrated TPM (Trusted Platform Module, see 
Chapter 7 for details). The number of security applications has been increasing in recent 
years with every release of the engine. In the latest releases, most applications running 
on the engine are related to security. The applications either realize “pure” security 
functionalities, or provide security infrastructures for other consumer features. For 
example, TPM and Boot Guard (refer to Chapter 6 of this book for details about Intel’s 
Boot Guard technology) are security modules, whereas the dynamic application loader 
(DAL, see Chapter 9) is not implemented for security per se, but requires security as a 
building block.

In addition to more powerful applications and functionalities, the embedded 
engine has also been deployed on more platforms—not only chipsets for traditional 
personal computers, laptops, workstations, and servers, but also SoC (System-on-Chip) 
products, for example, in-vehicle infotainment, tablets, and smartphones, where security 
is becoming a critical infrastructure. The AMT is still widely provisioned on desktop 
computers and laptops, but has become an optional add-on for other mobile devices. On 
Intel’s SoC platforms, the engine carries only security applications.

Just like Teflon and temper foam, today, the engine is realizing its greater value 
in the new usage model—providing robust security solutions and trusted execution 
environments to all forms of computer systems. The security and management engine is 
contributing to the promotion of people’s computing experience every day and making a 
more substantial impact than ever before.

This book is not the first literature on the engine. Back in 2009, Intel Press published 
Active Platform Management Demystified: Unleashing the Power of Intel vPro Technology, 
authored by Intel’s Arvind Kumar, Purushottam Goel, and Ylian Saint-Hilaire.1 It will be 
referred to as the “2009 AMT book” in this chapter.

The 2009 AMT book is a systematic introduction to the management engine and 
AMT. It raises the platform management problems to be resolved, evaluates existing 
solutions, and then proposes the innovative AMT solution. It covers technical details 
of the management engine and the AMT, as well as instructions for setting up and 
configuring the AMT.

Although the engine’s design has been improved in many ways since the 2009 AMT 
book was published, the fundamental architecture of the engine remains unchanged.  
A large portion of the technical descriptions in the 2009 AMT book still applies to today’s 
security and management engine. Even after five years, it is still the best reference for 
infrastructures of the management engine and the AMT.

The remainder of the chapter is organized as follows. In the next section, we briefly 
revisit the 2009 AMT book. We will begin with a review of the hardware and firmware 
architectures of the management engine, and then look at the platform management 
problems and compare different solutions by analyzing their advantages and 
disadvantages. Next, a high-level introduction to the architecture of the AMT is presented. 
Finally, select security applications that feature on the security and management engine 
today are presented, with reasons for housing the applications in the embedded engine.
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Management Engine vs. Intel AMT 
What are the differences between the two terminologies, management engine and AMT? 
Do they mean the same thing?

The management engine refers to a computing environment consisting of dedicated 
hardware and firmware components. It has its own real-time operating system and 
hardware resources such as processor and memory. Just like a computer with Core CPU 
(central processing unit), applications can be installed and executed on the management 
engine. The applications are not generic software. They are implemented in firmware and 
designed specifically for running on the engine.

On the other hand, Intel AMT is a firmware application running on the management 
engine. It invokes the infrastructure and kernel application programming interfaces 
(APIs) provided by the management engine to build system management functionalities.

When the management engine was first introduced, Intel AMT was the primary 
application and it had attracted tremendous media attention. Hence some literatures use 
“management engine” and “active management technology” interchangeably. Today, 
although Intel AMT is still the most senior member of the application family, many new 
applications have joined the family and been deployed on the engine.

Intel AMT vs. Intel vPro Technology
Intel’s vPro technology is a marketing name that covers a wide range of security and 
management features that are built in Intel processors and chipsets. The vPro technology 
resolves prevailing manageability, security, and energy efficiency problems with 
hardware-based protection, which is considered, when compared with software-based 
solutions, less vulnerable to threats such as viruses, worms, and hackers.

Many consider the AMT to be the essence of vPro. However, the vPro technology is 
comprised of not only AMT, but also other useful ingredients, such as:

Intel Trusted Execution Technology•	 2 (TXT)

Intel Virtualization Technology•	 3

Intel Identity Protection Technology•	 4 (IPT)

Intel Anti-Theft Technology•	 5 (will be end of life in January 2015)

Besides AMT, some of these vPro ingredients also rely on the embedded engine to 
function. For example, IPT (refer to Chapter 10) and Anti-Theft.

Management Engine Overview
The management engine is made up of hardware and firmware. However, outside of its 
boundary, appropriate software drivers and applications must be installed on the host 
in order for the host to communicate with the embedded system through the dedicated 
host-embedded communication interface (HECI).
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Hardware
The hardware is comprised of a processor, code and data caches, DMA (direct memory 
access) engines, cryptography engines, read-only memory (ROM), internal memory 
(static random-access memory, or SRAM), a timer, and other supporting devices. The 
devices are connected through an internal bus that is not exposed to the external world. 
This ensures independence, isolation, and security of the engine. The management 
engine’s hardware devices are only accessible by the processor, the DMA engines, and the 
cryptography engine.

The hardware architecture is illustrated in Figure 2-1.
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Figure 2-1. Hardware architecture of the management engine

Early generations of the management engine used ARC as the central processing 
unit. Other processors have replaced ARC in newer generations. The processor model 
and frequency in a specific engine depends on the form factor on which the engine is 
deployed. The model of the processor does not impact the engine’s high-level firmware 
architecture.

There is a small code and data cache to help the processor reduce the number of 
accesses to the internal SRAM. The internal SRAM is the memory that stores firmware 
code and data at runtime. The capacity of SRAM varies depending on the product, but 
generally ranges between 256KB and 1MB.

In addition to the internal SRAM, the management engine also uses a certain 
amount of DRAM (dynamic random-access memory) from the main system memory. 
Code and data pages that are not recently accessed may be evicted from the SRAM and 
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swapped out to the reserved memory. When a page is needed again, it will be swapped 
in to the SRAM. During the boot process, the DRAM region that will be used by the 
management engine is reserved by the BIOS (basic input/output system) for the engine’s 
dedicated access. The reserved region, by design, is not visible to the main host operating 
system. That being said, the management engine’s security architecture assumes that the 
BIOS may be compromised and the local host may be able to read and write the reserved 
memory region. The size of the reserved memory varies from product to product, but 
usually in the range between 4MB and 32MB. This is only a small fraction of the DRAM 
installed on today’s computing devices, and hence the impact to the main operating 
system performance is negligible.

For many embedded applications, it is necessary to transmit bulk data between 
the embedded memory and the host memory. However, the engine’s processor cannot 
address the host memory. Therefore, dedicated DMA engines are introduced for 
moving data between the engine’s memory and the main system’s memory. Notice that 
the reserved memory is considered the engine’s memory and not the host memory. 
When addressing the host memory, the DMA engines can only understand physical 
addresses and not virtual addresses that are specific to operating systems processes. 
The DMA engines can only be programmed by the embedded firmware running on the 
management engine. The DMA engines can also be used to move a large amount of data 
between two buffers of the engine’s internal memory. Experiments show that, when data 
is greater than 1KB in size, it is more efficient to invoke a DMA engine for data copying 
than calling memcpy() of the processor. The firmware cannot program a DMA engine to 
move data between two host memory locations.

The cryptography engine device offloads and accelerates heavily-used cryptography 
algorithms so those resource-consuming operations can be performed faster and 
they do not occupy the processor’s clock cycles. The algorithms implemented by the 
cryptography engine include AES (Advanced Encryption Standard), SHA (Secure Hashing 
Algorithm), DRNG (Deterministic Random Number Generator), big number arithmetic, 
and so on. See Chapter 3 of this book for a complete list of algorithms and their API 
descriptions. The cryptography engine is only accessible by the engine’s firmware. They 
are not directly available to the host, although some embedded applications implement 
and expose external interfaces for the host applications to take advantage of the 
cryptography engine. Notice that the cryptography driver in the firmware kernel not only 
abstracts interfaces for the cryptography engine hardware, but also implements other 
cryptography algorithms that are not available in the hardware.

Overlapped I/O
As shown in Figure 2-1, there are three master devices—processor, DMA, and 
cryptography engine—on the management engine. They all can access the embedded 
memory and process data. These devices are independent of each other and therefore 
can function at the same time without mutual interference, as long as the assets (for 
example, memory and global variables) that are being accessed by more than one 
device are properly protected against racing conditions. The protection is usually 
realized by employing semaphores or mutexes. By commanding multiple devices to 
work simultaneously, firmware applications can be optimized to minimize the system 
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resource idle time and boost performance. The mechanism implemented by the security 
and management engine is de facto equivalent to overlapped I/O (input/output) or 
asynchronous I/O for traditional operating systems.

The idea is straightforward. After process A initializes a long cryptography operation, 
such as the exponentiation and modulo of RSA (a popular asymmetric-key cryptosystem 
invented by Ron Rivest, Adi Shamir, and Leonard Adleman) decryption, instead of 
sitting idle and waiting for its completion, the processor may switch to process B and 
perform operations that do not require the cryptography engine. In the meantime, the 
processor may either periodically inquire about the status register for completion of the 
RSA operation or watch for an interrupt signaled by the cryptography engine. Similarly, 
the DMA engines can also participate in the synchronization to further expedite the 
operations.

An interesting example of the overlapped I/O design is the flow for decrypting and 
parsing an H.264 video frame during movie playback. For this application, the player 
running on the host receives encrypted video frames from a remote content server, but 
the player as user-mode software is not allowed to access the content key or the clear 
content. The wrapped content key is sent to the security and management engine, which 
in turn uses its device private key to unwrap and retrieve the plaintext content key. The 
engine then decrypts the encrypted frames, performs slice header parsing, and sends 
back the resulting headers to the host. Finally, the player submits the encrypted frames 
and parsed headers to the GPU (graphics processing unit) through the graphics driver for 
playback.

Because of the limited memory capacity of the embedded memory, a large frame has 
to be split into chunks before it is processed. The optimal size of a chunk depends on how 
much embedded memory is available.

The firmware has three tasks in this usage:

1. Copy a chunk of an encrypted video frame from the host 
memory to the internal memory. This step is carried out by a 
DMA engine.

2. Decrypt the encrypted frame. For most cases, it is an AES 
decryption, offloaded to the cryptography engine.

3. Parse the clear frame. This step is conducted by the 
embedded processor.

The firmware runs the three steps repeatedly on all chunks of the frame, until the 
entire frame is processed.

A sequential approach would be to repeatedly exercise steps 1 to 3 for all chunks of a 
frame, respectively. The advantage is obviously simple firmware control logic. Figure 2-2 
depicts an example of a frame that consists of four chunks. For simplicity, assume that the 
three tasks for a chunk— DMA copy, decryption, and parsing— take the same amount 
of time (denoted as one time slot in the figure). The number of time slots needed for 
processing a frame of n chunks is 3 × n. Processing all four chunks of the frame takes as 
many as 12 time slots.
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Obviously, the sequential approach lacks efficiency. In this design, when step 1 is 
running, the DMA engine is busy; however, the cryptography engine and the processor 
are both idle. Similarly, in step 2 and step 3, only one device is working at any moment 
and the other two are not being used.

To implement an overlapped I/O optimization, the firmware must simultaneously 
manage three chunks of the frame (namely: previous chunk, current chunk, and next 
chunk) of the same size in three distinct memory buffers.

The firmware first initializes DMA for the next chunk of frame, then triggers the 
AES decryption for the current chunk (the current chunk has been DMA’ed into the 
embedded memory in the previous iteration), and finally parses the previous (decrypted) 
chunk of the frame (the previous chunk has been DMA’ed into the embedded memory 
and decrypted in the previous two iterations). When the parsing is finished, the 
processor waits for the completion of the AES and the DMA. Figure 2-3 explains the flow 
graphically.
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Figure 2-2. Frame parsing flow without using overlapped I/O
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It is easy to see from Figure 2-3 that processing four chunks takes only six time slots 
thanks to the overlapped I/O optimization. In general, the number of time slots taken for 
processing a frame of n chunks is n + 2.

Note that for the security and management engine, the processor, the DMA engines, 
and the cryptography engine all operate at the same speed. The exact frequency 
varies among different products. This is the major difference between the embedded 
overlapped I/O and its counterparts for the host operating systems, where the I/O 
devices, that is, hard drive, keyboard, and so forth, are usually operating at significantly 
slower speed than the main processor.

Admittedly, managing three masters may result in fairly complex firmware logic. 
The best practice for software engineering tells us that complicated code is more prone 
to bugs and errors. Therefore, such optimization strategies should be exercised with extra 
care. And the implementation must go through thorough testing and validation to cover 
all corner cases. For certain use cases, such as video frame parsing, as the throughput 
requirement is extremely high to guarantee smooth playback, utilizing the overlapped 
I/O trick is necessary.

Note ■  If multiple master devices are available on the embedded system, consider  
overlapped I/o to improve performance.

Firmware
The security and management engine’s embedded firmware implements the runtime 
operating system, kernel, and applications.
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Figure 2-3. Frame parsing flow using overlapped I/O
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There are numerous products and form factors of the engine. A specific version of 
firmware is intended for running on the corresponding engine hardware only, and a 
specific engine is intended for running the corresponding version of the firmware; for 
example:

Intel series 5 chipset (codename IbexPeak) can load only security •	
and management engine firmware version 6.x. It cannot load 
version 5.x or other firmware. It cannot load firmware from a third 
party or a hacker.

Security and management engine firmware version 6.x can •	
only execute on the Intel series 5 chipset. It cannot be executed 
on series 6 or other chipset generations. It cannot be executed 
on SoC products, nor can it run on a third-party’s or a hacker’s 
hardware platforms.

Security and management engine firmware designed for the Bay •	
Trail tablets cannot execute on Intel chipsets or other generations 
of Intel tablets.

The hardware and firmware mapping is enforced by different image signing keys. 
The hash values of the signing public keys are hardcoded in the ROM on different 
products.

Figure 2-4 shows the high-level architecture of the management engine firmware.
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Figure 2-4. Firmware architecture of the management engine
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There are two storage media—ROM and flash nonvolatile memory—that store the 
firmware’s binary data and executable code. The ROM inside the management engine 
stores the boot loader. The code in ROM cannot be modified once manufactured. Thanks 
to this property, ROM is used as the root of trust of the engine. The boot loader code is 
usually smaller than 256KB.

The rest of the firmware is stored in flash. The flash is divided into multiple regions, 
for security and management engine firmware, BIOS, network controller, and so forth, 
respectively. Depending on which embedded applications are chosen to be included, 
the management engine firmware can consume from a few hundred kilobytes to 1.5 
megabytes of flash space. The region for firmware is further divided into regions for 
executable code, configuration data, embedded applications’ variable storage, and so 
on. The OEMs (original equipment manufacturers) are mandated to lock down the 
flash so it cannot be altered after the manufacturing process is completed. However, 
the management engine does not depend on the flash lockdown for security. The threat 
analysis assumes the flash can be replaced or reprogrammed by an attacker as he wishes.

As shown in Figure 2-4, firmware modules are logically divided into two categories: 
privileged and nonprivileged. The privileged firmware boots the engine, loads other 
modules, abstracts hardware devices (such as DMA engines and cryptography engines), 
schedules threads, manages synchronization objects (such as semaphores, timers, 
and mutex), and coordinates communications between embedded applications. The 
privileged firmware is the kernel and it implements only infrastructure for internal 
applications. It usually does not contain applications or expose external interfaces that 
are visible to the host.

The nonprivileged firmware is made up of one or more applications that realize 
their designed functionalities. The management engine firmware must contain at least 
one nonprivileged application. The Intel AMT, a nonprivileged module, is one of such 
applications. One notable difference that distinguishes the AMT from other applications 
is that the AMT also includes network stacks. Although most applications leverage the 
kernel for external communication, the AMT uses firmware wired and wireless network 
stacks for communicating with the remote managing console. As will be described 
later in this chapter, the firmware shares the same network devices with the host. The 
nonprivileged modules are further separated from each other by task isolation. The 
boundary between the privileged and nonprivileged domains is safeguarded by hardware 
and the privileged, to prevent privilege escalation attacks from the nonprivileged code.

Chapter 4 of this book provides a detailed introduction about the firmware 
architecture.

Software
Two classes of software programs run alongside the engine: drivers and user-mode 
applications.

The HECI is intended for transmitting a small amount of data between the host 
and the management engine firmware. The HECI is implemented as a circular buffer 
with limited bandwidth; therefore, the size of the data in general should be smaller than 
10KB. The data transmitted through HECI can be commands for the firmware and the 
firmware’s responses, but not massive data. The DMA engines should be used to move 
large amounts of data between host and firmware.
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During the boot process, the BIOS can exchange messages with the firmware through 
HECI. On the host operating system, only ring 0 drivers may access the HECI device to 
send and receive messages. Together with the management engine firmware, Intel also 
releases HECI driver software for the HECI communication for various operating systems. 
The HECI driver is also called the management engine interface (MEI) driver. On Linux 
and Android, it is a device driver that supports the main kernel-based distributions.

Most firmware applications serve the role of trusted execution environments for 
the corresponding host applications. The firmware applications are typically used for 
handling sensitive secrets that must not be visible to the host and for offloading critical 
operations that involve the secrets. The software and firmware together realize specific 
functionalities. The software agents communicate with firmware applications through the 
HECI interface and DMA.

For example, a movie player application sends a 128-bit or 256-bit encrypted content 
key to firmware in a HECI message, and then the firmware uses the unique device key 
stored in the engine to decrypt the content key. Then the player sends another HECI 
command to initialize playback. Note that the device key must be securely provisioned to 
the engine beforehand and the device key must never be exposed to the host.

The software may also place bulk data, such as an encrypted video frame of over 
1MB in size, in the host memory and notifies the firmware of the data size and the 
physical address thorough a HECI command. Upon receiving the HECI command, the 
firmware invokes its DMA engine to bring in the video frame from the host. Note that 
the embedded engine’s DMA devices understand physical memory address only. Virtual 
memory must be converted to physical memory by a ring 0 driver before delivering to  
the firmware.

Platform and System Management 
As defined in the 2009 AMT book, a platform is a computer system and all of its hardware 
components: motherboard, disk storage, network interface, and attached device, that is, 
everything that makes up the computer’s hardware, including BIOS. On the other  
hand, a system has a broader definition. It includes both the software and the hardware  
of a computer.

Today, the concept of a “platform” for mobile devices should be extended to cover 
hardware that is not present in traditional computer systems. There is a long list of 
hardware that is commonly embedded in mobile platforms: GPS (global positioning 
system), cameras, sensors, fingerprint reader, and so forth.

The network administrator’s responsibility is to make sure all computers in an 
enterprise are up and running normally. Even before the Intel AMT was invented, 
there were numerous manageability solutions available in the market to help network 
administrators do their jobs.

Software Solutions
There are several categories of manageability software. For example, firewalls analyze 
network data packets and determine whether they should be allowed or blocked, based 
on the rules and policies configured by network administrators. Antivirus software 
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detects and removes malicious software programs from the system. Remote desktop 
control agents such as VNC (virtual network computing) and SSH (secure shell)  
enable IT support technicians to remotely manage a system to perform diagnosis and 
resolve problems.

Although very convenient and useful in daily system management, software 
solutions also suffer from obvious limitations:

•	 Dependability: Manageability software runs in the operating 
environment that they are attempting to monitor, manage, 
and repair. When the operating system is not booting or not 
configured correctly, the software manageability solutions may 
fail to function.

•	 Availability: Manageability software is not able to perform 
management tasks when the system is in low-power states 
(sleeping or hibernating).

•	 Reliability: Manageability software is usually launched during 
boot and runs quietly in the background. However, it may be 
accidentally or intentionally turned off by end users or other 
system “clean-up” utilities.

•	 Security: Software solutions are naturally less trustworthy than 
hardware solutions. They are vulnerable to denial of service (DoS) 
attacks, may be compromised to report bogus information, or 
may even be hijacked and become a threat to other computers in 
the same network.

Hardware Solutions
In contrast to software solutions, hardware solutions for manageability do not depend on 
the operating system or software programs; hardware solutions can be functioning when 
the computer is in a low-power state; and hardware-based security measures can be 
applied if desired.

The KVM (keyboard, video, and mouse) is a representative hardware approach. In a 
typical KVM setup, the computer being managed is locally connected to a network KVM 
device, which connects the computer’s I/O devices to a remote management console over 
the network. A network administrator can manage numerous computers from a single 
console simultaneously. Sitting in his office, the administrator can see the display of the 
computer being serviced and control its keyboard and mouse, as if he is sitting in front 
of the managed computer. Figure 2-5 is a symbolic representation of the management 
solution based on network KVM.
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The equipment cost is the main factor that prevents the network KVM solution from 
being deployed on every computer. As can be seen in Figure 2-5, the KVM stands on 
the side of the computer; there must be a KVM device to support a computer (multiple 
computers physically located in the same location can share a multiport network KVM). 
The retail price of a 16-port network KVM ranges from a few hundred to over a thousand 
US dollars. This significantly raises the cost of network and system administration.

A more advanced hardware management solution is the baseboard management 
control (BMC). The BMC is a specialized embedded system that monitors various 
physical states, including, but not limited to, the temperature, humidity, or voltage of a 
computer or server. If a reported value strays out of the normal range, the administrator 
will be notified. A BMC combined with network KVM can realize very powerful 
management functionalities, including remotely power cycling, seeing displays, and 
controlling the keyboard and mouse. See Figure 2-6 for a symbolic representation  
of the BMC.
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Figure 2-5. Network KVM connected to a managed computer
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Figure 2-6. Baseboard management controller

The powerful capability and convenience of BMC comes with a price. Due to the 
cost, BMC is usually only justifiable for deploying on large servers that carry critical tasks.
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In-Band Solutions
An important component of any management methodology is how the data of the 
managed machine is transmitted to the managing console for diagnosis and analyzed. 
The communication link determines the security and reliability of the communication.

An in-band solution leverages the communication and network stacks of the 
underlying operating system and is often utilized by software management solutions, 
such as VNC, SSH, and so on. The in-band communication suffers the same limitations of 
software management, that is, dependability, availability, reliability, and security.

Out-of-Band Solutions
In contrast to in-band, an out-of-band solution employs dedicated channels for 
communicating with the console. Generally speaking, out-of-band solutions are more 
robust and secure than in-band solutions, thanks to the isolation from the host being 
managed.

For example, a network KVM device implements a network interface separated from 
the network stack of the managed computer’s operating system. The connections of KVM 
and the computer run side by side and are independent of each other.

The 2009 AMT book extends the definition of “out-of-band” for a special case, 
where the wired or wireless network adaptor is shared by both the operating system 
and an isolated management device. In this case, although the management device is 
located inside the chassis of the computer and it is not equipped with dedicated network 
hardware, it is still considered out-of-band because the management does not depend on 
the operating system. Figure 2-7 illustrates the sharing of a network card.
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Operating System

OS
Apps.

OS
Agent

Hardware
Management

In-band
Out-of-band

Figure 2-7. Out-of-band management: both the operating system and the hardware 
management traffic can use the same network hardware

Sharing a network device such as a NIC (network interface card) certainly reduces 
the bill of material (BOM) cost, but this slightly compromises functionality and security 
compared to using a dedicated network device. Functionality-wise, if the network card 
itself is malfunctioning and requires troubleshooting, then the communication channel 
between the computer and the managing console is essentially broken. Because no data 
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can be received from the problematic computer, the administrator may have to debug the 
issue on site. Security-wise, for the network sharing to function properly, it is required 
that both the network driver on the operating system and the management device agree 
and obey a predefined protocol. If the driver is compromised and does not follow the 
protocol, it may cause a racing condition on the hardware and mount, and at a minimum, 
denial of service attacks, so that the system data cannot be sent to the console.

To avoid the complications of network device sharing, most security applications 
running on the embedded engine, unlike the AMT, do not use the firmware’s network 
stacks to communicate with remote entities. Instead, if an application is required to 
exchange data with a remote server (for example, an authentication server), then it will 
rely on software programs running on the host operating system as the proxy.

Intel AMT Overview
We have seen different management solutions and their pros and cons. Table 2-1 gives  
a summary.

Table 2-1. Comparison of Management Solutions

Solution Functionality Dependability Reliability Availability Security Cost

Software,  
in-band

Fair Poor Poor Poor Fair Good

Hardware, 
out-of-band 
with separate 
network device

Good Good Good Good Good Poor

Hardware,  
out-of-band 
with shared 
network device

Good– 
(cannot 
debug NIC)

Good Good Good Good Good

As shown in Table 2-1, there is no perfect solution. However, the hardware out-of-
band solution with a shared network device is the best option overall. Intel AMT is such a 
solution with the following desirable characteristics:

It resides in the chipset and it is always available on all Intel vPro •	
platforms.

It is independent of the host operating system and power state.•	

It is functional even if the host is in a lower power state or has •	
crashed.

It shares the network device with the host so that the hardware •	
overhead is minimal.
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The AMT ships with three software components: BIOS extension, local management 
service and tray icon, and remote management. They serve three configuration scenarios, 
respectively: through HECI before the operating system is loaded, through HECI after the 
operating system is loaded, and through the network.

BIOS Extension
The BIOS extension for the engine is called the Intel management engine BIOS 
extension (MEBX). It is a BIOS component similar to other extension ROMs. It allows the 
administrator and the user to perform basic configurations for the management engine 
and the AMT, including changing the password for authentication, turning on and off the 
AMT, assigning Internet Protocol (IP) addresses, configuring network protocols, selecting 
the engine’s sleep and wake policies, and so on.

The primary reason for introducing the BIOS extension is to protect end users’ 
privacy. By the nature of BIOS, it requires a human being’s physical presence and 
knowledge of the correct password to authenticate to the management engine and 
change configurations.

The BIOS extension communicates with the embedded engine through the 
HECI channel. A HECI driver is implemented in the BIOS extension to facilitate the 
communication. The BIOS extension does not implement encryption algorithms. There is 
no protection applied to the HECI interface, and the messages are sent in the clear. Data 
sent to the engine by the BIOS extension is stored by the engine securely in nonvolatile 
memory with appropriate protections.

The BIOS extension executes before the BIOS delivers the end-of-POST (power-on 
self-test) signal to the embedded engine. The engine relies on the end-of-POST signal to 
determine whether a received HECI command was initialized from the BIOS extension or 
from the local host operating system. Select settings are deemed legitimate only if made 
through the BIOS extension interface. The embedded engine rejects such commands by 
returning an error if they are received after the end of POST.

Figure 2-8 demonstrates the flow of interactions between the host and the 
management engine during and after the boot process. The initial boot block is a 
firmware module loaded before the BIOS to facilitate the secure boot path. After the 
BIOS has initialized the system DRAM and reserved the exclusive region for the engine to 
access, it sends a DRAM-init-done HECI message to notify the engine.
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Figure 2-8. Interaction between the host and the engine for AMT configuration, with MEBX 
loaded during the boot process
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The HECI commands initiated from the MEBX are delivered to and handled by the 
kernel or the AMT firmware module. Because end-of-POST has not happened yet, the 
firmware will always honor the requests, perform configurations, and return to the MEBX. 
Once the administrator has finished his configuration work, he exits the MEBX. Next, the 
BIOS sends the end-of-POST command to the management engine, signaling that the 
BIOS is now handing the control to the boot loader and the operating system. An AMT 
configuration command received by the engine after end-of-POST will be examined and 
processed only if it is permitted after end-of-POST, based on predefined policies.

Notice that the BIOS may not be an Intel production. Therefore, the BIOS, including 
all BIOS extensions, is excluded from the engine’s trusted boundary. The engine does not 
depend on the integrity of the BIOS to achieve its security objectives. For example, during 
authentication, the password entered by an administrator or user is transmitted from the 
BIOS extension to the engine for examination, and not in the other direction. And even 
though an end-of-POST message never reaches the engine, the engine will not leak any 
secrets. By design, the most harmful attack a compromised BIOS component is able to 
launch against the engine should be to DoS the engine. For example, if the DRAM-init-
done message never reaches the engine, then the engine will be operating in a degraded 
mode, because it does not have DRAM to run applications that require a large amount of 
memory.

Local Management Service and Tray Icon
The purpose of the AMT’s local management service is to provide a similar programming 
interface for both local and remote applications.

As depicted in Figure 2-9, the local AMT application or the AMT user notification 
service opens a virtual network connection to the AMT firmware and it uses WSMAN 
(Web Services-Management). The application or the UNS does not have any knowledge 
about the firmware’s HECI mechanism. The local management service consumes the 
HECI driver and redirects the network traffic to the HECI link to the embedded engine. 
The AMT application is developed by third-party software vendors, and the user 
notification service is provided by Intel.
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There is also a tray icon application that is developed by Intel. The tray icon 
application fetches status information of the management engine from the HECI 
interface.

Remote Management 
Intel releases the AMT SDK (software development kit) to facilitate developers to 
interact with the AMT firmware and integrate the AMT features into their existing system 
management consoles and applications.

Earlier versions of AMT supported EOI (External Operations Interface) over SOAP 
(Simple Object Access Protocol), but the latest AMT releases only support the WS-
Management interface.

Refer to the Intel AMT Implementation and Reference Guide6 for details on the 
remote management development with AMT SDK.

Intel AMT
Status Icon
Application

Intel AMT
User

Notification
Service

Local
Management

Service

WSMAN
(Using Intel AMT SDK)

Intel AMT
host

Application

HTTP
TLS

TCP/IP
MEI Driver

Hardware and Firmware

fica
ervi

Management
WSM

(Using Intel A

TLS MEI Dr

MAN
AMT SDK)

ppl

SMA
el A

Figure 2-9. Local software components of the AMT
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The Engine’s Evolvement: from Management to 
Security
Seven years since its first deployment, the management engine has become the security 
and management engine. The evolvement did not happen overnight. The shift of focus 
from system manageability to security reflects the increasing importance of security in 
today’s computing industry and ecosystems.

The security and management engine has a number of desirable properties that 
make it not only a good manageability solution but also an excellent security solution.

Embedded System as Security Solution
What makes a solution a good one for running security applications?

Advanced techniques have been developed for creating trustworthy software 
solutions. These techniques include a managed runtime environment (MRTE), tamper-
resistant software (TRS), a secure virtual machine (VM), Intel TXT, Intel Software Guard 
Extensions (Intel SGX), and so forth. Refer to the Intel Corporation white paper “Using 
Innovative Instructions to Create Trustworthy Software Solutions,” for an introduction 
to the various secure software solutions.7 However, these solutions suffer from different 
restrictions. And software, by its nature, is more vulnerable to attacks. It is hard for 
software to gain a comparable level of trust as equivalent hardware solutions. For 
example, several content protection schemes allow playback of certain high-definition 
contents only if the video path is protected by hardware.

Although it could provide very strong protection, a pure hardware solution is not 
preferable either. The problem of realizing security applications in hardware is the lack of 
flexibility and high cost. For convoluted features, it is very difficult to avoid bugs. Software 
programs can be patched with minimum overhead, but hardware issues may not be 
patchable and may require recall, which is a disaster for computer manufacturers.

A firmware/hardware hybrid is the solution that inherits the advantages of both 
software and hardware. On one hand, firmware runs on dedicated hardware and features 
hardware-level protection for security applications. On the other hand, the firmware 
can be stored in rewritable nonvolatile storage, and enjoys simpler deployment and the 
flexibility of being patched or updated at a relatively small cost.

The security and management engine is such a firmware/hardware hybrid product. 
Security-wise, a few highlights of the design are listed next. More details can be found in 
Chapter 4 of this book.

•	 Independency: The engine enjoys its own computing environment 
that is independent of the main operating system running on the 
host. The engine can run normally when the operating system 
crashes with a blue screen or cannot boot. Even if the host is 
sleeping or hibernating, the engine can also run normally. Notice 
that the reserved memory may not be available when the host is 
in a low-power state. Consequently, certain firmware features that 
require a large amount of memory may not function when the 
system is in a low-power state.



Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

47

•	 Isolation: The engine does not share a processor or main memory 
with the host. The reserved memory is under strong confidentiality 
and integrity protection (see Chapter 4 of this book for details), so 
it is virtually isolated from the rest of the DRAM that is controlled 
by the host operating system. The networking devices, even if 
compromised, do not compromise the engine’s security objectives. 
The DMA engine and HECI channel do not rely on the correct 
behavior of the host. In general, an external adversary (malware, 
virus, and so forth) is not able to infect the firmware.

•	 Closed system: The engine loads only firmware that is digitally 
signed by Intel for the engine. Attackers cannot easily change the 
firmware kernel or add/remove applications.

•	 Small attack surface: The only general interface that is available 
to all firmware modules to the host is the HECI channel. A 
small number of modules may invoke DMA and other low-
level I/O, such as GPIO (general-purpose input/output), as 
needed. And only the AMT application may access the network. 
Data intake from these interfaces is not trusted by the security 
and management engine, and is fully validated before being 
processed. Invalid input data may cause wrong calculated 
responses from the engine, but will not crash the engine or 
compromise the security of the engine.

•	 Programmability: In addition to its native firmware applications, 
the engine opens its security capability to third-party host 
applications by exposing security APIs through HECI. See Chapter 
9 of this book for more information.

•	 Power efficiency: Because the engine runs at a low frequency 
(from approximately 200MHz to 400MHz, depending on the 
product) compared to the main CPU, the power consumption is 
in the scale of milliwatts. In addition, the engine supports power 
gating. After being idle for a configurable number of seconds, it 
enters the sleep state to conserve power. Events that can wake up 
the engine include a HECI message from the host or interrupts 
from I/O devices.

Flexibility-wise, only a small portion (more specifically, the boot loader and standard 
library functions) of the engine’s firmware is stored in ROM for the sake of root security 
and performance, and all application firmware is stored in flash. This enables a firmware 
update to fix or patch hardware or firmware bugs in the field.

We have seen the advantages. But is the engine perfect? What about the “cons”?

•	 Cost: The engine is a separate core and it shares few hardware 
devices with the main operating system. Although more isolated 
and secure, this adds the BOM cost of the platform, compared to 
security solutions that do not introduce a dedicated processor.
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•	 Limited computing bandwidth: To save power and cost, the engine’s 
processor runs at a relatively low frequency. This restricts it from 
serving applications that require high throughput. However, note 
that most security applications do not require overwhelming 
performance and the bandwidth is not a major concern.

•	 Difficult firmware update deployment: It is relatively easy for 
software to push patches and updates to end users’ devices. This 
helps software vendors fix vulnerabilities and add new features 
in a timely manner. The story of a firmware update is completely 
different, however. Because the firmware is part of the security 
and management engine, and a component of the chipset or SoC, 
firmware hotfixes and maintenance releases must be thoroughly 
tested for compatibility by OEMs before being pushed to devices 
that are in the field. This process usually takes anywhere from a few 
weeks to a few months, and may not happen at all. To address the 
problem of firmware updates, a stringent security review process is 
exercised in the attempt of minimizing the need for hotfixes.

Overall, the pros of using the engine as the security solution outweigh the cons, 
making the engine the ideal place for security solutions.

Security Applications at a Glance
Realizing these attractive properties of the infrastructure, no one would be satisfied if the 
management engine remained just a system management tool. System manageability is an 
important and useful application, but it does not make use of the full potentials offered by 
the engine. Now that the engine is available on the system, why not make the most out of it?

First, the engine should be used as frequently as possible—not only when 
management service is requested on the system. After all, how often do system problems 
happen? They do not happen every day.

Second, a successful state-of-the-art technology should not benefit only the network 
administrators and the employees in enterprises. It should bring values to a larger 
population.

There are clearly many more possibilities and opportunities to be explored on the 
security and management engine. In today’s mobile age, the demand for secure mobile 
services that involve valuable assets is gaining significant momentum. As a result, the 
embedded engine is reborn with new security features that are serving all end users  
every day.

EPID 
Thanks to its direct access to hardware and isolation from the host operating system, 
it is convenient to leverage the security and management engine as the root of trust 
for the platform. The EPID (enhanced privacy identification) is a security mechanism 
exclusively built in the engine and serves as the hardware security root of trust for various 
applications running on the platform.
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During Intel’s manufacturing process, a unique EPID private key is retrieved from 
an internal key generation server and programmed to the engine’s security fuses. At 
runtime, the engine’s firmware uses the EPID private key to prove to the local host or a 
remote server that it is a genuine Intel platform and eligible for premium services that 
are available only to Intel products. Those applications rely on a hardware infrastructure 
that is only supported by Intel’s products. For example, the CPU upgrade service, PAVP 
(protected audio and video path), and so on.

Leakage of an EPID private key would allow hackers to write software masquerading 
as Intel hardware. Such attacks may break into the applications that were built on the 
EPID and then steal secrets, such as user’s stock brokerage passwords or copyrighted 
contents. To prevent the EPID key from being compromised, comprehensive protection 
mechanisms for the EPID private key at rest and at runtime are implemented by the 
engine. Of course, the EPID key generation process is also safeguarded with very strong 
and restrictive policies. In fact, except for the purpose of debugging, no human being is 
supposed to know any EPID private key value. Having said so, a key revocation scheme is 
supported by the engine in case of incidents.

To summarize the requirements, the EPID credential must be unique per platform; 
it must always be available; and the deletion, alteration, theft, or cloning of the EPID 
credential on one platform to another platform shall not be feasible without employing 
special hardware equipment and significant resources. Such a level of security strength 
is very difficult, if not impossible, to achieve by software solutions. The security and 
management engine is the ideal place to implement EPID functionalities. It offers not 
only ample security protection, but also flexibility in supporting EPID applications 
because the engine is a hardware/firmware hybrid device.

Chapter 5 of this book has more information on EPID.

PAVP
Some applications need to securely display frames and play audio to the user. The 
security requirement is that software running on the host operating system must not be 
able to peek or steal the contents being securely played back.

For example, alongside the wide deployment of the media playback feature on 
mobile computing devices is the problem of protecting copyrighted contents from 
piracy. Some content creators (such as movie studios) consider software protection 
insufficient and require their high-definition content, when playing back on computers, 
to be protected by hardware mechanisms. In other words, if a user’s computer is not 
equipped with the required hardware capability, then that user won’t be able to enjoy 
those contents.

Another example for the secure display usage is Intel IPT, where a sprite of keypad is 
displayed on the screen for the user to enter a password by mouse clicks. The sprite must 
be hidden from the host to prevent attacks by screen scrapers.

Intel’s PAVP technology is a hardware scheme that protects video and audio assets 
from software attacks. Initially introduced for Blu-ray, PAVP is now used by a range of 
applications that rely on content protection to function.
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The PAVP is realized by a few components: player software and graphics drivers on 
the host, the security and management engine, and the GPU. The ultimate security goal of 
content protection is to make sure that the content encryption key and the clear content 
are only visible to hardware and not exposed to any software components, including ring 
0 drivers.

The responsibilities of the engine in the PAVP solution include:

Establishing a PAVP session between the software and the GPU.•	

Delivering content encryption keys to the GPU.•	

Implementing the HDCP•	 8 (high-bandwidth digital content 
protection) protocol.

Chapter 8 has more information on PAVP.

IPT
Identity theft is one of the most infamous and costly cybercrimes. Anyone that uses the 
Internet to manage assets (such as music, photos, social life, financial accounts, and 
so on) can potentially be a victim. Strong authentication and transmission protection 
is necessary to deter identity theft. Intel IPT, backed by the security and management 
engine together with other components, is a cutting-edge technology for protecting end 
users’ identities.

The IPT is an umbrella product name that comprises a numbers of features, 
including, as of this writing, OPT (one-time password), PTD (protected transaction 
display), PKI (public-key infrastructure), and NFC (near-field communication). 
Additional functionalities may be introduced to the IPT family in the future. These 
features work collaboratively to offer comprehensive identity safeguarding for the users 
for multiple scenarios.

•	 OPT: Implements as the second factor in a multi-factor 
authentication solution. The user’s computer is the second factor 
(something you have), and the OPT is generated by the security 
and management engine’s firmware and transmitted to the 
remote server for authentication. The technology eliminates  
the need for a physical token, meanwhile maintaining the  
security level.

•	 PTD: Allows a trusted entity to draw and display a secure sprite on 
the screen directly with the help of PAVP. The sprite is completely 
invisible to the host software stack. The secure display is 
commonly utilized for delivering sensitive information that is for 
the user’s eyes only—for example, a keypad for authentication.
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•	 PKI: Provides a robust private key management mechanism, 
including key generation, key storage, signature generation, and 
decryption. Once a private key is generated by or imported to 
the security and management engine, it will never be output in 
the clear. The engine performs private key operation under the 
hardware protection.

•	 NFC: Allows a user to tag his NFC-capable credit card against the 
NFC sensor on his computer to conveniently complete online 
transactions with positive identity authentication.

More technical details about the security and management engine’s role and 
responsibility for IPT can be found in Chapter 10.

Boot Guard
Intel Boot Guard is the technology for protecting boot integrity for Intel platforms. The 
system’s boot block is measured by hardware and the boot is allowed if and only if the 
measurement is successful, that is, the boot block is not altered. The hardware elements 
that perform the boot integrity check are the security and management engine and  
the CPU.

Intel Boot Guard offers two configurations: verified boot and measured boot. The 
engine is equipped with an array of field programmable fuses. For verified boot, an OEM 
programs the fuses with the hash value of its public key before the conclusion of the 
manufacturing process. The corresponding private key is used by the OEM to sign its 
initial boot block module, the first OEM’s component that executes during boot. During 
the boot process, the engine and the CPU first verify the public key in the OEM’s initial 
boot block manifest by comparing its hash with the preconfigured hash in the field 
programmable fuses, and then verify the OEM’s signature on the initial boot block using 
the public key.

Alternative to using a digital signature, the measured boot configuration leverages the 
TPM on the platform. The TPM can be either a discrete TPM or a firmware-based TPM 
that is built in the security and management engine.

Chapter 6 of this book has more technical details on Intel Boot Guard technology.

Virtual Security Core: ARM TrustZone
ARM is an industry leader in low-cost and low-power processors, with applications in a 
host of mobile embedded devices, especially in the smartphones and tablet markets.

ARM deploys several security measurements among various families of products. 
For instance, the SecurCore family9 provides mitigations against software, hardware, 
and side-channel attacks, for small form factors, such as smart cards. In particular, the 
SecurCore solutions enable customization of security features for a specific design and 
provide development process tools with added security controls.
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For SoC platforms, ARM’s security solution is called the TrustZone technology10 
(a.k.a. security extension). TrustZone is supported by ARM1176 and the Cortex-A series 
processors. In contrast to Intel’s security and management engine that uses a dedicated 
security core, the TrustZone takes a different approach. The TrustZone splits a physical 
processor core and treats it as two virtual cores (or modes): one nonsecure mode and 
one secure mode. The nonsecure mode is also called normal mode or untrusted mode; 
the secure mode is also called trusted mode. The two modes share the same hardware 
resources but they operate independently. Some literatures refer to “mode” as “world.”

Secure Mode and Nonsecure Mode
Context switch between the nonsecure mode and the secure mode is conducted through 
a third mode, the monitor mode, which is managed inside the secure mode. The current 
mode of operation is indicated by the nonsecure (NS) bit, which is bit 0 of the secure 
configuration register (SCR). The SCR is a read/write register that is accessible in the 
secure mode only, and recommended by ARM to be programmed by the monitor mode. 
Besides the NS bit, the SCR is also used to configure whether an interrupt—FIQ (fast 
interrupt request) or IRQ (interrupt request)—should be branched to the monitor mode 
for processing. The entry to the monitor mode can be triggered by software executing a 
dedicated instruction, the Secure Monitor Call (SMC) instruction, or by a subset of the 
hardware exception mechanisms.11 Figure 2-10 shows the relationships among the secure 
mode, nonsecure mode, and the monitor mode.

Normal world user
mode

Normal world
privileged mode

Secure world
user mode

Secure world
privileged mode

Monitor mode

Normal world Secure world

Figure 2-10. Modes in an ARM core implementing the security extensions
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The switches between the two modes are strictly controlled by hardware. The secure 
mode is essentially another level of execution privilege. The secure mode must not leak 
secrets to the normal world or allow any form of privileged escalations. Applications run 
mostly in the normal mode, but small security-specialized code that handles secret data 
and sensitive operations is executed in the secure mode. For example, the key processing 
for content protection is run in the secure mode.

In addition to the processor, the separation of the two modes permeates all 
hardware, most interestingly, memory and device buses.

Memory Isolation
The memory infrastructure inside and outside of the processor core must also be isolated 
into two modes accordingly.

The level 1 (L1) cache in the processors is managed by the so-called memory 
management unit (MMU), which converts the virtual address space that is seen by the 
software running on the processor onto the physical address space. The MMU features 
an L1 memory translation table with an NS field, and entries in the TLB (translation 
look-aside buffer) are tagged with the NS bit. The secure mode relies on the value of the 
NS field to determine the value of the NS bit of the SCR when it is accessing the physical 
memory locations. The nonsecure mode ignores the NS field. In other words, the secure 
mode is always allowed to access memory belonging to both the secure mode and the 
nonsecure mode. Select processor models feature Tightly Coupled Memories (TCMs), 
which are high-performance SRAM that exist at the same level of L1 cache. There can 
be up to two blocks of TCM present on each instruction and data interface. Software can 
configure the TCMs to be accessible to the secure mode or nonsecure mode.

The Memory Protection Unit (MPU) was introduced to ARM cores starting from 
ARM7. This unit allows partitioning of memory into different sections and assigning them 
different security attributes, for example, marking the code section as read-only in order 
to prevent runtime alteration attack at runtime. The read/write permissions are based on 
two-level User and Privilege mode access; if a User mode application tries to access the 
Privilege mode memory, then the processor triggers an exception. The initial boot routine 
and interrupt handling vectors executes in the Privilege mode.

Bus Isolation
The isolation of bus interfaces and devices is required to prevent attacks from system 
devices. The AMBA3 (the third generation of the Advanced Microcontroller Bus 
Architecture) AXI (Advanced Extensible Interface) bus protocol defines controls to 
identify operating modes for all transactions. The AXI bus adds metadata to bus control 
signals and labels all read and write transactions as secure or nonsecure. The hardware 
logic in the TrustZone-enabled AMBA3 AXI bus fabric ensures that secure-mode 
resources cannot be accessed by nonsecure mode components.

The AMBA3 APB (Advanced Peripheral Bus) is used for secure peripherals and 
interrupts. The APB is attached to the system bus using an AXI-to-APB bridge. The APB 
per se is not equipped with an NS bit or its equivalent. Therefore, the AXI-to-APB bridge 
hardware ensures that the security of APB peripheral transactions is consistent with the 
AXI security signals.
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Physical Isolation vs. Virtual Isolation 
Conceptually, TrustZone has its similarities to Intel TXT in the sense that both achieve 
isolation between the secure and nonsecure modes through a trusted virtual machine or 
execution environment. In reality, on many Intel platforms, the security and management 
engine is the counterpart for security solutions that are realized by TrustZone on  
ARM platforms.

The obvious advantage of TrustZone over a dedicated security core is its lower BOM 
cost—only one core is needed for two modes of operation. But are there tradeoffs?

Although ARM’s TrustZone and Intel’s security and management engine both 
feature hardware-based security operating environments, their architectures are 
completely different. The isolation between the nonsecure mode and the secure mode is 
virtual for TrustZone, versus physical for the security and management engine. For the 
virtual separation mechanism, safeguarding the border of the virtually secure world and 
defending against threats could be a challenging task.

In addition to security, power efficiency is another important consideration for 
modern mobile platforms that aggressively power save. For TrustZone, the secure 
mode and the nonsecure mode run at the same frequency. In contrast, the security and 
management engine runs at a lower frequency than the main processor, resulting in less 
power consumption at the tradeoff of a slower operation of security tasks, which in most 
cases do not require high performance.

Furthermore, as described earlier in this chapter, Intel’s embedded solution is also a 
management engine. Its many unique properties make it an excellent choice for platform 
management applications.
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