
27

Chapter 2

Intel’s Embedded Solutions:
from Management to
Security

Security is, I would say, our top priority because for all the exciting things
you will be able to do with computers—organizing your lives, staying
in touch with people, being creative—if we don’t solve these security
problems, then people will hold back.

—Bill Gates

Teflon, the famous chemical, was discovered by Roy Plunkett of E. I. du Pont de Nemours
and Company (commonly shortened to DuPont), in 1938 and trademarked in 1945.
Teflon’s major application today is in manufacturing nonstick cookware. However, it was
not intended for helping grandmas make delicious pancakes when it was first discovered.
For decades, it has been used in artillery shell fuses and the production of nuclear
materials.

Temper foam was invented in 1966 by Chiharu Kubokawa and Charles A. Yost of
NASA’s Ames Research Center to protect astronauts’ bodies when they are hurtling
toward the earth. Today, temper foam is used to make mattresses that people sleep on
every night.

The list of old inventions finding new applications in new domains goes on. The new
applications benefit a much wider population and improve more people’s quality of life.

When Intel’s Active Management Technology (AMT) first appeared in 2005, it was
marketed as an advanced system management feature for Intel 82573E series gigabit
Ethernet controllers. In 2007, a new embedded coprocessor, namely the management
engine, was introduced. Originally, the management engine was designed primarily
for implementing the AMT rather than running security applications. At that time, the
main problem that was supposed to be resolved by the embedded engine and AMT was
the high expense and difficulty of system management by network administrators. The
management engine was a component of Intel chipsets with vPro technology. The Intel
AMT implementation was moved from gigabit Ethernet controllers to the management
engine and became a feature of vPro.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81811767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

28

Intel AMT is not the only application on the management engine. The first security
application on the engine was the integrated TPM (Trusted Platform Module, see
Chapter 7 for details). The number of security applications has been increasing in recent
years with every release of the engine. In the latest releases, most applications running
on the engine are related to security. The applications either realize “pure” security
functionalities, or provide security infrastructures for other consumer features. For
example, TPM and Boot Guard (refer to Chapter 6 of this book for details about Intel’s
Boot Guard technology) are security modules, whereas the dynamic application loader
(DAL, see Chapter 9) is not implemented for security per se, but requires security as a
building block.

In addition to more powerful applications and functionalities, the embedded
engine has also been deployed on more platforms—not only chipsets for traditional
personal computers, laptops, workstations, and servers, but also SoC (System-on-Chip)
products, for example, in-vehicle infotainment, tablets, and smartphones, where security
is becoming a critical infrastructure. The AMT is still widely provisioned on desktop
computers and laptops, but has become an optional add-on for other mobile devices. On
Intel’s SoC platforms, the engine carries only security applications.

Just like Teflon and temper foam, today, the engine is realizing its greater value
in the new usage model—providing robust security solutions and trusted execution
environments to all forms of computer systems. The security and management engine is
contributing to the promotion of people’s computing experience every day and making a
more substantial impact than ever before.

This book is not the first literature on the engine. Back in 2009, Intel Press published
Active Platform Management Demystified: Unleashing the Power of Intel vPro Technology,
authored by Intel’s Arvind Kumar, Purushottam Goel, and Ylian Saint-Hilaire.1 It will be
referred to as the “2009 AMT book” in this chapter.

The 2009 AMT book is a systematic introduction to the management engine and
AMT. It raises the platform management problems to be resolved, evaluates existing
solutions, and then proposes the innovative AMT solution. It covers technical details
of the management engine and the AMT, as well as instructions for setting up and
configuring the AMT.

Although the engine’s design has been improved in many ways since the 2009 AMT
book was published, the fundamental architecture of the engine remains unchanged.
A large portion of the technical descriptions in the 2009 AMT book still applies to today’s
security and management engine. Even after five years, it is still the best reference for
infrastructures of the management engine and the AMT.

The remainder of the chapter is organized as follows. In the next section, we briefly
revisit the 2009 AMT book. We will begin with a review of the hardware and firmware
architectures of the management engine, and then look at the platform management
problems and compare different solutions by analyzing their advantages and
disadvantages. Next, a high-level introduction to the architecture of the AMT is presented.
Finally, select security applications that feature on the security and management engine
today are presented, with reasons for housing the applications in the embedded engine.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

29

Management Engine vs. Intel AMT
What are the differences between the two terminologies, management engine and AMT?
Do they mean the same thing?

The management engine refers to a computing environment consisting of dedicated
hardware and firmware components. It has its own real-time operating system and
hardware resources such as processor and memory. Just like a computer with Core CPU
(central processing unit), applications can be installed and executed on the management
engine. The applications are not generic software. They are implemented in firmware and
designed specifically for running on the engine.

On the other hand, Intel AMT is a firmware application running on the management
engine. It invokes the infrastructure and kernel application programming interfaces
(APIs) provided by the management engine to build system management functionalities.

When the management engine was first introduced, Intel AMT was the primary
application and it had attracted tremendous media attention. Hence some literatures use
“management engine” and “active management technology” interchangeably. Today,
although Intel AMT is still the most senior member of the application family, many new
applications have joined the family and been deployed on the engine.

Intel AMT vs. Intel vPro Technology
Intel’s vPro technology is a marketing name that covers a wide range of security and
management features that are built in Intel processors and chipsets. The vPro technology
resolves prevailing manageability, security, and energy efficiency problems with
hardware-based protection, which is considered, when compared with software-based
solutions, less vulnerable to threats such as viruses, worms, and hackers.

Many consider the AMT to be the essence of vPro. However, the vPro technology is
comprised of not only AMT, but also other useful ingredients, such as:

Intel Trusted Execution Technology•	 2 (TXT)

Intel Virtualization Technology•	 3

Intel Identity Protection Technology•	 4 (IPT)

Intel Anti-Theft Technology•	 5 (will be end of life in January 2015)

Besides AMT, some of these vPro ingredients also rely on the embedded engine to
function. For example, IPT (refer to Chapter 10) and Anti-Theft.

Management Engine Overview
The management engine is made up of hardware and firmware. However, outside of its
boundary, appropriate software drivers and applications must be installed on the host
in order for the host to communicate with the embedded system through the dedicated
host-embedded communication interface (HECI).

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

30

Hardware
The hardware is comprised of a processor, code and data caches, DMA (direct memory
access) engines, cryptography engines, read-only memory (ROM), internal memory
(static random-access memory, or SRAM), a timer, and other supporting devices. The
devices are connected through an internal bus that is not exposed to the external world.
This ensures independence, isolation, and security of the engine. The management
engine’s hardware devices are only accessible by the processor, the DMA engines, and the
cryptography engine.

The hardware architecture is illustrated in Figure 2-1.

Processor

Code Cache

Data Cache

Cryptography
engine

DMA engine

HECI engine

Interrupt
controller

High
precision

and
watchdog

timer

Internal
SRAM

ROM

CLink I/O

Memory
Controllers

In
te

rn
al

 b
us

Figure 2-1. Hardware architecture of the management engine

Early generations of the management engine used ARC as the central processing
unit. Other processors have replaced ARC in newer generations. The processor model
and frequency in a specific engine depends on the form factor on which the engine is
deployed. The model of the processor does not impact the engine’s high-level firmware
architecture.

There is a small code and data cache to help the processor reduce the number of
accesses to the internal SRAM. The internal SRAM is the memory that stores firmware
code and data at runtime. The capacity of SRAM varies depending on the product, but
generally ranges between 256KB and 1MB.

In addition to the internal SRAM, the management engine also uses a certain
amount of DRAM (dynamic random-access memory) from the main system memory.
Code and data pages that are not recently accessed may be evicted from the SRAM and

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

31

swapped out to the reserved memory. When a page is needed again, it will be swapped
in to the SRAM. During the boot process, the DRAM region that will be used by the
management engine is reserved by the BIOS (basic input/output system) for the engine’s
dedicated access. The reserved region, by design, is not visible to the main host operating
system. That being said, the management engine’s security architecture assumes that the
BIOS may be compromised and the local host may be able to read and write the reserved
memory region. The size of the reserved memory varies from product to product, but
usually in the range between 4MB and 32MB. This is only a small fraction of the DRAM
installed on today’s computing devices, and hence the impact to the main operating
system performance is negligible.

For many embedded applications, it is necessary to transmit bulk data between
the embedded memory and the host memory. However, the engine’s processor cannot
address the host memory. Therefore, dedicated DMA engines are introduced for
moving data between the engine’s memory and the main system’s memory. Notice that
the reserved memory is considered the engine’s memory and not the host memory.
When addressing the host memory, the DMA engines can only understand physical
addresses and not virtual addresses that are specific to operating systems processes.
The DMA engines can only be programmed by the embedded firmware running on the
management engine. The DMA engines can also be used to move a large amount of data
between two buffers of the engine’s internal memory. Experiments show that, when data
is greater than 1KB in size, it is more efficient to invoke a DMA engine for data copying
than calling memcpy() of the processor. The firmware cannot program a DMA engine to
move data between two host memory locations.

The cryptography engine device offloads and accelerates heavily-used cryptography
algorithms so those resource-consuming operations can be performed faster and
they do not occupy the processor’s clock cycles. The algorithms implemented by the
cryptography engine include AES (Advanced Encryption Standard), SHA (Secure Hashing
Algorithm), DRNG (Deterministic Random Number Generator), big number arithmetic,
and so on. See Chapter 3 of this book for a complete list of algorithms and their API
descriptions. The cryptography engine is only accessible by the engine’s firmware. They
are not directly available to the host, although some embedded applications implement
and expose external interfaces for the host applications to take advantage of the
cryptography engine. Notice that the cryptography driver in the firmware kernel not only
abstracts interfaces for the cryptography engine hardware, but also implements other
cryptography algorithms that are not available in the hardware.

Overlapped I/O
As shown in Figure 2-1, there are three master devices—processor, DMA, and
cryptography engine—on the management engine. They all can access the embedded
memory and process data. These devices are independent of each other and therefore
can function at the same time without mutual interference, as long as the assets (for
example, memory and global variables) that are being accessed by more than one
device are properly protected against racing conditions. The protection is usually
realized by employing semaphores or mutexes. By commanding multiple devices to
work simultaneously, firmware applications can be optimized to minimize the system

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

32

resource idle time and boost performance. The mechanism implemented by the security
and management engine is de facto equivalent to overlapped I/O (input/output) or
asynchronous I/O for traditional operating systems.

The idea is straightforward. After process A initializes a long cryptography operation,
such as the exponentiation and modulo of RSA (a popular asymmetric-key cryptosystem
invented by Ron Rivest, Adi Shamir, and Leonard Adleman) decryption, instead of
sitting idle and waiting for its completion, the processor may switch to process B and
perform operations that do not require the cryptography engine. In the meantime, the
processor may either periodically inquire about the status register for completion of the
RSA operation or watch for an interrupt signaled by the cryptography engine. Similarly,
the DMA engines can also participate in the synchronization to further expedite the
operations.

An interesting example of the overlapped I/O design is the flow for decrypting and
parsing an H.264 video frame during movie playback. For this application, the player
running on the host receives encrypted video frames from a remote content server, but
the player as user-mode software is not allowed to access the content key or the clear
content. The wrapped content key is sent to the security and management engine, which
in turn uses its device private key to unwrap and retrieve the plaintext content key. The
engine then decrypts the encrypted frames, performs slice header parsing, and sends
back the resulting headers to the host. Finally, the player submits the encrypted frames
and parsed headers to the GPU (graphics processing unit) through the graphics driver for
playback.

Because of the limited memory capacity of the embedded memory, a large frame has
to be split into chunks before it is processed. The optimal size of a chunk depends on how
much embedded memory is available.

The firmware has three tasks in this usage:

1. Copy a chunk of an encrypted video frame from the host
memory to the internal memory. This step is carried out by a
DMA engine.

2. Decrypt the encrypted frame. For most cases, it is an AES
decryption, offloaded to the cryptography engine.

3. Parse the clear frame. This step is conducted by the
embedded processor.

The firmware runs the three steps repeatedly on all chunks of the frame, until the
entire frame is processed.

A sequential approach would be to repeatedly exercise steps 1 to 3 for all chunks of a
frame, respectively. The advantage is obviously simple firmware control logic. Figure 2-2
depicts an example of a frame that consists of four chunks. For simplicity, assume that the
three tasks for a chunk— DMA copy, decryption, and parsing— take the same amount
of time (denoted as one time slot in the figure). The number of time slots needed for
processing a frame of n chunks is 3 × n. Processing all four chunks of the frame takes as
many as 12 time slots.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

33

Obviously, the sequential approach lacks efficiency. In this design, when step 1 is
running, the DMA engine is busy; however, the cryptography engine and the processor
are both idle. Similarly, in step 2 and step 3, only one device is working at any moment
and the other two are not being used.

To implement an overlapped I/O optimization, the firmware must simultaneously
manage three chunks of the frame (namely: previous chunk, current chunk, and next
chunk) of the same size in three distinct memory buffers.

The firmware first initializes DMA for the next chunk of frame, then triggers the
AES decryption for the current chunk (the current chunk has been DMA’ed into the
embedded memory in the previous iteration), and finally parses the previous (decrypted)
chunk of the frame (the previous chunk has been DMA’ed into the embedded memory
and decrypted in the previous two iterations). When the parsing is finished, the
processor waits for the completion of the AES and the DMA. Figure 2-3 explains the flow
graphically.

Step 1: DMA engine
bringing in encrypted

frame

Step 2: Cryptoengine
decrypting encrypted

frame

Step 3: Processor
parsing decrypted

frame

Chunk 1

Chunk 1

Chunk 1

Chunk 2

Chunk 2

Chunk 2

Idle

Idle

Idle1

2

3

4

5

6

7

8

Time

Idle

Idle Idle

Idle Idle

IdleIdle

Idle Idle

Chunk 3

Chunk 3

Chunk 3

Idle Idle

IdleIdle

Idle Idle

Chunk 4

Chunk 4

Chunk 4

Idle Idle

IdleIdle

Idle Idle

9

10

11

12

Figure 2-2. Frame parsing flow without using overlapped I/O

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

34

It is easy to see from Figure 2-3 that processing four chunks takes only six time slots
thanks to the overlapped I/O optimization. In general, the number of time slots taken for
processing a frame of n chunks is n + 2.

Note that for the security and management engine, the processor, the DMA engines,
and the cryptography engine all operate at the same speed. The exact frequency
varies among different products. This is the major difference between the embedded
overlapped I/O and its counterparts for the host operating systems, where the I/O
devices, that is, hard drive, keyboard, and so forth, are usually operating at significantly
slower speed than the main processor.

Admittedly, managing three masters may result in fairly complex firmware logic.
The best practice for software engineering tells us that complicated code is more prone
to bugs and errors. Therefore, such optimization strategies should be exercised with extra
care. And the implementation must go through thorough testing and validation to cover
all corner cases. For certain use cases, such as video frame parsing, as the throughput
requirement is extremely high to guarantee smooth playback, utilizing the overlapped
I/O trick is necessary.

Note ■ If multiple master devices are available on the embedded system, consider
overlapped I/o to improve performance.

Firmware
The security and management engine’s embedded firmware implements the runtime
operating system, kernel, and applications.

Step 1: DMA engine
bringing in encrypted

frame

Step 2: Crypto engine
decrypting encrypted

frame

Step 3: Processor
parsing decrypted

frame

Chunk 1

Chunk 2 Chunk 1

Chunk 3 Chunk 2 Chunk 1

Chunk 4 Chunk 3 Chunk 2

Chunk 4 Chunk 3

Chunk 4

Idle

Idle

Idle

Idle

IdleIdle

1

2

3

4

5

6

Time

Figure 2-3. Frame parsing flow using overlapped I/O

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

35

There are numerous products and form factors of the engine. A specific version of
firmware is intended for running on the corresponding engine hardware only, and a
specific engine is intended for running the corresponding version of the firmware; for
example:

Intel series 5 chipset (codename IbexPeak) can load only security •	
and management engine firmware version 6.x. It cannot load
version 5.x or other firmware. It cannot load firmware from a third
party or a hacker.

Security and management engine firmware version 6.x can •	
only execute on the Intel series 5 chipset. It cannot be executed
on series 6 or other chipset generations. It cannot be executed
on SoC products, nor can it run on a third-party’s or a hacker’s
hardware platforms.

Security and management engine firmware designed for the Bay •	
Trail tablets cannot execute on Intel chipsets or other generations
of Intel tablets.

The hardware and firmware mapping is enforced by different image signing keys.
The hash values of the signing public keys are hardcoded in the ROM on different
products.

Figure 2-4 shows the high-level architecture of the management engine firmware.

Privileged firmware (kernel)

Management engine

Nonprivileged firmware

ROM

Embedded operating system

Bringup

Loader

Storage

Drivers

…...

Extended kernel

Host interface

Flash driver

Applications

…...

AMT

Firmware-based TPM

…...

Privileged-nonprivileged
interface

Figure 2-4. Firmware architecture of the management engine

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

36

There are two storage media—ROM and flash nonvolatile memory—that store the
firmware’s binary data and executable code. The ROM inside the management engine
stores the boot loader. The code in ROM cannot be modified once manufactured. Thanks
to this property, ROM is used as the root of trust of the engine. The boot loader code is
usually smaller than 256KB.

The rest of the firmware is stored in flash. The flash is divided into multiple regions,
for security and management engine firmware, BIOS, network controller, and so forth,
respectively. Depending on which embedded applications are chosen to be included,
the management engine firmware can consume from a few hundred kilobytes to 1.5
megabytes of flash space. The region for firmware is further divided into regions for
executable code, configuration data, embedded applications’ variable storage, and so
on. The OEMs (original equipment manufacturers) are mandated to lock down the
flash so it cannot be altered after the manufacturing process is completed. However,
the management engine does not depend on the flash lockdown for security. The threat
analysis assumes the flash can be replaced or reprogrammed by an attacker as he wishes.

As shown in Figure 2-4, firmware modules are logically divided into two categories:
privileged and nonprivileged. The privileged firmware boots the engine, loads other
modules, abstracts hardware devices (such as DMA engines and cryptography engines),
schedules threads, manages synchronization objects (such as semaphores, timers,
and mutex), and coordinates communications between embedded applications. The
privileged firmware is the kernel and it implements only infrastructure for internal
applications. It usually does not contain applications or expose external interfaces that
are visible to the host.

The nonprivileged firmware is made up of one or more applications that realize
their designed functionalities. The management engine firmware must contain at least
one nonprivileged application. The Intel AMT, a nonprivileged module, is one of such
applications. One notable difference that distinguishes the AMT from other applications
is that the AMT also includes network stacks. Although most applications leverage the
kernel for external communication, the AMT uses firmware wired and wireless network
stacks for communicating with the remote managing console. As will be described
later in this chapter, the firmware shares the same network devices with the host. The
nonprivileged modules are further separated from each other by task isolation. The
boundary between the privileged and nonprivileged domains is safeguarded by hardware
and the privileged, to prevent privilege escalation attacks from the nonprivileged code.

Chapter 4 of this book provides a detailed introduction about the firmware
architecture.

Software
Two classes of software programs run alongside the engine: drivers and user-mode
applications.

The HECI is intended for transmitting a small amount of data between the host
and the management engine firmware. The HECI is implemented as a circular buffer
with limited bandwidth; therefore, the size of the data in general should be smaller than
10KB. The data transmitted through HECI can be commands for the firmware and the
firmware’s responses, but not massive data. The DMA engines should be used to move
large amounts of data between host and firmware.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

37

During the boot process, the BIOS can exchange messages with the firmware through
HECI. On the host operating system, only ring 0 drivers may access the HECI device to
send and receive messages. Together with the management engine firmware, Intel also
releases HECI driver software for the HECI communication for various operating systems.
The HECI driver is also called the management engine interface (MEI) driver. On Linux
and Android, it is a device driver that supports the main kernel-based distributions.

Most firmware applications serve the role of trusted execution environments for
the corresponding host applications. The firmware applications are typically used for
handling sensitive secrets that must not be visible to the host and for offloading critical
operations that involve the secrets. The software and firmware together realize specific
functionalities. The software agents communicate with firmware applications through the
HECI interface and DMA.

For example, a movie player application sends a 128-bit or 256-bit encrypted content
key to firmware in a HECI message, and then the firmware uses the unique device key
stored in the engine to decrypt the content key. Then the player sends another HECI
command to initialize playback. Note that the device key must be securely provisioned to
the engine beforehand and the device key must never be exposed to the host.

The software may also place bulk data, such as an encrypted video frame of over
1MB in size, in the host memory and notifies the firmware of the data size and the
physical address thorough a HECI command. Upon receiving the HECI command, the
firmware invokes its DMA engine to bring in the video frame from the host. Note that
the embedded engine’s DMA devices understand physical memory address only. Virtual
memory must be converted to physical memory by a ring 0 driver before delivering to
the firmware.

Platform and System Management
As defined in the 2009 AMT book, a platform is a computer system and all of its hardware
components: motherboard, disk storage, network interface, and attached device, that is,
everything that makes up the computer’s hardware, including BIOS. On the other
hand, a system has a broader definition. It includes both the software and the hardware
of a computer.

Today, the concept of a “platform” for mobile devices should be extended to cover
hardware that is not present in traditional computer systems. There is a long list of
hardware that is commonly embedded in mobile platforms: GPS (global positioning
system), cameras, sensors, fingerprint reader, and so forth.

The network administrator’s responsibility is to make sure all computers in an
enterprise are up and running normally. Even before the Intel AMT was invented,
there were numerous manageability solutions available in the market to help network
administrators do their jobs.

Software Solutions
There are several categories of manageability software. For example, firewalls analyze
network data packets and determine whether they should be allowed or blocked, based
on the rules and policies configured by network administrators. Antivirus software

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

38

detects and removes malicious software programs from the system. Remote desktop
control agents such as VNC (virtual network computing) and SSH (secure shell)
enable IT support technicians to remotely manage a system to perform diagnosis and
resolve problems.

Although very convenient and useful in daily system management, software
solutions also suffer from obvious limitations:

•	 Dependability: Manageability software runs in the operating
environment that they are attempting to monitor, manage,
and repair. When the operating system is not booting or not
configured correctly, the software manageability solutions may
fail to function.

•	 Availability: Manageability software is not able to perform
management tasks when the system is in low-power states
(sleeping or hibernating).

•	 Reliability: Manageability software is usually launched during
boot and runs quietly in the background. However, it may be
accidentally or intentionally turned off by end users or other
system “clean-up” utilities.

•	 Security: Software solutions are naturally less trustworthy than
hardware solutions. They are vulnerable to denial of service (DoS)
attacks, may be compromised to report bogus information, or
may even be hijacked and become a threat to other computers in
the same network.

Hardware Solutions
In contrast to software solutions, hardware solutions for manageability do not depend on
the operating system or software programs; hardware solutions can be functioning when
the computer is in a low-power state; and hardware-based security measures can be
applied if desired.

The KVM (keyboard, video, and mouse) is a representative hardware approach. In a
typical KVM setup, the computer being managed is locally connected to a network KVM
device, which connects the computer’s I/O devices to a remote management console over
the network. A network administrator can manage numerous computers from a single
console simultaneously. Sitting in his office, the administrator can see the display of the
computer being serviced and control its keyboard and mouse, as if he is sitting in front
of the managed computer. Figure 2-5 is a symbolic representation of the management
solution based on network KVM.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

39

The equipment cost is the main factor that prevents the network KVM solution from
being deployed on every computer. As can be seen in Figure 2-5, the KVM stands on
the side of the computer; there must be a KVM device to support a computer (multiple
computers physically located in the same location can share a multiport network KVM).
The retail price of a 16-port network KVM ranges from a few hundred to over a thousand
US dollars. This significantly raises the cost of network and system administration.

A more advanced hardware management solution is the baseboard management
control (BMC). The BMC is a specialized embedded system that monitors various
physical states, including, but not limited to, the temperature, humidity, or voltage of a
computer or server. If a reported value strays out of the normal range, the administrator
will be notified. A BMC combined with network KVM can realize very powerful
management functionalities, including remotely power cycling, seeing displays, and
controlling the keyboard and mouse. See Figure 2-6 for a symbolic representation
of the BMC.

Management
Console

M t
Managed
Computer
M d

VGA

USB
KVM

Network

Figure 2-5. Network KVM connected to a managed computer

BMC

Management
Console

Figure 2-6. Baseboard management controller

The powerful capability and convenience of BMC comes with a price. Due to the
cost, BMC is usually only justifiable for deploying on large servers that carry critical tasks.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

40

In-Band Solutions
An important component of any management methodology is how the data of the
managed machine is transmitted to the managing console for diagnosis and analyzed.
The communication link determines the security and reliability of the communication.

An in-band solution leverages the communication and network stacks of the
underlying operating system and is often utilized by software management solutions,
such as VNC, SSH, and so on. The in-band communication suffers the same limitations of
software management, that is, dependability, availability, reliability, and security.

Out-of-Band Solutions
In contrast to in-band, an out-of-band solution employs dedicated channels for
communicating with the console. Generally speaking, out-of-band solutions are more
robust and secure than in-band solutions, thanks to the isolation from the host being
managed.

For example, a network KVM device implements a network interface separated from
the network stack of the managed computer’s operating system. The connections of KVM
and the computer run side by side and are independent of each other.

The 2009 AMT book extends the definition of “out-of-band” for a special case,
where the wired or wireless network adaptor is shared by both the operating system
and an isolated management device. In this case, although the management device is
located inside the chassis of the computer and it is not equipped with dedicated network
hardware, it is still considered out-of-band because the management does not depend on
the operating system. Figure 2-7 illustrates the sharing of a network card.

Network
Stack

File
System

Operating System

OS
Apps.

OS
Agent

Hardware
Management

In-band
Out-of-band

Figure 2-7. Out-of-band management: both the operating system and the hardware
management traffic can use the same network hardware

Sharing a network device such as a NIC (network interface card) certainly reduces
the bill of material (BOM) cost, but this slightly compromises functionality and security
compared to using a dedicated network device. Functionality-wise, if the network card
itself is malfunctioning and requires troubleshooting, then the communication channel
between the computer and the managing console is essentially broken. Because no data

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

41

can be received from the problematic computer, the administrator may have to debug the
issue on site. Security-wise, for the network sharing to function properly, it is required
that both the network driver on the operating system and the management device agree
and obey a predefined protocol. If the driver is compromised and does not follow the
protocol, it may cause a racing condition on the hardware and mount, and at a minimum,
denial of service attacks, so that the system data cannot be sent to the console.

To avoid the complications of network device sharing, most security applications
running on the embedded engine, unlike the AMT, do not use the firmware’s network
stacks to communicate with remote entities. Instead, if an application is required to
exchange data with a remote server (for example, an authentication server), then it will
rely on software programs running on the host operating system as the proxy.

Intel AMT Overview
We have seen different management solutions and their pros and cons. Table 2-1 gives
a summary.

Table 2-1. Comparison of Management Solutions

Solution Functionality Dependability Reliability Availability Security Cost

Software,
in-band

Fair Poor Poor Poor Fair Good

Hardware,
out-of-band
with separate
network device

Good Good Good Good Good Poor

Hardware,
out-of-band
with shared
network device

Good–
(cannot
debug NIC)

Good Good Good Good Good

As shown in Table 2-1, there is no perfect solution. However, the hardware out-of-
band solution with a shared network device is the best option overall. Intel AMT is such a
solution with the following desirable characteristics:

It resides in the chipset and it is always available on all Intel vPro •	
platforms.

It is independent of the host operating system and power state.•	

It is functional even if the host is in a lower power state or has •	
crashed.

It shares the network device with the host so that the hardware •	
overhead is minimal.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

42

The AMT ships with three software components: BIOS extension, local management
service and tray icon, and remote management. They serve three configuration scenarios,
respectively: through HECI before the operating system is loaded, through HECI after the
operating system is loaded, and through the network.

BIOS Extension
The BIOS extension for the engine is called the Intel management engine BIOS
extension (MEBX). It is a BIOS component similar to other extension ROMs. It allows the
administrator and the user to perform basic configurations for the management engine
and the AMT, including changing the password for authentication, turning on and off the
AMT, assigning Internet Protocol (IP) addresses, configuring network protocols, selecting
the engine’s sleep and wake policies, and so on.

The primary reason for introducing the BIOS extension is to protect end users’
privacy. By the nature of BIOS, it requires a human being’s physical presence and
knowledge of the correct password to authenticate to the management engine and
change configurations.

The BIOS extension communicates with the embedded engine through the
HECI channel. A HECI driver is implemented in the BIOS extension to facilitate the
communication. The BIOS extension does not implement encryption algorithms. There is
no protection applied to the HECI interface, and the messages are sent in the clear. Data
sent to the engine by the BIOS extension is stored by the engine securely in nonvolatile
memory with appropriate protections.

The BIOS extension executes before the BIOS delivers the end-of-POST (power-on
self-test) signal to the embedded engine. The engine relies on the end-of-POST signal to
determine whether a received HECI command was initialized from the BIOS extension or
from the local host operating system. Select settings are deemed legitimate only if made
through the BIOS extension interface. The embedded engine rejects such commands by
returning an error if they are received after the end of POST.

Figure 2-8 demonstrates the flow of interactions between the host and the
management engine during and after the boot process. The initial boot block is a
firmware module loaded before the BIOS to facilitate the secure boot path. After the
BIOS has initialized the system DRAM and reserved the exclusive region for the engine to
access, it sends a DRAM-init-done HECI message to notify the engine.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

43

Host Embedded Engine

Load initial boot block

POST

Load MEBX

Load ROM

Load Bringup

Load kernel

AMT configuration request

Load AMT

AMT configuration ack

DRAM init done

DRAM init done ack

Load boot loader

Load operating system

Load AMT local
management

End-of-POST

End-of-POST ack

Perform configuration

Record End-of-POST

AMT configuration request

AMT configuration rejected

Configuration allowed
after end-of-POST?

No

AMT configuration ack

Yes

Perform configuration

Figure 2-8. Interaction between the host and the engine for AMT configuration, with MEBX
loaded during the boot process

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

44

The HECI commands initiated from the MEBX are delivered to and handled by the
kernel or the AMT firmware module. Because end-of-POST has not happened yet, the
firmware will always honor the requests, perform configurations, and return to the MEBX.
Once the administrator has finished his configuration work, he exits the MEBX. Next, the
BIOS sends the end-of-POST command to the management engine, signaling that the
BIOS is now handing the control to the boot loader and the operating system. An AMT
configuration command received by the engine after end-of-POST will be examined and
processed only if it is permitted after end-of-POST, based on predefined policies.

Notice that the BIOS may not be an Intel production. Therefore, the BIOS, including
all BIOS extensions, is excluded from the engine’s trusted boundary. The engine does not
depend on the integrity of the BIOS to achieve its security objectives. For example, during
authentication, the password entered by an administrator or user is transmitted from the
BIOS extension to the engine for examination, and not in the other direction. And even
though an end-of-POST message never reaches the engine, the engine will not leak any
secrets. By design, the most harmful attack a compromised BIOS component is able to
launch against the engine should be to DoS the engine. For example, if the DRAM-init-
done message never reaches the engine, then the engine will be operating in a degraded
mode, because it does not have DRAM to run applications that require a large amount of
memory.

Local Management Service and Tray Icon
The purpose of the AMT’s local management service is to provide a similar programming
interface for both local and remote applications.

As depicted in Figure 2-9, the local AMT application or the AMT user notification
service opens a virtual network connection to the AMT firmware and it uses WSMAN
(Web Services-Management). The application or the UNS does not have any knowledge
about the firmware’s HECI mechanism. The local management service consumes the
HECI driver and redirects the network traffic to the HECI link to the embedded engine.
The AMT application is developed by third-party software vendors, and the user
notification service is provided by Intel.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

45

There is also a tray icon application that is developed by Intel. The tray icon
application fetches status information of the management engine from the HECI
interface.

Remote Management
Intel releases the AMT SDK (software development kit) to facilitate developers to
interact with the AMT firmware and integrate the AMT features into their existing system
management consoles and applications.

Earlier versions of AMT supported EOI (External Operations Interface) over SOAP
(Simple Object Access Protocol), but the latest AMT releases only support the WS-
Management interface.

Refer to the Intel AMT Implementation and Reference Guide6 for details on the
remote management development with AMT SDK.

Intel AMT
Status Icon
Application

Intel AMT
User

Notification
Service

Local
Management

Service

WSMAN
(Using Intel AMT SDK)

Intel AMT
host

Application

HTTP
TLS

TCP/IP
MEI Driver

Hardware and Firmware

fica
ervi

Management
WSM

(Using Intel A

TLS MEI Dr

MAN
AMT SDK)

ppl

SMA
el A

Figure 2-9. Local software components of the AMT

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

46

The Engine’s Evolvement: from Management to
Security
Seven years since its first deployment, the management engine has become the security
and management engine. The evolvement did not happen overnight. The shift of focus
from system manageability to security reflects the increasing importance of security in
today’s computing industry and ecosystems.

The security and management engine has a number of desirable properties that
make it not only a good manageability solution but also an excellent security solution.

Embedded System as Security Solution
What makes a solution a good one for running security applications?

Advanced techniques have been developed for creating trustworthy software
solutions. These techniques include a managed runtime environment (MRTE), tamper-
resistant software (TRS), a secure virtual machine (VM), Intel TXT, Intel Software Guard
Extensions (Intel SGX), and so forth. Refer to the Intel Corporation white paper “Using
Innovative Instructions to Create Trustworthy Software Solutions,” for an introduction
to the various secure software solutions.7 However, these solutions suffer from different
restrictions. And software, by its nature, is more vulnerable to attacks. It is hard for
software to gain a comparable level of trust as equivalent hardware solutions. For
example, several content protection schemes allow playback of certain high-definition
contents only if the video path is protected by hardware.

Although it could provide very strong protection, a pure hardware solution is not
preferable either. The problem of realizing security applications in hardware is the lack of
flexibility and high cost. For convoluted features, it is very difficult to avoid bugs. Software
programs can be patched with minimum overhead, but hardware issues may not be
patchable and may require recall, which is a disaster for computer manufacturers.

A firmware/hardware hybrid is the solution that inherits the advantages of both
software and hardware. On one hand, firmware runs on dedicated hardware and features
hardware-level protection for security applications. On the other hand, the firmware
can be stored in rewritable nonvolatile storage, and enjoys simpler deployment and the
flexibility of being patched or updated at a relatively small cost.

The security and management engine is such a firmware/hardware hybrid product.
Security-wise, a few highlights of the design are listed next. More details can be found in
Chapter 4 of this book.

•	 Independency: The engine enjoys its own computing environment
that is independent of the main operating system running on the
host. The engine can run normally when the operating system
crashes with a blue screen or cannot boot. Even if the host is
sleeping or hibernating, the engine can also run normally. Notice
that the reserved memory may not be available when the host is
in a low-power state. Consequently, certain firmware features that
require a large amount of memory may not function when the
system is in a low-power state.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

47

•	 Isolation: The engine does not share a processor or main memory
with the host. The reserved memory is under strong confidentiality
and integrity protection (see Chapter 4 of this book for details), so
it is virtually isolated from the rest of the DRAM that is controlled
by the host operating system. The networking devices, even if
compromised, do not compromise the engine’s security objectives.
The DMA engine and HECI channel do not rely on the correct
behavior of the host. In general, an external adversary (malware,
virus, and so forth) is not able to infect the firmware.

•	 Closed system: The engine loads only firmware that is digitally
signed by Intel for the engine. Attackers cannot easily change the
firmware kernel or add/remove applications.

•	 Small attack surface: The only general interface that is available
to all firmware modules to the host is the HECI channel. A
small number of modules may invoke DMA and other low-
level I/O, such as GPIO (general-purpose input/output), as
needed. And only the AMT application may access the network.
Data intake from these interfaces is not trusted by the security
and management engine, and is fully validated before being
processed. Invalid input data may cause wrong calculated
responses from the engine, but will not crash the engine or
compromise the security of the engine.

•	 Programmability: In addition to its native firmware applications,
the engine opens its security capability to third-party host
applications by exposing security APIs through HECI. See Chapter
9 of this book for more information.

•	 Power efficiency: Because the engine runs at a low frequency
(from approximately 200MHz to 400MHz, depending on the
product) compared to the main CPU, the power consumption is
in the scale of milliwatts. In addition, the engine supports power
gating. After being idle for a configurable number of seconds, it
enters the sleep state to conserve power. Events that can wake up
the engine include a HECI message from the host or interrupts
from I/O devices.

Flexibility-wise, only a small portion (more specifically, the boot loader and standard
library functions) of the engine’s firmware is stored in ROM for the sake of root security
and performance, and all application firmware is stored in flash. This enables a firmware
update to fix or patch hardware or firmware bugs in the field.

We have seen the advantages. But is the engine perfect? What about the “cons”?

•	 Cost: The engine is a separate core and it shares few hardware
devices with the main operating system. Although more isolated
and secure, this adds the BOM cost of the platform, compared to
security solutions that do not introduce a dedicated processor.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

48

•	 Limited computing bandwidth: To save power and cost, the engine’s
processor runs at a relatively low frequency. This restricts it from
serving applications that require high throughput. However, note
that most security applications do not require overwhelming
performance and the bandwidth is not a major concern.

•	 Difficult firmware update deployment: It is relatively easy for
software to push patches and updates to end users’ devices. This
helps software vendors fix vulnerabilities and add new features
in a timely manner. The story of a firmware update is completely
different, however. Because the firmware is part of the security
and management engine, and a component of the chipset or SoC,
firmware hotfixes and maintenance releases must be thoroughly
tested for compatibility by OEMs before being pushed to devices
that are in the field. This process usually takes anywhere from a few
weeks to a few months, and may not happen at all. To address the
problem of firmware updates, a stringent security review process is
exercised in the attempt of minimizing the need for hotfixes.

Overall, the pros of using the engine as the security solution outweigh the cons,
making the engine the ideal place for security solutions.

Security Applications at a Glance
Realizing these attractive properties of the infrastructure, no one would be satisfied if the
management engine remained just a system management tool. System manageability is an
important and useful application, but it does not make use of the full potentials offered by
the engine. Now that the engine is available on the system, why not make the most out of it?

First, the engine should be used as frequently as possible—not only when
management service is requested on the system. After all, how often do system problems
happen? They do not happen every day.

Second, a successful state-of-the-art technology should not benefit only the network
administrators and the employees in enterprises. It should bring values to a larger
population.

There are clearly many more possibilities and opportunities to be explored on the
security and management engine. In today’s mobile age, the demand for secure mobile
services that involve valuable assets is gaining significant momentum. As a result, the
embedded engine is reborn with new security features that are serving all end users
every day.

EPID
Thanks to its direct access to hardware and isolation from the host operating system,
it is convenient to leverage the security and management engine as the root of trust
for the platform. The EPID (enhanced privacy identification) is a security mechanism
exclusively built in the engine and serves as the hardware security root of trust for various
applications running on the platform.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

49

During Intel’s manufacturing process, a unique EPID private key is retrieved from
an internal key generation server and programmed to the engine’s security fuses. At
runtime, the engine’s firmware uses the EPID private key to prove to the local host or a
remote server that it is a genuine Intel platform and eligible for premium services that
are available only to Intel products. Those applications rely on a hardware infrastructure
that is only supported by Intel’s products. For example, the CPU upgrade service, PAVP
(protected audio and video path), and so on.

Leakage of an EPID private key would allow hackers to write software masquerading
as Intel hardware. Such attacks may break into the applications that were built on the
EPID and then steal secrets, such as user’s stock brokerage passwords or copyrighted
contents. To prevent the EPID key from being compromised, comprehensive protection
mechanisms for the EPID private key at rest and at runtime are implemented by the
engine. Of course, the EPID key generation process is also safeguarded with very strong
and restrictive policies. In fact, except for the purpose of debugging, no human being is
supposed to know any EPID private key value. Having said so, a key revocation scheme is
supported by the engine in case of incidents.

To summarize the requirements, the EPID credential must be unique per platform;
it must always be available; and the deletion, alteration, theft, or cloning of the EPID
credential on one platform to another platform shall not be feasible without employing
special hardware equipment and significant resources. Such a level of security strength
is very difficult, if not impossible, to achieve by software solutions. The security and
management engine is the ideal place to implement EPID functionalities. It offers not
only ample security protection, but also flexibility in supporting EPID applications
because the engine is a hardware/firmware hybrid device.

Chapter 5 of this book has more information on EPID.

PAVP
Some applications need to securely display frames and play audio to the user. The
security requirement is that software running on the host operating system must not be
able to peek or steal the contents being securely played back.

For example, alongside the wide deployment of the media playback feature on
mobile computing devices is the problem of protecting copyrighted contents from
piracy. Some content creators (such as movie studios) consider software protection
insufficient and require their high-definition content, when playing back on computers,
to be protected by hardware mechanisms. In other words, if a user’s computer is not
equipped with the required hardware capability, then that user won’t be able to enjoy
those contents.

Another example for the secure display usage is Intel IPT, where a sprite of keypad is
displayed on the screen for the user to enter a password by mouse clicks. The sprite must
be hidden from the host to prevent attacks by screen scrapers.

Intel’s PAVP technology is a hardware scheme that protects video and audio assets
from software attacks. Initially introduced for Blu-ray, PAVP is now used by a range of
applications that rely on content protection to function.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

50

The PAVP is realized by a few components: player software and graphics drivers on
the host, the security and management engine, and the GPU. The ultimate security goal of
content protection is to make sure that the content encryption key and the clear content
are only visible to hardware and not exposed to any software components, including ring
0 drivers.

The responsibilities of the engine in the PAVP solution include:

Establishing a PAVP session between the software and the GPU.•	

Delivering content encryption keys to the GPU.•	

Implementing the HDCP•	 8 (high-bandwidth digital content
protection) protocol.

Chapter 8 has more information on PAVP.

IPT
Identity theft is one of the most infamous and costly cybercrimes. Anyone that uses the
Internet to manage assets (such as music, photos, social life, financial accounts, and
so on) can potentially be a victim. Strong authentication and transmission protection
is necessary to deter identity theft. Intel IPT, backed by the security and management
engine together with other components, is a cutting-edge technology for protecting end
users’ identities.

The IPT is an umbrella product name that comprises a numbers of features,
including, as of this writing, OPT (one-time password), PTD (protected transaction
display), PKI (public-key infrastructure), and NFC (near-field communication).
Additional functionalities may be introduced to the IPT family in the future. These
features work collaboratively to offer comprehensive identity safeguarding for the users
for multiple scenarios.

•	 OPT: Implements as the second factor in a multi-factor
authentication solution. The user’s computer is the second factor
(something you have), and the OPT is generated by the security
and management engine’s firmware and transmitted to the
remote server for authentication. The technology eliminates
the need for a physical token, meanwhile maintaining the
security level.

•	 PTD: Allows a trusted entity to draw and display a secure sprite on
the screen directly with the help of PAVP. The sprite is completely
invisible to the host software stack. The secure display is
commonly utilized for delivering sensitive information that is for
the user’s eyes only—for example, a keypad for authentication.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

51

•	 PKI: Provides a robust private key management mechanism,
including key generation, key storage, signature generation, and
decryption. Once a private key is generated by or imported to
the security and management engine, it will never be output in
the clear. The engine performs private key operation under the
hardware protection.

•	 NFC: Allows a user to tag his NFC-capable credit card against the
NFC sensor on his computer to conveniently complete online
transactions with positive identity authentication.

More technical details about the security and management engine’s role and
responsibility for IPT can be found in Chapter 10.

Boot Guard
Intel Boot Guard is the technology for protecting boot integrity for Intel platforms. The
system’s boot block is measured by hardware and the boot is allowed if and only if the
measurement is successful, that is, the boot block is not altered. The hardware elements
that perform the boot integrity check are the security and management engine and
the CPU.

Intel Boot Guard offers two configurations: verified boot and measured boot. The
engine is equipped with an array of field programmable fuses. For verified boot, an OEM
programs the fuses with the hash value of its public key before the conclusion of the
manufacturing process. The corresponding private key is used by the OEM to sign its
initial boot block module, the first OEM’s component that executes during boot. During
the boot process, the engine and the CPU first verify the public key in the OEM’s initial
boot block manifest by comparing its hash with the preconfigured hash in the field
programmable fuses, and then verify the OEM’s signature on the initial boot block using
the public key.

Alternative to using a digital signature, the measured boot configuration leverages the
TPM on the platform. The TPM can be either a discrete TPM or a firmware-based TPM
that is built in the security and management engine.

Chapter 6 of this book has more technical details on Intel Boot Guard technology.

Virtual Security Core: ARM TrustZone
ARM is an industry leader in low-cost and low-power processors, with applications in a
host of mobile embedded devices, especially in the smartphones and tablet markets.

ARM deploys several security measurements among various families of products.
For instance, the SecurCore family9 provides mitigations against software, hardware,
and side-channel attacks, for small form factors, such as smart cards. In particular, the
SecurCore solutions enable customization of security features for a specific design and
provide development process tools with added security controls.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

52

For SoC platforms, ARM’s security solution is called the TrustZone technology10
(a.k.a. security extension). TrustZone is supported by ARM1176 and the Cortex-A series
processors. In contrast to Intel’s security and management engine that uses a dedicated
security core, the TrustZone takes a different approach. The TrustZone splits a physical
processor core and treats it as two virtual cores (or modes): one nonsecure mode and
one secure mode. The nonsecure mode is also called normal mode or untrusted mode;
the secure mode is also called trusted mode. The two modes share the same hardware
resources but they operate independently. Some literatures refer to “mode” as “world.”

Secure Mode and Nonsecure Mode
Context switch between the nonsecure mode and the secure mode is conducted through
a third mode, the monitor mode, which is managed inside the secure mode. The current
mode of operation is indicated by the nonsecure (NS) bit, which is bit 0 of the secure
configuration register (SCR). The SCR is a read/write register that is accessible in the
secure mode only, and recommended by ARM to be programmed by the monitor mode.
Besides the NS bit, the SCR is also used to configure whether an interrupt—FIQ (fast
interrupt request) or IRQ (interrupt request)—should be branched to the monitor mode
for processing. The entry to the monitor mode can be triggered by software executing a
dedicated instruction, the Secure Monitor Call (SMC) instruction, or by a subset of the
hardware exception mechanisms.11 Figure 2-10 shows the relationships among the secure
mode, nonsecure mode, and the monitor mode.

Normal world user
mode

Normal world
privileged mode

Secure world
user mode

Secure world
privileged mode

Monitor mode

Normal world Secure world

Figure 2-10. Modes in an ARM core implementing the security extensions

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

53

The switches between the two modes are strictly controlled by hardware. The secure
mode is essentially another level of execution privilege. The secure mode must not leak
secrets to the normal world or allow any form of privileged escalations. Applications run
mostly in the normal mode, but small security-specialized code that handles secret data
and sensitive operations is executed in the secure mode. For example, the key processing
for content protection is run in the secure mode.

In addition to the processor, the separation of the two modes permeates all
hardware, most interestingly, memory and device buses.

Memory Isolation
The memory infrastructure inside and outside of the processor core must also be isolated
into two modes accordingly.

The level 1 (L1) cache in the processors is managed by the so-called memory
management unit (MMU), which converts the virtual address space that is seen by the
software running on the processor onto the physical address space. The MMU features
an L1 memory translation table with an NS field, and entries in the TLB (translation
look-aside buffer) are tagged with the NS bit. The secure mode relies on the value of the
NS field to determine the value of the NS bit of the SCR when it is accessing the physical
memory locations. The nonsecure mode ignores the NS field. In other words, the secure
mode is always allowed to access memory belonging to both the secure mode and the
nonsecure mode. Select processor models feature Tightly Coupled Memories (TCMs),
which are high-performance SRAM that exist at the same level of L1 cache. There can
be up to two blocks of TCM present on each instruction and data interface. Software can
configure the TCMs to be accessible to the secure mode or nonsecure mode.

The Memory Protection Unit (MPU) was introduced to ARM cores starting from
ARM7. This unit allows partitioning of memory into different sections and assigning them
different security attributes, for example, marking the code section as read-only in order
to prevent runtime alteration attack at runtime. The read/write permissions are based on
two-level User and Privilege mode access; if a User mode application tries to access the
Privilege mode memory, then the processor triggers an exception. The initial boot routine
and interrupt handling vectors executes in the Privilege mode.

Bus Isolation
The isolation of bus interfaces and devices is required to prevent attacks from system
devices. The AMBA3 (the third generation of the Advanced Microcontroller Bus
Architecture) AXI (Advanced Extensible Interface) bus protocol defines controls to
identify operating modes for all transactions. The AXI bus adds metadata to bus control
signals and labels all read and write transactions as secure or nonsecure. The hardware
logic in the TrustZone-enabled AMBA3 AXI bus fabric ensures that secure-mode
resources cannot be accessed by nonsecure mode components.

The AMBA3 APB (Advanced Peripheral Bus) is used for secure peripherals and
interrupts. The APB is attached to the system bus using an AXI-to-APB bridge. The APB
per se is not equipped with an NS bit or its equivalent. Therefore, the AXI-to-APB bridge
hardware ensures that the security of APB peripheral transactions is consistent with the
AXI security signals.

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

54

Physical Isolation vs. Virtual Isolation
Conceptually, TrustZone has its similarities to Intel TXT in the sense that both achieve
isolation between the secure and nonsecure modes through a trusted virtual machine or
execution environment. In reality, on many Intel platforms, the security and management
engine is the counterpart for security solutions that are realized by TrustZone on
ARM platforms.

The obvious advantage of TrustZone over a dedicated security core is its lower BOM
cost—only one core is needed for two modes of operation. But are there tradeoffs?

Although ARM’s TrustZone and Intel’s security and management engine both
feature hardware-based security operating environments, their architectures are
completely different. The isolation between the nonsecure mode and the secure mode is
virtual for TrustZone, versus physical for the security and management engine. For the
virtual separation mechanism, safeguarding the border of the virtually secure world and
defending against threats could be a challenging task.

In addition to security, power efficiency is another important consideration for
modern mobile platforms that aggressively power save. For TrustZone, the secure
mode and the nonsecure mode run at the same frequency. In contrast, the security and
management engine runs at a lower frequency than the main processor, resulting in less
power consumption at the tradeoff of a slower operation of security tasks, which in most
cases do not require high performance.

Furthermore, as described earlier in this chapter, Intel’s embedded solution is also a
management engine. Its many unique properties make it an excellent choice for platform
management applications.

References
1. Arvind, Kumar, Purushottam Goel, and Ylian Saint-Hilaire, Active Platform

Management Demystified—Unleashing the Power of Intel vPro Technology, Intel
Press, 2009.

2. Intel Trusted Execution Technology, www.intel.com/txt, accessed on January 30, 2014.

3. Intel Virtualization Technology, www.intel.com/content/www/us/en/
virtualization/virtualization-technology/hardware-assist-virtualization-
technology.html, accessed on January 30, 2014.

4. Intel Identity Protection Technology, www.intel.com/content/www/us/en/
architecture-and-technology/identity-protection/identity-protection-
technology-general.html, accessed on January 30, 2014.

5. Intel Anti-Theft Technology, www.intel.com/antitheft, accessed on January 30, 2014.

6. Intel AMT Implementation and Reference Guide, http://software.intel.com/
sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm,
accessed on January 30, 2014.

http://www.intel.com/txt
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.com/antitheft
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm

Chapter 2 ■ Intel’s embedded solutIons: from management to seCurIty

55

7. Hoekstra, Matthew, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phegade,
and Juan del Cuvillo, “Using Innovative Instructions to Create Trustworthy Software
Solutions,” http://software.intel.com/sites/default/files/article/413938/
hasp-2013-innovative-instructions-for-trusted-solutions.pdf, accessed on
January 30, 2014.

8. Digital Content Protection LLC, “High-bandwidth Digital Content Protection,”
www.digital-cp.com, accessed on May 10, 2014.

9. ARM SecurCore Processors, http://www.arm.com/products/processors/
securcore/, accessed on April 1, 2014.

10. ARM TrustZone Technology, www.arm.com/products/processors/technologies/
trustzone/index.php, accessed on January 30, 2014.

11. ARM Limited, “ARM Security Technology—Building a Secure System using
TrustZone Technology,” http://infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf,
accessed on April 1, 2014.

http://software.intel.com/sites/default/files/article/413938/hasp-2013-innovative-instructions-for-trusted-solutions.pdf
http://software.intel.com/sites/default/files/article/413938/hasp-2013-innovative-instructions-for-trusted-solutions.pdf
http://www.digital-cp.com/
http://www.arm.com/products/processors/securcore/
http://www.arm.com/products/processors/securcore/
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

	Chapter 2: Intel’s Embedded Solutions: from Management to Security
	Management Engine vs. Intel AMT
	Intel AMT vs. Intel vPro Technology
	Management Engine Overview
	Hardware
	Overlapped I/O
	Firmware
	Software

	Platform and System Management
	Software Solutions
	Hardware Solutions
	In-Band Solutions
	Out-of-Band Solutions

	Intel AMT Overview
	BIOS Extension
	Local Management Service and Tray Icon
	Remote Management

	The Engine’s Evolvement: from Management to Security
	Embedded System as Security Solution

	Security Applications at a Glance
	EPID
	PAVP
	IPT
	Boot Guard

	Virtual Security Core: ARM TrustZone
	Secure Mode and Nonsecure Mode
	Memory Isolation
	Bus Isolation
	Physical Isolation vs. Virtual Isolation

	References

