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Abstract

Background: Copy number alterations (CNA) and loss of heterozygosity (LOH) represent a large proportion of
genetic structural variations of cancer genomes. These aberrations are continuously accumulated during the procedure
of clonal evolution and patterned by phylogenetic branching. This invariably results in the emergence of multiple cell
populations with distinct complement of mutational landscapes in tumor sample. With the advent of next-generation
sequencing technology, inference of subclonal populations has become one of the focused interests in cancer-
associated studies, and is usually based on the assessment of combinations of somatic single-nucleotide variations
(SNV), CNA and LOH. However, cancer samples often have several inherent issues, such as contamination of normal
stroma, tumor aneuploidy and intra-tumor heterogeneity. Addressing these critical issues is imperative for accurate
profiling of clonal architecture.

Methods: We present CLIMAT-HET, a computational method designed for capturing clonal diversity in the CNA/LOH
dimensions by taking into account the intra-tumor heterogeneity issue, in the case where a reference or matched
normal sample is absent. The algorithm quantitatively represents the clonal identification problem using a factorial
hidden Markov model, and takes an integrated analysis of read counts and allele frequency data. It is able to infer
subclonal CNA and LOH events as well as the fraction of cells harboring each event.

Results: The results on simulated datasets indicate that CLImAT-HET has high power to identify CNA/LOH segments, it
achieves an average accuracy of 0.87. It can also accurately infer proportion of each clonal population with an overall
Pearson correlation coefficient of 0.99 and a mean absolute error of 0.02. CLImAT-HET shows significant advantages
when compared with other existing methods. Application of CLImMAT-HET to 5 primary triple negative breast cancer
samples demonstrates its ability to capture clonal diversity in the CAN/LOH dimensions. It detects two clonal populations
in one sample, and three clonal populations in one other sample.

Conclusions: CLIMAT-HET, a novel algorithm is introduced to infer CNA/LOH segments from heterogeneous tumor

samples. We demonstrate CLIMAT-HET's ability to accurately recover clonal compositions using tumor WGS data without
a match normal sample.
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Background

Cancer is a disease that develops through accumulation
of various genetic variability [1]. The clonal principles of
tumor progression states that once initialization of a sin-
gle founder cell is activated, various factors associated
with carcinogenesis permit the descendants of the
founder cell to resist apoptosis and undergo clonal
growth, accompanying with acquirement of genomic al-
terations through multiple rounds of clonal expansion,
and ultimately to invade neighboring tissues and
metastasize to distant organs [1-5]. A tumor is thus het-
erogeneous and a mixture of multiple cell populations,
and each population is characterized by a distinct com-
plement of genomic aberrations. Genomic aberrations
consist of somatic mutations such as single-nucleotide
variations (SNV), copy number alterations (CNA), loss
of heterozygosity (LOH), and more complicated struc-
ture variations (SVs) including inversion, translocation
and etc., of which CNA and LOH are two frequently ob-
served features of cancer genomes, and accurate detec-
tion of these aberrations is a crucial step to identify
cancer-causing genes [6, 7].

Cancer-associated studies have been greatly promoted
by continuous advances in experimental technologies for
landscape of cancer genomes [8—12]. With the advance
of sequencing technologies, high-throughput DNA se-
quencing presents an unprecedented advantage in
deconvolving intra-tumor heterogeneity and detecting
subclonal aberrations compared with array-based tech-
nologies. Whole-genome sequencing (WGS) of tumor
samples is now a generally adopted approach for com-
prehensive analysis of structural and nucleotide-level
aberrations that underpin tumor progression [13]. How-
ever, analysis of WGS data is generally complicated by
several issues. For example, tumor sample is usually im-
pure and mixture of cancerous and normal cells [9, 14].
The fraction of cancerous cells is usually represented as
tumor purity. Low tumor purity will significantly dimin-
ish sequencing-derived signals, making it complicated to
distinguish between aberrant and normal regions. An-
other intractable issue associated with cancer genomes is
aneuploidy, caused by deletions or duplications of gen-
omic segments or entire chromosomes in cancer ge-
nomes, and the average copy number of cancer genome
is usually unknown [15-17]. One other more complex
issue is the intra-tumor heterogeneity that results from
the ongoing subclonal evolution [18], and the underlying
clonal architecture is usually unavailable when dealing
with patients’ tumor samples.

In this study, we present CLImAT-HET, a novel algo-
rithm based on the framework of CLImAT [19], for in-
ferring subclonal CNA and LOH segments by taking
into account the intra-tumor heterogeneity issue, in the
case where a reference or matched normal sample is
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absent. The model jointly explores both read counts and
allelic read depths at known SNPs across the whole gen-
ome from tumor WGS data (Fig. 1a), and quantitatively
represents the copy number profiles of multiple subclo-
nal populations, which is one novelty of CLImAT-HET.
For each aberration event, we assume observed signals
result from the joint effects of three distinct populations
of cells: normal cells, tumor cells harboring the event
and tumor cells without the aberration (Fig. 1b). The
cellularity of CNA/LOH event is defined as the propor-
tion of cells harboring the event. We further assume that
multiple co-occurring events can be designated to one
of a finite number of clonal populations. We adopt a fac-
torial hidden Markov model (HMM) with two under-
lying Markov chains to delineate genomic aberrations
and clonal clusters (Fig. 1c). In the factorial HMM, one
Markov chain depicts genome aberrations and another
represents the corresponding clonal clusters. Further-
more, the structure of the factorial HMM is automatic-
ally optimized by using an embedded model selection
module based on Bayesian information criterion (BIC),
which is another novelty of CLImAT-HET.

In contrast to related approaches in the literature, our
method presents several distinct characteristics. APOL-
LOH [13] is designed to infer LOH from tumor se-
quence data, however it does not take into account the
issue of tumor heterogeneity. PurBayes [20] uses somatic
single-nucleotide variants derived from paired tumor-
normal samples to estimate tumor cellularity and
subclonality, and is only applicable to diploid tumor
samples due to no integration of tumor ploidy and CNA
information. THetA [21] is designed to infer cancer sub-
clones by addressing a maximum likelihood mixture de-
composition problem based on paired tumor-normal
samples, but it cannot automatically determine the num-
ber of underlying subclonal populations. A recently de-
veloped method, TITAN [22], is designed to jointly call
CNA and LOH segments from WGS data of tumor-
normal paired samples. TITAN introduces a delicate fac-
torial HMM to infer tumor subclones and performs an
exhaustive search for the number of clonal populations
up to 5 to find the optimal model structure. Our ap-
proach differs from TITAN in two aspects: 1) CLImAT-
HET uses only single tumor sample and no reference or
matched normal sample is required, and 2) CLImAT-
HET learns the model structure under a BIC. Another
method called OncoSNP-SEQ [23] accounts for intra-
tumor heterogeneity by employing a non-clustering
approach to model the distinct cell populations [22].

We perform a comprehensive evaluation of CLImAT-
HET using simulated and real WGS data. By quantitative
benchmarking on simulated datasets, we demonstrate
that CLImAT-HET has the capacity to accurately infer
cellularity of clonal clusters and subclonal CNA/LOH
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Fig. 1 Overview of the CLImAT-HET statistical framework. a CLImAT-HET analysis workflow. 1) Read counts and read depths of known SNP positions
are extracted from whole-genome sequencing data of tumor sample; 2) read counts signals are preprocessed to correct GC-content and mappability
bias, quantile normalization of read depths is performed to eliminate allelic bias; 3) read counts and read depth signals are jointly analyzed using an
integrated hidden Markov model, and the model complexity is iteratively evaluated for different number of clonal clusters using Bayesian information
criterion; 4) and finally the clonal/subclonal CNA and LOH segments as well as the cellularity of each clonal cluster are inferred. b Representation of the
intra-tumor heterogeneity and CLIMAT-HET solution. The observed copy number signals are generated from three types of cell populations: normal
cells, tumor cells with an amplification, and tumor cells with the amplification event and an additional deletion event. CLImAT-HET infers the total and
major copy number as well as the corresponding cellularity of each event. ¢ The factorial hidden Markov model adopted in CLIMAT-HET. The hidden
Markov model has two underlying Markov chains with one chain depicting aberration events and another delineating corresponding clonal clusters

J

segments, and shows significant advantages when com-  threshold by a grid search. CLImAT-HET then jointly
pared with existing approaches. We apply CLImAT-HET  analyze dy.n, b1.x and Ty using an integrated HMM,
to 5 primary triple negative breast cancer (TNBC) sam-  and iteratively examine the model complexity using BIC
ples to show its ability to identify clonal diversity in the for different number of clonal clusters, and finally out-
CNA/LOH dimensions. put clonal/subclonal CNA and LOH segments as well as
the cellularity of each clonal cluster.

Methods

CLIMAT-HET pipeline The statistical models in CLImAT-HET

The pipeline of CLImAT-HET is illustrated in Fig. la. It is intractable to precisely depict the genome-wide ab-
The inputs to the model are extracted from WGS data  erration status of tumors containing multiple subclones,
using our previously published tool DFExtract [19]. Our  therefore we adopt a simple assumption that the ob-
analysis covers more than 2.6 million known SNPs along  served signals at a genomic locus are generated from
the whole genome. Copy number data of N SNPs is rep-  underlying three types of cell populations: normal (non-
resented by read counts d;.n, meanwhile B allele fre- tumor) cells, tumor cells with normal genotype, and
quency is represented by B-allele read depth b, and tumor cells harboring the aberration event of interest
total read depth T7.5. Following the procedures adopted  (Fig. 1b). Thus, cell populations can be ultimately di-
in CLImAT [19], read counts are obtained by counting vided into two parts at a genomic locus: one with nor-
the reads within a 1000-bp window centered at each mal genotype and relative abundance of (1-f), and
SNP, and further processed to correct GC-content and  another harbors the aberration event with cellularity of
mappability bias. For B allele frequency, quantile . To avoid extensive local parameters, we further
normalization of read depths is automatically performed assume all the aberration events can be clustered into a
to eliminate allelic bias based on selection of optimal finite number of K groups, of which the kth group
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corresponds to the kth clonal population with respective
cellularity of B (B; 52 Bx), and tumor purity is
equal to Sx. Based on these assumptions, the model pa-
rameters can be effectively inferred by borrowing statis-
tical approaches.

We define a set of states to depict copy number status
of tumor genomes (Table S1, Additional file 1). Each
state is represented by copy number, tumor genotypes
derived from the normal genotypes by the deletion or
duplication of alleles and aberration type. We only con-
sider copy number status up to 7 copies, which is empir-
ically based on the fact that most existing CNA-calling
methods use this value as an upper bound [9, 19, 23].
Based on the emission models proposed in our previous
study [19], we extend the conditional probabilities of
read counts and B-allele read depth by introducing the
contributions of multiple clonal populations. Given the
aberration state ¢ and the kth clonal cluster, we assume
B-allele read depth is binomial distributed with the con-
ditional probability defined as follows:

POt =h o) -2ins) ™ 0

In formula (1), we only consider heterozygous geno-
types in each aberration state. The mean of B allele copy
number z.; and total copy number y,., are defined as:

ZC,k = nsﬂs(l_ﬁk) + nﬁl’tcﬁk (2)

Yer = 1s(1-By) + ney (3)

where 7, and u, deonte the copy number and expected
B allele frequency (BAF) of normal cells respectively, n,
and u. represent the copy number and BAF of tumor
cells respectively. In addition, we assume read counts is
negative binomial (NB) distributed with the conditional
probability defined as follows:

F(di + Ac‘k(l_pc)/pc)

_p YAk Q-p0)/p2) di
I'(di+ 1) (Aex(1-p.) /p.) (1-pc) Pe

(4)

where A is mean read counts associated with normal
copy, and A, is formulated as:

Aok =75 (5)

p(dil/Lquk) =

The meanings of all other parameters involved in
above formulas are the same as the ones described in
CLImAT, and we do not go into detail here.

The conditional probabilities described above rely on
two latent variables, aberration state ¢ and clonal cluster
k, therefore we implement CLImAT-HET as a factorial
HMM with Cx K hidden states by combining tumor
genotypes and clonal clusters, where C is the number of
aberration states defined in Table S1 and K is the
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number of clonal clusters. The HMM thus has two
underlying Markov chains with one chain depicting
aberration state sequence and another delineating corre-
sponding clonal clusters (Fig. 1c). We employ expect-
ation maximization (EM) algorithm [24] to learn the
model parameters 6 = (17, A, 8, A, p), where  is the ini-
tial state probability distribution, A is the state transition
matrix, /8 is the cellularity of all clonal clusters, A denotes
the copy neutral read counts, and p refer to the success
probability as a parameter of NB distributions. For the
expectation step of EM algorithm, we calculate the ex-
pectation of the partial log-likelihood function of read
counts and B-allele read depth respectively, and formu-
lated as:

N C K

E(LLg) = Z Z Vick log(p(dilA, p,. ¢,k)) (6)
i=1 c=1 k=1
N C K

E(LLy) =) > D Viexlog(p(bilTi,c,k)) (7)

]
L
]
I
T
I

i c
where y; . is the posterior probability of the ith SNP be-
ing in aberration state ¢ and the kth clonal cluster, and is
calculated using forward-backward algorithm [25]. For
the maximization step, we use Newton-Raphson method
[26] to update all model parameters until predefined
convergence criterion is met. We define relative incre-
ment of the value of the log-likelihood function from
iteration n-1 to # as follows:

2% |LL,~LL,|

Inc =
|LL,| + |LL,-1|

(8)

where LL, is the value of the log-likelihood function in
the nth iteration. If the value of Inc is less than a specific
threshold (1 x 107*), then the parameter updating pro-
cedure is stopped.

Given the number of clonal clusters K, the EM algo-
rithm is implemented as follows: 1) start with initial
parameters 6° = (1%,A4%%1%p°) and calculates the joint-
posterior probability y;.. 2) update 8" = (m',A",8'.\" p’)
using Newton—Raphson method, 3) repeat steps (1) and
(2) until a specified number of iterations are reached or
the convergence criterion is met. The converged param-

eters O = (ﬁ,A, B ,/i, [9) in the last iteration of the train-

ing process will be output as the optimal estimators.
Furthermore, we perform a grid search of the initial pa-
rameters 6° = (7%,4°°1%p°) to find the globally optimal
solution.

As a vital parameter of CLImAT-HET model, the
number of clonal clusters is determined using BIC. The
BIC of a model is defined as follows:
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BIC = —1Ini + gmln(N) 9)

where L is the maximized likelihood of the model, a > 0
is the regularizing term, m is the number of free param-
eters to be estimated and N is the number of SNPs. Our
goal is to find an optimal value of K that leads to the
model with the minimum value of BIC. A feasible solu-
tion is to perform an exhaustive search for possible
values but it is practically intractable. Alternatively,
CLImAT-HET starts with the initial assumption of
tumor homogeneity (K =1) and then iteratively increases
clonal cluster number by one (K=K + 1) until the BIC
value of the model no longer decreases. The optimal
model is thus the one in the final iteration. For the com-
putational convenience, we do not directly calculate the
BIC of the model, but the difference of BIC between two
adjacent models. Suppose that the number of clonal
clusters is 7 in the nth iteration, and the BIC difference
between the current model and the previous model is
defined as follows:

dBIC = BIC,~BIC,, = AL, + gAmn In(N)  (10)

where AL, and Am,, are the increment of the likelihood
and the number of free parameters from model #-1 to
model n, respectively. Am,, is measured by formula as
follows:

Am, = (2(n-1) +1)(C-1)* +2(C-1) + 1 (11)

The iteration is stopped once the BIC difference is
greater than zero. After the model learning is finished,
aberration information including copy number, tumor
genotype, aberration type and clonal cluster for each
SNP can be inferred from the hidden state with the max-
imum posterior probability. At the same time, segmenta-
tion of all SNPs based on hidden states is performed to
output clonal/subclonal CNA and LOH segments.

Similar to the method described in CLImAT, we define
a reliability score for the ith segment as follows:

S; = mean p(éij'Ti/” ¢k) p(gijquc,Q k) (12)
p(bij|T177 ¢, k) p(dij‘/lvpcv ¢, k)

where b; and T}; are B-allele read depth and total read
depth of the jth heterozygous SNP in the ith segment,
and dj; is the corresponding read counts, Eij and Eij de-
notes the expected B-allele read depth and read counts
associated with aberration state ¢ and the kth clonal
cluster, respectively. Furthermore, the scores for all seg-
ments are scaled to 0 ~ 100.

Page 5 of 11

Implementation of CLImAT-HET

An efficient implementation of CLImAT-HET by using
C/Matlab is freely available at GitHub [27], our previ-
ously published tool DFExtract [19] is used to prepare
input files for CLImAT-HET.

Datasets

Real dataset

WGS data from 5 primary TNBC samples described in a
previous study [28] are analyzed in this study. Each sam-
ple was sequenced at approximately 30x coverage on the
Life/ABI SOLID sequencing platform.

Simulated dataset

To simulate tumors containing multiple clones, we first
define one normal genome (denoted as n) and four
tumor genomes (denoted as a, b, ¢ and d), and then gen-
erate mixtures by mixing five genomes at predefined
proportions. As illustrated in Figure S1 (Additional file 2),
a is the main clone and the genome is generated by defin-
ing a number of segments along the reference, meanwhile
each segment is specified by a copy number state includ-
ing total copy number and major allele copy number.
Genome b and ¢ are constructed by introducing new aber-
rations into genome a, and genome d corresponds to the
subclones deriving from the second clonal expansion
based on b. We use a normal sample HCC1954-BL down-
loaded from CGHub [29] to generate sequencing data of
the simulated genomes by following these steps: 1) For
each segment of the genome, reads aligned to the region
are randomly and repeatedly sampled from BAM file of
the sample HCC1954-BL according to the copy number
of the segment, 2) nucleotide sequences of the sampled
reads are properly modified to match BAF values of the
SNPs within each segment, and 3) the processed reads are
merged to generate BAM files using SAMtools [30].
We generate mixtures of genomes by sampling reads
from the BAM files at predefined proportions, and
reads are sampled to 30x coverage at all mixtures. By
this way, 20 simulated tumor samples (Table S2,
Additional file 3) are generated to evaluate the per-
formance of CLImAT-HET in detecting clonal and
subclonal CNA and LOH segments.

For each simulated sample, the underlying cellularity
of clonal clusters are computed based on the relation-
ship between the tumor genomes making up the mix-
ture. For example, the mixture “a_010b_030n_060" is
made up by genomes a, b and n with respective propor-
tions of p,=0.1, p, =0.3 and p, = 0.6, thus there will be
two clonal clusters with the underlying cellularity equal
to 0.3 (pp) and 0.4 (p,+pp); similarly, the mixture
“a_020b_035c_025n_020" will yield three clonal clusters
with cellularity of 0.35 (py,), 0.25 (p.) and 0.8 (p, + pp + Po)>
while the mixture “a_010b_010d_025n_055" contains
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three clonal clusters with cellularity of 0.25 (pq), 0.35
(Pb + pa) and 0.45 (pa + pb + Pa)-

Competitive methods

Two advanced methods, OncoSNP-SEQ [23] and CLI-
mAT [19], are adopted to make comparison between the
performance of CNA and LOH detection algorithms.
When running OncoSNP-SEQ on the simulated sam-
ples, the simulated SNP sites are used to prepare the in-
put file during the preprocessing step, and we run the
main program with the option “—chr range [1:22],
—-normalcontamination, —-maxnormalcontamination 0.8,
—-seqtype illumina” on homogeneous samples, and with
an additional option “~tumourheterogeniety” on heteroge-
neous samples. As OncoSNP-SEQ generally output mul-
tiple solutions per sample, and in this case we select the
one associated with the maximum likelihood as the opti-
mal solution. For CLImAT, we use the default configur-
ation on all samples.

Performance evaluation

For the simulated samples, copy number and genotype
profiles of all segments predefined in simulation experi-
ment are used as the golden standard for evaluation.
Accuracy is calculated for each method by comparing
the predictions with the ground truth. We consider a
segment to be accurately identified only if any predicted
segment covers the 75% size of the segment and have
exact matching of total and major copy number with the
segment. Accuracy is defined as the proportion of accur-
ately identified segments among all segments.

Results

In this section, we perform a comprehensive assessment
of CLImAT-HET on both simulated and real datasets in
terms of inferring cellularity of clonal clusters and iden-
tifying CNA/LOH segments.

Results on simulated data

We employ a simulation study to evaluate the accuracy
of our estimates of cellularity of clonal clusters, tumor
purity and predictions of CNA/LOH segments. Our sim-
ulated data is generated based on a real normal sample
HCC1954-BL downloaded from CGHub as described in
the Methods. We run CLImAT-HET, OncoSNP-SEQ
and CLImAT to infer CNA/LOH segments and associ-
ated cellularity.

To assess the accuracy of cellularity estimations of
CLImAT-HET, we compare the estimated cellularity to
the ground truth cellularity for each clonal cluster. For
each sample, the underlying cellularity of clonal clusters
are computed based on the tumor genomes making up
the mixture (more details in the Methods). CLImAT-
HET is able to correctly infer the number of clonal
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clusters and corresponding cellularity for all the simu-
lated mixtures. An example of cellularity estimations on
a simulated sample “a_035b_015d_025n_025" with three
clonal populations is shown in Fig. 2. CLImAT-HET cor-
rectly identify three clonal clusters and infer their cellu-
larity (0.27, 0.41 and 0.72), simultaneously assign correct
clonal cluster to 85% of all segments. OncoSNP-SEQ in-
fers one clonal cluster with cellularity of 0.7, and CLI-
mAT estimates the tumor purity as 0.68. Moreover, we
compute the Pearson correlation coefficient (r) and
mean absolute error (MAE) for cellularity estimations,
and the results show that the estimated cellularity of
CLImAT-HET has a highly significant positive correl-
ation (r>0.99, p-value<5x 107>, MAE<= 0.02) with
the underlying cellularity across all simulated samples
(Fig. 3a, b and c), which demonstrates CLImAT-HET’s
ability to precisely recover clonal architecture. We fur-
ther assess the accuracy of tumor purity estimations
using the same metrics, and strongly significant correl-
ation (r = 0.997, p-value = 5.14 x 1072, MAE = 0.023) for
all the mixtures relative to the ground truth tumor pur-
ity is observed for CLImAT-HET (Fig. 3d). OncoSNP-
SEQ accurately estimates the tumor purity for 90% of
the samples (r=0.878, p-value=3.71x10"", MAE =
0.053), and CLImAT also achieves good performance
(r =0.992, p-value = 9.75 x 10~*¥, MAE = 0.058).

Next, we proceed to assess the abilities of CLImAT-
HET, OncoSNP-SEQ and CLImAT in inferring tumor
genotypes. We consider a segment to be accurately iden-
tified if and only if both the total and major copy num-
bers are accurately identified, and the sizes of the
segments are not considered. For each simulated sample,
total and major copy number profiles of all segments
predefined in simulation experiment are used as the
golden standard for evaluation. CLImAT-HET is able to
accurately infer the total and major copy numbers of
each segment for all the simulated mixtures. An example
result from the simulated sample “a_035b_015d_025n_025"
is shown in Fig. 4. The results show that CLImAT-HET in-
fers the correct tumor genotype for 86% of all segments,
while OncoSNP-SEQ and CLImAT correctly identify the 61
and 68% of the segments, respectively. OncoSNP-SEQ pre-
sents a relatively lower performance because we adopt strict
evaluation strategy. For a general evaluation, we use metric
accuracy, which is defined as the proportion of accurately
identified segments, to compare the performance of the dif-
ferent methods. The results on simulated data are shown in
Fig. 5. For the homogeneous tumor samples (Fig. 5a), there
is only one clonal cluster with cellularity equal to tumor
purity, all methods show high accuracy when tumor purity
is larger than 0.4. For the heterogeneous tumor samples
(Fig. 5b and c), OncoSNP-SEQ and CLImAT achieve re-
spective mean accuracies of 0.56 and 0.74, and CLImAT-
HET accurately identify both the total and major copy
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Fig. 2 The cellularity estimation results of different methods on a simulated sample. Cellularity estimations of different methods on a simulated
sample are compared with the ground truth. The predefined cellularity of all segments in simulation study are treated as underlying truth.
CLIMAT-HET correctly identify three clonal populations and infer their cellularity, meanwhile assign correct clonal cluster to 85% of all segments

numbers with a mean accuracy of 0.88. The perform-
ance of OncoSNP-SEQ is declining on some samples,
possibly the reads coverage of these samples is not
deep enough to enable OncoSNP-SEQ’s accurate in-
ference of local parameters [23].

Results on real data
We also examine CLImAT-HET on 5 primary triple
negative breast cancer samples, which are sequenced at
approximately 30x coverage and also assayed by Affyme-
trix SNP6.0 array [28]. ASCAT [31] is a widely used soft-
ware to analyze SNP-array data, therefore we use it to
infer the tumor purities.

The subclonal prediction results of CLImAT-HET on
sample SA223 are shown in Fig. 6. CLImAT-HET

identify one subclonal cluster with cellularity of 0.66,
which is in good concordance with the tumor purities
estimated by CLImAT, APOLLOH [13] and ASCAT
(Table 1). This population presents copy neutral LOH
spanning chromosomes 3p(22.3-11.1), 5q, 13q(13.3—
33.2), 15q and 16q(13-24.3), and amplified heterozygous
regions on chromosomes 1p, 1q(25.3-44), 5p, 6, 7, 9p,
17q, 18 and 20. ASCAT infers the measure of goodness
of fit as 0.82 for sample SA223, showing that there may
be aberration events represented in subclonal popula-
tions and not well interpreted by the models. Interest-
ingly, CLImAT-HET identify another subclonal cluster
with cellularity of 0.39, and copy neutral LOH regions
on chromosomes 1q, 9q(21.2-34.3) and 22q, and seg-
mental amplifications on chromosomes 3p(26.3-22.3),
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3q(11.2-27.3), 4, 10, 11 and 12 are represented in the
population. Figure 7a shows the log-likelihoods and BIC
differences of sample SA223 under each iteration, and
CLImAT-HET selects K=2 as the optimal number of
clonal populations since the BIC difference becomes to
be positive when the number of clonal populations in-
creases to 3.

For sample SA227, CLImAT-HET predicts it as het-
erogeneous with three distinct clonal populations, and
the subclonal prediction results are shown in Fig. 8. One
estimated subclonal cellularity of 0.44 is in accordance
with the tumor purities estimated by CLImAT and

ASCAT (Table 1). Copy neutral LOH on chromosome
5q and amplified LOH on chromosomes 3p, 8p and 9
are represented in this population. One other clonal
cluster presents a similar cellularity of 0.5, which may
correspond with the relatively higher measure of good-
ness of fit inferred as 0.9 by ASCAT. The genome of this
clonal population is featured by a number of segmental
amplifications across chromosomes 1, 2q, 3q, 5p, 6, 12,
17q, 18 and 20q, and copy neutral LOH regions span-
ning chromosomes 13 and 15. The third clonal cluster
has a relatively lower cellularity of 0.21, and aberration
events mainly include copy neutral LOH regions located
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Fig. 5 The accuracy of inferred copy numbers of different methods on simulated samples. The abilities of CLImAT-HET, OncoSNP-SEQ and CLIMAT
in inferring tumor genotypes are assessed in simulated dataset. A segment is considered to be accurately identified only if both the total and major copy
numbbers of the segment are accurately identified. For each simulated sample, the total and major copy number profiles of all segments predefined in
simulation experiment are used as the golden standard for evaluation. The performance of different methods on homogeneous samples (a), tumor
samples with two clonal populations (b) and three clonal populations (c) is assessed respectively, the x-axis represents the sample Id as defined in
Additional file 3
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Fig. 6 The subclonal prediction results of CLIMAT-HET on sample SA223. CLImAT-HET infers sample SA223 as heterogeneous with two distinct
clonal populations. The cellularity of one subclonal cluster is 0.66 and in good concordance with the tumor purities estimated by CLIMAT,
APOLLOH and ASCAT. In addition, CLImAT-HET identify another subclonal cluster with cellularity of 0.39

at chromosome 11q and amplified LOH regions on
chromosomes 4p, 11p, 16p and 22q. Figure 7b shows the
log-likelihoods and BIC differences of sample SA227,
and CLImAT-HET selects K=3 as the optimal number
of clonal populations.

For samples SA220, SA224 and SA225, the mea-
sures of goodness of fit returned by ASCAT are 0.95,
0.94 and 0.98 respectively, indicating these samples
are probably homogeneous. Accordingly, CLImAT-
HET analysis of these samples shows that there is
also no significant evidence for existence of subclonal
events, and the inferred cellularity of the single clonal
population is 0.62, 0.52 and 0.75 respectively, which
are in good concordance with the tumor purities pre-
dicted by CLImAT and ASCAT (Table 1). The copy
number estimation results of these samples are shown
in Figure S2-4 (Additional file 2).

Discussion

CLImAT-HET is a novel statistical method for infer-
ring subclonal CNA and LOH segments from WGS
data of heterogeneous tumor samples. It is developed
based on our previously published algorithm CLImAT,

Table 1 Tumor purity estimated by CLIMAT, APOLLOH, CLImAT-
HET and ASCAT for TNBC samples

Sample CLImAT APOLLOH? CLIMmAT-HET ASCAT
SA220 044 0.80 0.62 0.62
SA223 0.60 0.65 0.66 0.69
SA224 0.50 0.79 0.52 0.55
SA225 0.76 0.86 0.75 0.74
SA227 047 0.70 0.50 043

“The tumor purities estimated by APOLLOH are obtained from a previous study [13]

and take into account the issue of intra-tumor hetero-
geneity. Compared with CLImAT that only handles
homogeneous tumor samples, CLImMAT-HET can effi-
ciently deal with both homogeneous and heteroge-
neous tumor samples. The read counts and read
depths data generated from multiple cell populations
is quantitatively represented, and proper emission
models are adopted in the HMM. Furthermore, we
integrate a BIC module into the CLImAT-HET frame-
work to effectively determine the underlying number
of subclonal populations. These features enable
CLImAT-HET’s advantages in handling complex WGS
data. First, the appropriate decomposition of mixed
signals improves the CNA/LOH detection perform-
ance. Second, CLImAT-HET is more sensitive to the
aberration events represented in minor cell popula-
tions when compared to existing methods as shown
in simulated study. Third, CLImAT-HET is able to
accurately infer the cellularity each subclonal cluster.
Finally, the evaluation results on both simulated and
real WGS data demonstrate the advantages of our
algorithm.

CLImAT-HET also has limitations due to its
adopted modeling assumptions. The assumption that
only one aberrant genotype exists at each genomic
locus will not hold if distinct subclonal populations
have different aberrant genotypes at the same locus.
However, it is difficult to distinguish among multiple
subclones that have variable genotypes. The emission
models of CLImAT-HET need to be extended to ac-
count for these situations, and the joint analysis of
read counts and read depths signals may output
multiple solutions. Identifying distinct haplotypes
harboring linked mutations might be a good way to
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identify multiple mutations at the same locus in dif-
ferent populations.

Conclusions

In summary, we demonstrate that CLImAT-HET repre-
sents remarkable advantages in inferring subclonal
CNA/LOH segments from tumor WGS data. The high

performance of CLImMAT-HET benefits from delicate
representation of copy number profiles of distinct cell
populations, and efficient statistical methods for infer-
ence of the global parameters. We expect that CLImAT-
HET will complement the arsenal of bioinformatics tools
developed for investigating the role of tumor tumouri-
genesis and progression.

8

c

-

8

o

L)

Q

@

§>=7:. — H. = — = - - -y

€ 5 - o~ / —_— ' . -

— ] B L pp—_ S—— - et b —— LR ] - — — » P — -

€ e _— o — § o - o B . PN el § e

a b - -— — ' _— — e — T -

8 - | - e v e =

> 1¢ T : - -

s

S 0.5 Tl T e e il i oo A st Tl o S S

= . -

I P e o oo i 0 s O L Bl B e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819202122

Chromosome

Fig. 8 The subclonal prediction results of CLIMAT-HET on sample SA227. CLImAT-HET infers sample SA227 as heterogeneous with three distinct
clonal populations. The cellularity of one subclonal cluster is 0.44 and in accordance with the tumor purities estimated by CLIMAT and ASCAT. In
addition, CLImAT-HET identify other two subclonal clusters with respective cellularity of 0.5 and 0.21
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