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1 Introduction

It is widely believed that gauge/gravity duality (holography) can be thought of as a ge-

ometrization of the renormalization group. In the most well-studied examples of holog-

raphy, this has been investigated from the “bulk to boundary” point of view, where one

starts with the bulk theory and deduces the renormalization group flow of the boundary

quantum field theory by progressively integrating out the bulk geometry, but with no ref-

erence to any specific field theory cut-off. The first papers along these lines [3, 4] noted

the relationship between the boundary RG flow and Hamilton-Jacobi theory of the bulk

radial evolution. Additional contributions were made for example by [5–10] and more re-

cent discussions include [11–13] (see also [14]). However, a comprehensive understanding

from the “boundary to bulk” perspective of the relationship between RG and holography

still remains elusive, because of the lack of technology to control the RG flow of a generic,

strongly coupled conformal field theory (see [15, 16] for some progress in this direction.1)

1There have also been many other attempts at deriving holography from a boundary to bulk point of

view. See for instance [17–19].
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However, there exists a conjectured duality [20–22] between free vector models in

d = 2 + 1 and certain types of higher-spin theories on AdS4 constructed by Vasiliev (for

a detailed exposition of higher-spin theories using Vasiliev’s formalism, see for e.g., [23–

28]). A detailed check of the proposal at the level of three-point functions was carried

out in [27, 28] (see also [29, 30]). While the field theory side in this case is completely

under control, the bulk is a far more complicated, highly non-linear (and non-local) theory

involving fields of arbitrarily high spin propagating on AdS space. Nevertheless, one might

hope that this conjecture provides an accessible toy model for a “constructive” boundary

to bulk understanding of holography. Indeed, using the collective-field formalism for free

O(N)-vector models, it was demonstrated in a series of papers [31–34] that the boundary

degrees of freedom can be reorganized to obtain the Fronsdal equation [35, 36], to which the

Vasiliev equations reduce at the linearized level (see [37] for an RG-interpretation of this

contruction). The conjectured vector model/higher spin duality therefore seems the natural

playground to explore the relationship between holography and the renormalization group.

Indeed, following the initial proposal of [38] a holographic interpretation of the Wilson-

Polchinksi exact renormalization group equations [39] for vector models sourced by single-

trace operators was developed in [1, 2]. In the case of the U(N)-symmetric bosonic vector

model for instance, the bulk theory consists of two bi-local fields B(z; ~x, ~y) and P(z; ~x, ~y)

evolving on a one-higher dimensional bulk space endowed with a flat connection.2 By

convention, the boundary is located at z = ε, and the boundary values of B and P are

the source and vacuum expectation value (VEV), respectively, for the single-trace bi-local

operator O(~x, ~y) = φ∗m(~x)φm(~y) in the vector model. A point of great importance here is

that B and P coordinatize the bulk phase space,3 and as such bulk dynamics is encoded

in terms of radial evolution equations (namely Hamilton equations) for these fields. These

equations of motion take the geometric form (see section 2 for details)

D(0)
z B = B·∆B·B (1.1)

D(0)
z P = iN∆B − P·B·∆B −∆B·B·P (1.2)

In [2], it was further shown that the bulk action evaluated on-shell organizes in terms of

a Witten-diagram expansion, and precisely reproduces all the correlation functions of the

boundary CFT. One of the questions that was left unanswered in these papers was the

emergence of the Fronsdal equations for individual higher spin fields from equations (1.1)

and (1.2) at the linearized level — showing this is the main goal of the present paper. We

will demonstrate this cleanly in the case of odd boundary dimension, but we expect our

arguments to also go through in even dimensions with slight modifications.

There are two main obstacles to mapping the bulk equations derived from RG into

Fronsdal equations:

2Here ~x, ~y ∈ R1,d−1 are boundary spacetime events, and z is the running RG scale, which is interpreted

as the holographic radial direction.
3The boundary generating functional of connected correlators of the single-trace operators is then the

Hamilton-Jacobi functional for this system.
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(i) Equation (1.1) makes no reference to P and thus can be solved by itself; being a

first-order differential equation, how can the solutions look like general solutions of a

second-order differential equation?

(ii) The RG equations, even at the linearized order, are non-local (in the boundary di-

rections); how can these be equivalent to local bulk equations?

The resolution which will emerge below is as follows: B and P are merely a particular

choice of coordinates on the bulk phase space — the one that the field theory gives us,

and equations (1.1), (1.2) are the corresponding Hamilton evolution equations. But we

have the freedom to perform canonical transformations, without changing the physical

content of the system. We will show that we can use this freedom to resurrect the AdSd+1

Fronsdal equations in the bulk, i.e., there exists a canonical frame in which the linearized

RG equations are precisely equivalent to local, second order differential equations in the

bulk, namely the Fronsdal equations.

This result is in fact essentially guaranteed by group theory — this is because of the

fact that the Fronsdal equations simply express the quadratic Casimir [36] of a particular

lowest weight module of the conformal group O(2, d). In fact, a given higher spin current in

the field theory represents a specific conformal module of dimension ∆ and spin4 s. Because

the higher-spin currents are conserved at the free fixed point (or even at N =∞ at the in-

teracting fixed point), the module is short, with ∆ = d−2+s. The bi-local sources and vevs

(i.e., the boundary values of B and P) both consist of a direct sum of conformal modules

B(ε; ~x, ~y) ∈ ⊕∞s=0D(2− s, s), P(ε; ~x, ~y) ∈ ⊕∞s=0D(d− 2 + s, s) (1.3)

The holographic map is one-to-one between these boundary values and bulk fields, and

thus the bulk fields fill out a reducible representation ⊕∞s=0

(
D(2− s, s)⊕D(d− 2 + s, s)

)
.

The ‘diagonal’ form of (1.3) is present only at the boundary; the bulk dynamics mix to-

gether B(z; ~x, ~y) and P(z; ~x, ~y). The challenge is then to find the right “equivariant” map

between boundary RG and bulk dynamics (see [40] for a recent discussion of AdS/CFT

as an equivariant map between bulk and boundary representations). Interestingly, we can

accomplish this simply with a canonical transformation!

This paper is organized as follows: in section 2, we review the construction of refs. [1, 2].

In section 3, we review the form of the Fronsdal equations and express them in a gauge

fixed form that is most useful from the point of view of lowest weight modules of O(2, d). In

section 4, we demonstrate explicitly the canonical transformation between the linearized

renormalization group equations, and AdS Fronsdal equations. We will end with some

comments and general discussion in section 5.

2 Holography from the renormalization group

In order to be self-contained, we will review in this section some details of the holographic

dual to the free bosonic U(N) vector model constructed in [2].

4By spin s, we mean the irreducible traceless symmetric tensor representation with s indices of O(1, d−1).
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2.1 Free U(N) vector model

The action for the CFT is written in terms of N complex scalars

S0 = −
∫
dd~x φ∗m(~x)�(~x)φ

m(~x) (2.1)

where ~xµ ∈ R1,d−1, �(~x) = ηµν~∂µ~∂ν , and m = 1, 2 · · ·N is the U(N) index. The most

general U(N)-invariant “single-trace” deformations away from the free fixed point can be

incorporated by introducing the two bi-local sources B(~x, ~y) and Wµ(~x, ~y) as follows5

SBos. = −
∫
~x,~u,~y

φ∗m(~x)ηµνDµ(~x, ~u)Dν(~u, ~y)φm(~y) +

∫
~x,~y
φ∗m(~x)B(~x, ~y)φm(~y) (2.4)

where we have defined (for reasons which will become clear shortly)

Dµ(~x, ~y) = Pµ(~x, ~y) +Wµ(~x, ~y), Pµ(~x, ~y) = ~∂(x)
µ δd(~x− ~y) (2.5)

Given the “matrix” notation we have introduced above, we can define a product and a

trace between bi-locals as follows:

(f ·g)(~x, ~y) =

∫
~u
f(~x, ~u)g(~u, ~y) (2.6)

Tr (f) =

∫
~x
f(~x, ~x) (2.7)

We will largely use this notation from here on.

The sources B and Wµ that we have introduced above couple, respectively, to the

following bi-local operators

Π̂(~x, ~y) = φ∗m(~y)φm(~x), Π̂µ(~x, ~y) =

∫
~u

(
φ∗m(~y)Dµ(~x, ~u)φm(~u)−Dµ(~y, ~u)φ∗m(~u)φm(~x)

)
(2.8)

Note that Π̂µ(~x, ~y) can be interpreted as a bi-local current operator. There is an important

subtlety in defining U(N) singlet bi-local operators which should be pointed out — since

φm(~x) is a section of a U(N) vector bundle, the only natural contraction between φ∗m(~y)

and φm(~x) should involve a U(N) Wilson line. For instance,

Π̂(~x, ~y) = φ∗m(~y)
(
P e

∫ ~x
~y A

(0)
)m

n
φn(~x) (2.9)

where A(0) is a background U(N) connection. In this paper, we will not include the Wilson

lines explicitly; this is because we are assuming that the U(N) vector bundle is trivial,

5It should be apparent that by choosing the sources to be of the quasi-local form

B(~x, ~y) =

∞∑
s=0

Bµ1···µs(~x) ~∂µ1
(x) · · · ~∂

µs
(x)δ

d(~x− ~y) + · · · (2.2)

Wµ(~x, ~y) =

∞∑
s=0

Wµ;µ1···µs(~x) ~∂µ1
(x) · · · ~∂

µs
(x)δ

d(~x− ~y) + · · · (2.3)

we may source all the operators of interest, namely φ∗mφ
m, φ∗m~∂

µφm, φ∗m~∂
µ~∂νφm · · · . Such operators are

representative of specific conformal modules of spin s and dimension ∆ = d− 2 + s.
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which means that A(0) can be taken to be flat, and in particular we make the choice

A(0) = 0.

The (unregulated) generating function (or partition function) is obtained by performing

the path integral

ZCFT[U,B,W ] =

∫
[dφdφ∗] eiU+iSBos. (2.10)

where we have introduced a new source U (for the identity operator) to keep track of the

overall normalization.

2.2 Background symmetries

The path integration in (2.10) is over the set of all square integrable complex scalar func-

tions over the space-time R1,d−1, namely L2(R1,d−1). This space admits a natural action

of “unitary” maps L ∈ U(L2(R1,d−1)) (which we will henceforth refer to as U(L2) for

convenience)6

φ′
m

(~x) =

∫
~y
L(~x, ~y)φm(~y), L†·L(~x, ~y) = δd(~x− ~y) (2.11)

under which the path-integral measure is invariant. In fact, the path integral (2.22) has

U(L2) as a background symmetry, under which the sources Wµ and B transform like a

connection and an adjoint-valued field respectively:

W ′µ = L−1·Wµ·L+ L−1· [Pµ,L]· , B′ = L−1·B·L (2.12)

It was argued in [1], that the relevant geometry here is that of infinite jet bundles, i.e.,

Wµ is a connection 1-form on the infinite jet bundle over R1,d−1, while B is a section of

its endomorphism bundle. However, we will not need this language here. An important

consequence of the above symmetry is that the free fixed point can be reached by setting

B = 0 and Wµ = W
(0)
µ , where W

(0)
µ is any flat connection

dW (0) +W (0) ∧W (0) = 0 (2.13)

where d = dxµ [Pµ, ·]· is the exterior derivative. For this reason, we will find it convenient

to pull out a flat piece from the full source W and write it as

W = W (0) + Ŵ (2.14)

Indeed, it is Ŵ and B which represent arbitrary single-trace, tensorial deformations away

from the free-fixed point, and thus parametrize single-trace RG flows away from the free

CFT.

6If we consider an infinitesimal version of the above transformation L(~x, ~y) ' δ(~x−~y) + ε(~x, ~y), then the

U(L2) condition implies ε∗(~x, ~y) + ε(~y, ~x) = 0. For example, consider an ε of the form

ε(~x, ~y) = iξ(~x) δ(~x− ~y) + ξµ(~x) ~∂(x)
µ δ(~x− ~y) + iξµν(~x) ~∂(x)

µ
~∂(x)
ν δ(~x− ~y) + · · ·

where ξ, ξµ, ξµν · · · are all real. This satisfies the U(L2) condition provided ~∂µξ
µ = 0, ~∂µξ

µν = 0 and so on.

The first term above is an infinitesimal U(1) gauge transformation, the second term is a volume-preserving

diffeomorphism, while the rest are higher-derivative transformations.
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In addition to U(L2), we also have a dilatation symmetry. In order to make this

explicit, we introduce a conformal factor z in the background metric ηµν 7→ z−2ηµν , and

redefine the sources by rescaling them:

Bold = zd+2Bnew, Wold = zdWnew (2.15)

For simplicity, we will drop the subscripts new presently, and resurrect them when required.

With these changes, the action takes the form

SBos.[φ, z,B,W ] = − 1

zd−2

∫
~x,~u,~y

φ∗m(~x)Dµ(~x, ~u)Dµ(~u, ~y)φm(~y) +
1

zd−2

∫
~x,~y

φ∗m(~x)B(~x, ~y)φm(~y)

(2.16)

It is clear now that the action is invariant under

φm(~x) 7→ λ
d−2

2 φm(~x), z → λ z (2.17)

where λ is a constant (i.e., spacetime independent) scale factor — this larger symmetry

group will be referred to as CU(L2). More generally, we could consider arbitrary Weyl

transformations by making λ ~x-dependent, but we will not do so here. Looking ahead,

we note that µ ∝ 1/z will end up being the effective “renormalization scale”. Indeed, as

we will see in the following section, the renormalization group flow will be parametrized

by z. We will take z to lie within the range z ∈ [ε,∞), with z = ε corresponding to the

ultraviolet, and z →∞ corresponding to the infra-red.

Finally, there is one major redundancy in our description which we need to fix —

given the tensorial nature of Ŵµ, it is possible to set it to zero by redefining B (as can be

straightforwardly seen from equation (2.16))

B = B −
{
Ŵµ, D(0)

µ

}
·
− Ŵµ·Ŵµ (2.18)

This is a special property of the bosonic theory. We therefore arrive at the action

SBos. = − 1

zd−2

∫
~x,~u,~y

φ∗m(~x)ηµνD(0)
µ (~x, ~u)D(0)

ν (~u, ~y)φm(~y) +
1

zd−2

∫
~x,~y
φ∗m(~x)B(~x, ~y)φm(~y)

(2.19)

where

D(0)
µ (~x, ~y) = Pµ(~x, ~y) +W (0)

µ (~x, ~y) (2.20)

We now move on to describe the renormalization group flow of the boundary field theory,

and its holographic interpretation.

2.3 Renormalization group as holography

In order to study the renormalization group flow of the boundary field theory, we must

regulate the path integral. Following Polchinski’s formalism [39], we will do so by intro-

ducing a smooth cutoff function KF (s) which has the property that KF (s) → 1 for s < 1

and KF (s)→ 0 for s > 1. We thus write the new action as

Sreg.
Bos. = − 1

zd−2

∫
~x,~y

φ∗m(~x)K−1F

(
−z2D2

(0)/M
2
)
D2

(0)(~x, ~y)φm(~y) +
1

zd−2

∫
~x,~y

φ∗m(~x)B(~x, ~y)φm(~y)

(2.21)

– 6 –
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where D2
(0) = ηµνD

(0)
µ ·D(0)

ν , and M is an auxiliary scale.7 The particular choice of KF will

not be important in our discussion below — any sufficiently well-behaved cut-off function

will do. In [37], the validity of such a cut-off procedure for the purposes of holography

was questioned, because the cut-off is seemingly on the momenta of the fundamental U(N)

vectors, while only U(N) invariant singlets should actually be visible in the bulk. However,

we believe this objection is incorrect — the point is that the cut-off procedure we utilize

preserves the global U(N) symmetry, and this is sufficient to ensure that the truncation

to U(N) invariant, single-trace operators is a consistent truncation. As we will see below,

the RG equations are entirely written in terms of U(N) singlet data, and U(N) vectors are

indeed invisible in the bulk.

The regulated path integral is then given by

ZCFT[z;U,B,W ] =

∫
[dφdφ∗] eiU+iSreg.

Bos. (2.22)

It is clear that as we tune z from ε to ∞, the effective cutoff for the field theory decreases

from ΛUV = M
ε to zero. In Wilsonian renormalization, this is interpreted as progressively

integrating out fast modes. The partition function Z must therefore remain unchanged

under this process, and the effect of integrating out modes can be accounted for by making

the source B z-dependent. In this way, the exact RG equations are cast as exact Ward

identities of the background CU(L2) symmetry. We will label the bulk field B(z; ~x, ~y), to

indicate that it lives in the one-higher dimensional bulk space. Similarly, the vev Π(~x, ~y)

also evolves into a bulk field which we denote as P(z; ~x, ~y). B and P are in fact canonically

conjugate fields which coordinatize the bulk phase space. Finally, along the RG trajectory,

we also have the freedom to perform arbitrary U(L2) gauge transformations, and as a

result, the connection W (0) also evolves into a flat connection in the bulk, which we label

W(0) (the z-component of which keeps track of the gauge transformations along the flow).

The RG evolution equations are most conveniently obtained using Polchinski’s formulation

of the exact renormalization group [39]. We refer the reader to [2] for a detailed derivation;

we merely state the result here

F (0) = dW(0) +W(0) ∧·W(0) = 0 (2.23)

D(0)
z B = ∂zB +

[
W(0)
z ,B

]
·

= B·∆B·B (2.24)

D(0)
z P = ∂zP +

[
W(0)
z ,P

]
·

= iN∆B − P·B·∆B −∆B·B·P (2.25)

where d = dz∂z + d~xµ [Pµ, ·]· is the bulk exterior derivative, and the bi-local kernel ∆B is

defined as

∆B =
2z

M2
K̇F

(
− z2D2

(0)/M
2
)

(2.26)

7Note that this choice of regulator preserves the U(L2) symmetry. We used a slightly different regulator

in [1, 2]. The present choice is somewhat more convenient — the differences are merely notational, and

not physical.
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with K̇F (s) = ∂sKF (s).8 We note that ∆B defines a regulated or smeared version of the

·-product between bi-locals (see footnote 9).

Most importantly, the above equations are in fact the Hamilton equations of motion

for the bulk Hamiltonian

Hbulk = Tr P·
( [

B,W(0)
z

]
·
+ B·∆B·B

)
− iNTr ∆B·B (2.27)

which in fact satisfies the Hamilton-Jacobi relation

Hbulk = −i ∂
∂z

ln ZCFT (2.28)

This is the central observation which leads to a holographic interpretation of the renormal-

ization group equations with z interpreted as the bulk radial coordinate. We can use the

above Hamiltonian to construct a bulk action9

Sbulk[ε;B,P] =

∫ ε

∞
dz Tr

(
P·D(0)

z B− P·B·∆B·B
)

+ iN

∫ ε

∞
dz Tr (∆B·B) (2.29)

Solving the bulk equations of motion with the boundary conditions

B(ε; ~x, ~y) = b(0)(~x, ~y), lim
z→∞

P(z; ~x, ~y) = 0 (2.30)

one can obtain the bulk action on-shell. It turns out that the on-shell action organizes itself

in terms of a Witten-diagram expansion (see figure 1), and indeed, precisely reproduces

the generating function of connected correlators in the boundary field theory [2]

ZCFT[ε; b(0)] = eiS
o.s
bulk[ε,b(0)] (2.31)

which is of course the statement of holographic duality.

One must note that the bulk theory contains all multi-point interactions, and these are

non-local. Of course the reason for this is that we have organized an infinite number of mass-

less fields in the bulk into a bi-local form. Any theory containing an infinite number of mass-

less fields should be thought of as non-local and so this should come as no surprise. The aim

of the rest of the paper will be to isolate the propagating fields of fixed spin; the first such

task will be to reproduce the Fronsdal equations in AdS space from equations (2.24), (2.25).

Before proceeding, we present a brief overview of Fronsdal equations in AdS space.

8A convenient choice of regulator which we will use for computations in appendix B is the exponential

cutoff KF (s) = e−s. In this case, the kernel ∆B is proportional to the heat kernel for the operator D2
(0):

∆B = − 2z
M2 e

z2

M2D
2
(0) . In the limit z → 0, ∆B(z; ~x, ~y)→ − 2z

M2 δ
d(~x− ~y).

9The kernel ∆B(z; ~x, ~y) defines a new regulated product, and a regulated trace between bilocals:

f ∗ g(~x, ~y) =

∫
~u,~v

f(~x, ~u)∆B(~u,~v)g(~v, ~y)

Tr∗(f) =

∫
~x,~y

∆B(~x, ~y)f(~y, ~x)

If we define B̃ = ∆−1
B ·P·∆−1

B , then the action takes the neater form

Sbulk =

∫ ε

∞
dz Tr∗

(
B̃ ∗ D(0)

z B− B̃ ∗B ∗B
)

+ iN

∫ ε

∞
dz Tr∗(B)

which is strikingly similar to non-commutative Chern-Simons action.

– 8 –
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Figure 1. The holographic Witten diagrams corresponding to the boundary one, two and three

point functions. The radial lines are in/out-going Wilson lines for the flat connection W(0), while

horizontal lines correspond to ∆B . Note that the boundary loops are “pulled-in” into bulk vertices.

3 The Fronsdal equation

The Fronsdal higher spin theory in AdS space is described by symmetric tensors ϕI1...In
which satisfy the double-tracelessness conditions ϕ′′I5...In ≡ gI1I2gI3I4ϕI1...In = 0. Here the

bulk coordinate indices run over the boundary coordinate indices µ = 0, 1, . . . , d − 1 and

the radial direction z, i.e., I = (µ, z). The equations of motion are explicitly

∇I∇IϕI1...In−n∇I∇(I1ϕI2...In)
I+

1

2
n(n−1)∇(I1∇I2ϕI3...In)I

I−2(n−1)(n+d−2)ϕI1...In = 0

(3.1)

where the indices I1, · · · In should be taken to be symmetrized as indicated by parentheses.

These equations are invariant under the gauge transformations

δΛϕI1...In = ∇(I1ΛI2...In) (3.2)

where ∇ is the AdSd+1 covariant derivative and the symmetric gauge parameters ΛI2...In

satisfy the single-tracelessness conditions gI2I3ΛI2...In ≡ Λ′I4...In = 0. For n = 1, equa-

tion (3.1) is the familiar Maxwell’s equation, while for n = 2 it is the linearized Einstein’s

equation.

Such a presentation of the higher spin equations is inconvenient in the present context.

We wish to isolate specific (lowest weight) representations of O(2, d); such representations

are given by irreducible spin-s representations of SO(1, d − 1). We can accomplish this

by appropriately fixing the gauge invariance. Many different choices of gauge have been

considered in the literature, but the appropriate one here is the “Coulomb gauge”10

ϕz . . . z︸ ︷︷ ︸
m

µ1...µs = 0, ∂µϕµµ1...µs = 0 ∀m > 0, ∀s (3.3)

In addition, in order to have an irreducible SO(1, d − 1) representation, we require

ϕµµµ1...µs−2 = 0. In this gauge, the equations of motion reduce to[
z2∂2

z + (2s− d+ 1)z∂z + s(s− d) + (2− s)(s+ d− 2) + z2�(~x)

]
ϕµ1...µs(z, ~x) = 0 (3.4)

10The terminology “gauge” is somewhat incorrect in this context — what is being said really, is that

the fields with z-indices ϕz···zµ1···µk are non-dynamical, in the sense that they do not contribute to the

symplectic structure.
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where �(~x) = ηµν~∂µ~∂ν . In appendix A, we will discuss this gauge in some more detail.

However, it is illuminating to obtain equation (3.4) directly from the AdS/CFT point of

view, as a statement about the matching of quadratic Casimirs between the bulk and

boundary representations [36]. Starting from the CFT, consider a local, symmetric, trace-

less, spin s, quasi-primary operator Ôa1...as(0) of dimension ∆ in the boundary CFT (where

ak = 0, · · · d− 1 are boundary indices). Such an operator satisfies (by definition)[
Ka, Ôa1...as(0)

]
= 0 (3.5)[

Mab, Ôa1...as(0)
]

= Σab(Ôa1...as(0)) = −isηa(a1
Ôa2...as)b(0) + isηb(a1

Ôa2...as)a(0) (3.6)[
D, Ôa1...as(0)

]
= −i∆Ôa1...as(0) (3.7)

where Σab is the appropriate spin matrix. The quadratic Casimir of the conformal group

is given by

C
O(2,d)
2 = −D2 +

1

2
MabM

ab − 1

2
{Pa,Ka} (3.8)

From equations (3.5) and (3.8), we find straightforwardly11[
C
O(2,d)
2 , Ôa1...as(~x)

]
=
(
−∆(d−∆) + s(s+ d− 2)

)
Ôa1...as(~x) (3.9)

Now the corresponding bulk field ϕa1···as of course must have the same value for the

Casimir, as it transforms in the corresponding dual AdS representation. We note that

O(2, d) is represented in the bulk as

[D,ϕa1...as(z, ~x)] = i~xa [Pa, ϕa1...as(z, ~x)] + iz∂zϕa1...as(z, ~x)

[Mab, ϕa1...as(z, ~x)] = i~xa [Pb, ϕa1...as(z, ~x)]− i~xb [Pa, ϕa1...as(z, ~x)] + Σab(ϕa1...as)(z, ~x)

[Ka, ϕa1...as(z, ~x)] = −i(2~xa~xb − (~x2 + z2)δba) [Pb, ϕa1...as(z, ~x)]− i2~xaz∂zϕa1...as(z, ~x)

−2~xbΣab(ϕa1...as)(z, ~x)

[Pa, ϕa1...as(z, ~x)] = i~∂aϕa1...as(z, ~x)

In this bulk representation, we then have[
C
O(2,d)
2 , ϕa1...as(z, ~x)

]
= z2∂2

zϕa1...as(z, ~x)) + (−d+ 1)z∂zϕa1...as(z, ~x) (3.10)

+s(s+ d− 2)ϕa1...as(z, ~x)− z2 [P a, [Pa, ϕa1...as(z, ~x)]]

But from the CFT calculation, we know that C
O(2,d)
2 = −∆(d−∆)+s(s+d−2); therefore,

requiring that the two Casimirs agree gives us

z2∂2zϕa1...as(z, ~x)+(−d+1)z∂zϕa1...as(z, ~x)+∆(d−∆)ϕa1...as(z, ~x)+z2 [P a, [Pa, ϕa1...as(z, ~x)]] = 0

(3.11)

To compare this with equation (3.4), we simply note that in the bulk representation, the

a, b, . . . indices must be interpreted as those corresponding to a local frame, as it is in that

11This result is independent of the spacetime location ~x of the operator, because the quadratic Casimir

commutes with translations. Equivalently, every element of the conformal module of course shares the same

value of the Casimir.
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case that O(1, d − 1) acts in the simple fashion stated. Converting to coordinate indices,

ϕa1...as(z, ~x) becomes zsϕµ1...µs(z, ~x). Inserting this in the above equation gives[
z2∂2

z + (2s− d+ 1)z∂z + s(s− d) + ∆(d−∆) + z2�(~x)

]
ϕµ1...µs(z, ~x) = 0 (3.12)

In the case when the boundary operator is in a short representation, i.e., Ôa1···as is a

conserved current, we have ∆ = s+ d− 2, and so this becomes[
z2∂2

z + (2s− d+ 1)z∂z + s(s− d) + (2− s)(s+ d− 2) + z2�(~x)

]
ϕµ1...µs(z, ~x) = 0

(3.13)

in agreement with (3.4). So we conclude that indeed the linearized higher spin equations

simply state the value of the Casimir of the appropriate conformal module. Consequently,

it must be that eqs. (2.24)–(2.25) should yield the Fronsdal equations. In the rest of the

paper, we proceed to show this explicitly.

4 From Wilson-Polchinski to Fronsdal

Let us now embark on our main goal of reproducing the AdS-Fronsdal equations from the

Wilson-Polchinksi exact renormalization group equations:

D(0)
z B = B·∆B·B (4.1)

D(0)
z P = iN∆B − P·B·∆B −∆B·B·P (4.2)

In particular, we want to study the above equations upon linearizing about the background

B = 0, P = P(0) (4.3)

where P(0) satisfies D(0)
z P(0) = iN∆B. Clearly, this background is a solution of the equa-

tions (4.1) and (4.2), albeit the trivial one which corresponds to the unperturbed boundary

CFT. We introduce an auxiliary expansion parameter λ and write12

B(z; ~x, ~y) = λ b1(z; ~x, ~y) +O(λ2), P(z; ~x, ~y) = P(0)(z; ~x, ~y) + λ p1(z; ~x, ~y) +O(λ2) (4.4)

At linear order in λ, we thus obtain the equations

D(0)
z b1 = 0 (4.5)

D(0)
z p1 = −P(0)·b1·∆B −∆B·b1·P(0) (4.6)

Also recall, that these equations were written for the “new” fields defined in (2.15). We

now revert back to the “old” fields by restoring the appropriate powers of z:

bnew
1 =

1

zd+2
bold

1 , pnew
1 =

1

zd−2
pold

1

With this replacement, we get

D(0)
z bold

1 =
(d+ 2)

z
bold

1 (4.7)

12This is where large N plays an important role because such an expansion exists in practice only at large

N , with 1/N providing the expansion parameter.
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D(0)
z pold

1 =
d− 2

z
pold

1 −
1

z4

(
P(0)·bold

1 ·∆B + ∆B·bold
1 ·P(0)

)
(4.8)

In the rest of the paper, we will restrict our attention to the case of odd boundary dimension

d, with brief comments about even d towards the end.

4.1 Spin-zero

For simplicity, let us practice with the spin s = 0 case first, before moving on to the

arbitrary spin case. In other words, we turn on bulk fields which are dual to the s = 0

operator J (0)(~x) =: φ∗mφ
m : (~x) in the boundary field theory. To that effect, we take13

bold
1 (z; ~x, ~y) = φ(z, ~x)

(
zdδd(~x− ~y)

)
(4.9)

π(z, ~x) =
1

N
lim
~x→~y

pold
1 (z; ~x, ~y) =

1

N
〈J (0)〉1(z, ~x) (4.10)

The above projection onto local fields is consistent only because we are working at the

linearized level, where the different spins are decoupled in the bulk (as we will see explicitly

below). Note that the operator J (0)(~x) above is “normal ordered” with respect to the free

CFT, meaning

J (0)(~x) = lim
~y→~x

(
φ∗m(~x)φm(~y)− 〈φ∗m(~x)φm(~y)〉CFT

)
(4.11)

and the subscript 〈J (0)〉1 in equation (4.10) stands for linearized order in α. The linearized

equations of motion (4.7), (4.8) become

z∂zφ(z, ~x) = ∆− φ(z, ~x) (4.12)

z∂zπ(z, ~x) = ∆+π(z, ~x)− z2ν+1

∫
~u

1

N

(
P(0)(z; ~x, ~u)∆B(z; ~u, ~x) + ∆B(z; ~x, ~u)P(0)(z; ~u, ~x)

)
φ(z, ~u) (4.13)

where we have defined

∆+ = d− 2, ∆− = 2, ∆+ −∆− = 2ν (4.14)

To simplify the notation somewhat, we rewrite the above equations in the compact form

z∂zφ(z, ~x) = ∆− φ(z, ~x) (4.15)

z∂zπ(z, ~x) = ∆+π(z, ~x) +
z2ν

2

∫
dd~u Ġ(0,0)(z; ~x, ~u)φ(z, ~u) (4.16)

where the meaning of Ġ(0,0) will become clear shortly. These equations of motion come

from the linearized action

S
(2)
bulk =

∫ ∞
ε

dzdd~x

zd+1

(
π(z, ~x)z∂zφ(z, ~x)−∆−π(z, ~x)φ(z, ~x)+

∫
dd~y

z2ν

4
φ(z, ~x)Ġ(0,0)(z; ~x, ~y)φ(z, ~y)

)
(4.17)

A convenient way to keep track of the boundary condition on φ(z, ~x) at z = ε is to add the

boundary term

Sbdry =
1

εd

∫
dd~x π(ε, ~x)

(
φ(ε, ~x)− ε∆−φ(0)(~x)

)
(4.18)

13Here the bulk field φ(z, ~x) should not be confused with the elementary scalar φm(~x) of the boundary

field theory.
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to the action. Our aim now is to show that equations (4.15), (4.16) are completely equiv-

alent to the Fronsdal equation for spin s = 0.

As mentioned in the introduction, there are two main obstacles we must confront:

(i) a confusing property of the above action (and the corresponding Hamiltonian) is the

absence of a π2 term. Naively, this gives the impression of a lack of any interesting

dynamics. Another manifestation of this problem is that the field φ seems to satisfy an

ultra-local first order equation, which is obviously not true of the usual bulk fields in

AdS/CFT. (ii) The other problem is that the π equation of motion seems non-local, due

to the presence of the bilocal kernel Ġ(0,0).

To resolve these issues, we must remember that we’re in a phase space formulation —

φ and π are coordinates on the bulk phase space, with the symplectic structure14

Ω(z) =

∫
dd~x

zd
δφ(z, ~x) ∧ δπ(z, ~x) (4.19)

In the specific symplectic frame coordinatized by φ and π, φ(z, ~x) is fixed through (4.15)

by its boundary value, and π(z, ~x) contains all of the information about the renormalized

2-point function of the current. Indeed, it is straightforward to see from equations (4.13)

and (4.16) that if we define

G(0,0)(z; ~x, ~y) =
2i

N

〈
J (0)(~x)J (0)(~y)

〉
CFT,Mink

(z) (4.20)

then

Ġ(0,0)(z; ~x, ~y) =
2i

N
z∂z

〈
J (0)(~x)J (0)(~y)

〉
CFT,Mink

(z), (4.21)

where the correlator is defined in the regulated CFT on Minkowski space, with the cut-off

procedure described in section 2 (see appendix B.1 for more details).

An essential feature of the phase space formulation is that we have the freedom to per-

form canonical (symplectic) transformations, which are field redefinitions (i.e., coordinate

transformations on phase space) which leave the symplectic 2-form unchanged. Consider

for instance, a general linear transformation on phase space

φ = A·ϕ+B·$
π = C·ϕ+D·$ (4.22)

for general bi-local kernels A,B,C,D. The requirement that the symplectic 2-form be

preserved, namely∫
dd~x

zd
δφ(z, ~x) ∧ δπ(z, ~x) =

∫
dd~x

zd
δϕ(z, ~x) ∧ δ$(z, ~x) (4.23)

leads to the constraints

AT ·C = CT ·A, DT ·B = BT ·D (4.24)

AT ·D − CT ·B = 1 (4.25)

14We use bold symbols δφ, δπ etc. to denote differential 1-forms on the phase space.
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For simplicity (and because this suffices for our purpose), we will restrict our attention to

the case where A,B,C,D are symmetric, and translationally and rotationally invariant.

In this case, the constraints (4.24) are automatically satisfied, and we only have to satisfy

the constraint (4.25).

To avoid unnecessary complications, we begin by choosing a simpler canonical

transformation15

φ(z, ~x) = ϕ(z, ~x) +
2δ

z2ν

∫
~y
Ġ−1

(0,0)(z; ~x, ~y)$(z, ~y)

π(z, ~x) = $(z, ~x) (4.26)

for some constant δ to be fixed later. This ansatz clearly satisfies all of the constraints

(because Ġ−1
(0,0) is a symmetric kernel), and is therefore a canonical transformation. We

will presently show that for a specific choice of δ, the field ϕ satisfies the spin-zero AdSd+1

Fronsdal equation, up to higher-derivative corrections (i.e., up to O(z4~∂4) terms). We

will later show that these higher derivative terms can in fact be systematically eliminated

by a more sophisticated choice of the canonical transformation, but we postpone that

discussion to section 4.3.

Substituting equation (4.26) into (4.17), the action in terms of the new fields becomes

S
(2)
bulk =

∫
dz

z

(
1

zd
$· (z∂zϕ− (∆− − δ)ϕ) +

2δ

zd
$·z∂z

(
z−2νĠ−1

(0,0)·$
)

−(2∆− − δ)δ
zd+2ν

$·Ġ−1
(0,0)·$ +

1

4zd−2ν
ϕ·Ġ(0,0)·ϕ

)
(4.27)

where we have switched to the ·-product notation for convenience. Let us focus on the

second term above:

2nd term = −4νδ

∫
dz

z

1

zd+2ν
$·Ġ−1

(0,0)·$ + 2δ

∫
dz

z

1

zd+2ν
$·z∂z

(
Ġ−1

(0,0)·$
)

= −4νδ

∫
dz

z

1

zd+2ν
$·Ġ−1

(0,0)·$ + 2δ

∫
dz

1

zd+2ν
$·
(
∂z(Ġ

−1
(0,0))·$ + Ġ−1

(0,0)·∂z$
)

= δ(d− 2ν)

∫
dz

z

1

zd+2ν
$·Ġ−1

(0,0)·$ + δ

∫
dz

z

1

zd+2ν
$·z∂z(Ġ−1

(0,0))·$

− δ

εd+2ν
$·Ġ−1

(0,0)·$
∣∣∣
z=ε

(4.28)

where in the last line we have integrated by parts with respect to z. Putting everything

together, we get the bulk action

S
(2)
bulk =

∫
dz

zd+1

(
$·z∂zϕ−(∆−−δ)$·ϕ+

1

z2ν
$·
[
δ2Ġ−1(0,0) + δz∂z(Ġ

−1
(0,0))

]
·$+

1

4z−2ν
ϕ·Ġ(0,0)·ϕ

)
(4.29)

15A similar transformation also appeared in [16], although higher-derivative corrections were not under

control in that case. We also note that in the quantum RG formulation of [16], canonical transformations

are simply changes of integration variables in the bulk path-integral, which leave the measure invariant.
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Evidently, the new action has a $2 term in it, as opposed to the previous version. Of course,

the integration by parts we have performed above also produces a new boundary term

δSbdry = − δ

zd+2ν
$·Ġ−1

(0,0)·$
∣∣∣
z=ε

(4.30)

This boundary term has a clear interpretation from the bulk point of view — it is the

generating function for the canonical transformation. From the boundary point of view,

it appears to be a multi-trace deformation. We will return to the boundary terms shortly.

In order to proceed, we need to examine the various bi-local kernels appearing in

the above equations. The kernel Ġ(0,0) admits an asymptotic expansion of the form (see

appendix B)

Ġ(0,0)(z; ~x, ~y) = − C

z2ν

(
1 + αz2�(~x) + · · ·

)
δd(~x− ~y) (4.31)

Ġ−1
(0,0)(z; ~x, ~y) = −z

2ν

C

(
1− αz2�(~x) + · · ·

)
δd(~x− ~y) (4.32)

where α > 0 and C are (dimensionful) constants, which are evaluated in the appendix.

While the numerical values of these constants are irrelevant, the positivity of α is im-

portant in the present discussion for the bulk metric to have the correct signature. The

ellipsis above indicate higher-derivative terms, which we will address in section 4.3, because

presently our aim is to obtain a two-derivative action. An intuitive way to understand the

above expansions is as follows: in any CFT, the two point function of a given operator

is universally determined by conformal invariance. Ambiguities which arise upon intro-

ducing a regulator come in the form of local counterterms — equations (4.31) and (4.32)

parametrize precisely such counterterms.

The $2 term in the action simplifies to

1

C

∫
dzdd~x

zd+1
$(z, ~x)

(
− δ(δ + 2ν) + αδ(δ + 2ν + 2)z2�(~x) + · · ·

)
$(z, ~x) (4.33)

where again the ellipsis indicates higher-derivative terms. To see that the action (4.29) gives

rise to the spin-zero AdSd+1-Fronsdal equation, we write down the equations of motion:

z∂zϕ− (∆− − δ)ϕ =
2δ

C

(
(2ν + δ)$ − α(2ν + δ + 2)z2�~x$ + . . .

)
(4.34)

−z∂z$ + (∆+ + δ)$ =
C

2

(
ϕ+ αz2�(~x)ϕ+ · · ·

)
(4.35)

Combining these two equations into a second order differential equation, we get (up to

O(z4~∂4) terms)

z∂z(z∂zϕ)− dz∂zϕ+ ∆−∆+ϕ− 2αδz2�(~x)ϕ = −4αδ(2ν + δ + 2)

C
z2�~x$ + · · · (4.36)

We see that the right-hand side of (4.36) can be removed (and thus is of order z4~∂4) with

the choice δ = −(2ν + 2). (Equivalently, the second term on the right hand side of (4.34)

drops out with this choice of δ.) Further, by rescaling the ~x coordinates, we can set the
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coefficient −2αδ = 2α(2ν + 2) > 0 of the �(~x) term to one. We thus recognize the above

equation as the Fronsdal equation for spin s = 0

z∂z(z∂zϕ)− dz∂zϕ+ ∆−∆+ϕ+ z2�(~x)ϕ = 0 (4.37)

up to higher order corrections. As expected, the scalar mass is given by

(mL)2 = −∆−∆+

Note that the particular value for δ is picked out by the requirement that the spurious

term on the right hand side of equation (4.36) cancels out. Since δ was the parameter

in the symplectic transformation (4.26), we see here the first indication that a symplectic

transformation is capable of removing spurious higher order terms, and we will see in

section 4.3 that this can be done systematically to all orders.

At the level of the action, we obtain

S
(2)
bulk =

∫
dzdd~x

zd+1

(
$z∂zϕ− d$ϕ−

2(2 + 2ν)

C
$2 − C

4

(
ϕ2 + αz2ϕ�(~x)ϕ

)
+ · · ·

)
(4.38)

Solving for the $ equation of motion, and plugging it back into the action straightforwardly

gives the action (once again up to higher derivative terms)16

S
(2)
bulk = k

∫
dzdd~x

zd+1

(
z∂zϕ z∂zϕ− z2ϕ �(~x)ϕ+ (mL)2ϕϕ

)
+ · · · (4.39)

where k is some dimensionful constant.

Having established the bulk action and equations of motion, now let us turn our

attention to the boundary terms. Combining equations (4.18) and (4.30), we find that the

boundary action is given by

Sbdry =
1

εd

∫
dd~x $(ε, ~x)

(
ϕ(ε, ~x)− ε∆−φ(0)(~x)

)
− δ

Cεd

∫
dd~x $(ε, ~x)

(
1 +O(ε2)

)
$(ε, ~x)

(4.40)

This gives rise to the boundary condition

ϕ− 2δ

C
$ = ε∆−φ(0)

(
1 +O(ε2)

)
(4.41)

which upon using the $ equation of motion gives

(z∂z −∆+)ϕ = 2ε∆−φ(0)
(
1 +O(ε2)

)
(4.42)

As usual, as a consequence of the equation of motion (4.36), ϕ behaves asymptotically as

ϕ(z, ~x) = z∆+ϕ(+)(~x)
(
1 +O(z2)

)
+ z∆−ϕ(−)(~x)

(
1 +O(z2)

)
(4.43)

and the above boundary condition then becomes

ϕ(−)(~x) = −1

ν
φ(0)(~x) (4.44)

16We also generate an extra boundary term which can be removed by a boundary counterterm, as a part

of holographic renormalization.
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which is the appropriate boundary condition up to a trivial rescaling. For instance in

d = 2 + 1, we have thus correctly found that the bulk field comes with the “alternate

quantization” as expected.

Having warmed up with the spin-zero case, we now generalize the discussion at two lev-

els — in the next section, we repeat the above exercise for general spin, which will allow us to

reproduce the spin-s Fronsdal equation in AdSd+1 (once again up to O(z4~∂4) corrections).

Then in section 4.3, we revisit the higher derivative corrections we have been neglecting,

and show how to eliminate them systematically. This will complete our argument that the

bulk equations obtained from RG are canonically equivalent to AdS Fronsdal equations.

4.2 Higher spins

Moving onto the higher-spin case, we now want to recover the Fronsdal equation for ar-

bitrary spin. As we will show, the computation proceeds in essentially the same way as

the s = 0 case. Going back to the RG equations (4.7) and (4.8), we now wish to turn on

bulk fields which are related to the conserved, symmetric and traceless spin-s current in

the boundary field theory schematically denoted

J
(s)
µ1···µs(~x) = : φ∗m fµ1···µs(

←−
∂ ,
−→
∂ )φm : (~x)

where fµ1···µs(~u,~v) is a homogenous, symmetric polynomial of order s in ~u and ~v, which is

symmetric and traceless in all of its indices. To this end, we choose

bold
1 (z; ~x, ~y) = zsφµ1···µs(z, ~x)fµ1···µs(~∂(x), ~∂(y))

(
zdδd(~x− ~y)

)
(4.45)

πµ1···µs(z, ~x) =
1

N
lim
~x→~y

z−s fµ1···µs(~∂(x), ~∂(y))p
old
1 (z; ~x, ~y) =

1

N
〈Jµ1···µs

(s) 〉1(z, ~x) (4.46)

When the current Jµ1···µs
(s) is conserved in the boundary theory, it is clear that the boundary

value φ
(0)
µ1···µs of the source φµ1···µs is defined only modulo the gauge transformation

δφ
(0)
µ1···µs(~x) = ~∂(µ1

ε
(0)
µ2···µs)(~x) (4.47)

This is of course a manifestation of the U(L2) gauge symmetry at the linearized level. Fur-

thermore, since J(s) is traceless, only the traceless part of the boundary source is relevant.

We can use these considerations to our advantage by making the gauge choice

~∂µφ
(0)
µµ2···µs = 0, ηµ1µ2φ

(0)
µ1···µs = 0 (4.48)

For brevity, we introduce the notation µ
s
≡ µ1 · · ·µs. The equations of motion (4.7), (4.8)

in the present case are given by

z∂zφµ
s
(~x) = ∆− φµ

s
(~x) (4.49)

z∂zπ
µ
s(~x) = ∆+π

µ
s(~x) +

z2ν

2

∫
dd~u Ġ

µ
s
,νs

(s,s) (z, ~x, ~u)φνs(~u) (4.50)

where

∆+ = d− 2 + s, ∆− = 2− s, 2ν = ∆+ −∆− = d− 4 + 2s (4.51)
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The kernel in eq. (4.50) can be identified with

G
µ
s
,νs

(s,s) (z; ~x, ~y) =
2i

N

〈
Jµ1···µs

(s) (~x)Jν1···νs
(s) (~y)

〉
CFT,Mink

(z) (4.52)

Ġ
µ
s
,νs

(s,s) (z; ~x, ~y) = z∂zG
µ
s
,νs

(s,s) (z; ~x, ~y) (4.53)

where the correlator is defined in the regulated CFT on Minkowski space. To avoid clut-

tering the notation, we will drop the subscript (s, s) on these kernels henceforth.

Remarkably, the equations of motion are compatible with the gauge choice on the

boundary, which implies that we can take the bulk fields (or more precisely, on-shell bulk

fields) to satisfy the same gauge conditions

~∂µφµµ2···µs = 0 = ~∂µπ
µµ2···µs , ηµ1µ2φµ1···µs = 0 = ηµ1µ2π

µ1···µs (4.54)

This choice of (on-shell) gauge is once again the higher-spin Coulomb gauge (see appendix

A) at the level of RG. The above equations of motion come from the action

S
(2)
bulk =

∫
dzdd~x

zd+1

(
πµs(z, ~x)z∂zφµ

s
(z, ~x)−∆−π

µ
s(z, ~x)φµ

s
(z, ~x) +

z2ν

4
φµ

s
(z, ~x)Ġµs

,νs(z; ~x, ~y)φνs(z, ~y)

)
(4.55)

along with the boundary action

Sbdry =
1

εd

∫
dd~x πµs(ε, ~x)

(
φµ

s
(ε, ~x)− ε∆−φ(0)

µ
s

(~x)
)

(4.56)

Let us pause briefly to explain why the higher-spin Coulomb gauge simplifies the

analysis significantly. As before, the kernel Ġµs,νs admits an asymptotic expansion, which

in general is complicated because of the index structure. But precisely in this gauge (4.54),

we see from the action above that the index structures become irrelevant; the only part of

the kernels which survive in the action take the generic form

Ġµs,νs(~x, ~y) = −Csz−2ν
(
1 + αsz

2�(~x) + · · ·
)
η〈µ1〈ν1 · · · ηµs〉νs〉 δd(~x− ~y) (4.57)

Ġ−1
µ
s
,νs

(~x, ~y) = −z
2ν

Cs

(
1− αsz2�(~x) + · · ·

)
η〈µ1〈ν1

· · · ηµs〉νs〉 δd(~x− ~y) (4.58)

where αs > 0 and Cs are (dimensionful) constants (see appendix B).17 The notation

〈µ1 · · ·µs〉 denotes the symmetrized traceless combination, and the ellipsis above indicate

higher-derivative terms.

Moving on, we now perform the canonical transformation

φµ
s
(z, ~x) = ϕµ

s
(z, ~x) +

2δ

z2ν

∫
~y
Ġ−1
µ
s
,νs

(z; ~x, ~y)$νs(z, ~y)

πµs(z, ~x) = $µ
s(z, ~x) (4.59)

17While in the present discussion αs > 0 is required for the bulk metric to have the correct signature, one

could imagine having a cut-off function where this condition is not satisfied. The more general argument

of section 4.3 will show that this condition (namely αs > 0) is not actually necessary — it is merely an

artifact of the simple-minded canonical transformation we have chosen here.
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for some constant δ to be fixed later. This canonical transformation preserves the higher-

spin Coulomb gauge condition ~∂µϕµµ2···µs = 0, ηµ1µ2ϕµ1···µs = 0, as can be easily checked.

In terms of the new fields, the action becomes

S
(2)
bulk =

∫
dz

zd+1

(
$µ

s·z∂zϕµ
s
−(∆−−δ)$µ

s·ϕµ
s
+

1

z2ν
$µ

s·
[
δ2Ġ−1

µ
s
,νs

+δz∂zĠ
−1
µ
s
,νs

]
·$νs

+
1

4z−2ν
ϕµ

s
·Ġµs,νs·ϕνs

)
(4.60)

Sbdry =
1

εd

∫
dd~x $µ

s(x)
(
ϕµ

s
(~x)− ε∆−φ(0)

µ
s

(~x)
)
− δ

εd+2ν
$µ

s·Ġ−1
µ
s
,νs

·$νs

∣∣∣
z=ε

(4.61)

Substituting equations (4.57) and (4.58) into the above action, we find that the $2 term

in the action becomes

1

Cs

∫
dzdd~x

zd+1
$µ

s(z, ~x)
(
− δ(δ + 2ν) + αsδ(δ + 2ν + 2)z2�(~x) + · · ·

)
$µ

s
(z, ~x) (4.62)

As in the s = 0 case above, choosing δ = −(2ν + 2) will ensure that the $�(~x)$ term

drops out, and the full bulk action then becomes

S
(2)
bulk =

∫
dzdd~x

zd+1

(
$µ

sz∂zϕµ
s
− (d+ s) $µ

sϕµ
s
− 1

Cs
2(∆+ + s) $µ

s$µ
s

−Cs
4
ϕµ

s

(
1 + αsz

2�(~x)

)
ϕµs

)
+ · · · (4.63)

The equations of motion for this action are now

z∂zϕµ
s
− (d+ s) ϕµ

s
=

2

Cs
2(∆+ + s)$µ

s
+ · · · (4.64)

−z∂z$µ
s − s$µ

s =
Cs
2

(
1 + αs

z2

M2
�(~x)

)
ϕµs + · · · (4.65)

Combining these two equations into a second order differential equation, we get (up to

higher derivative terms)

z∂z

(
z∂zϕµ

s

)
− d z∂zϕµ

s
+ `2sz

2�(~x)ϕµ
s
− s(s+ d)ϕµ

s
+ 2(∆+ + s)ϕµ

s
= 0 (4.66)

where `2s = 2(∆++s)αs
M2 is a positive constant. As before, `s can be set equal to one, by

rescaling the boundary coordinate ~x. Finally, in order to put the above equation in the

standard Fronsdal form, we redefine

ϕµ
s

= zsϕ̂µ
s

(4.67)

We note that this is not an arbitrary redefinition, but corresponds to going from frame

indices to coordinate indices. Having done so, the above equation in terms of ϕ̂µ
s

becomes

z∂z

(
z∂zϕ̂µ

s

)
+ (2s− d) z∂zϕ̂µ

s
+ z2�(~x)ϕ̂µ

s
+ [s(s− d) + ∆+∆−] ϕ̂µ

s
= 0 (4.68)
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which is precisely the Fronsdal equation in the higher-spin Coulomb gauge (see equa-

tion (3.4)). It is worth pointing out that in the special case s = 1 this is the familiar

Maxwell’s equation in AdS space written in Coulomb gauge, and the Hamiltonian obtained

from equation (4.63) can be cast in the form ~E2 + ~B2. Similarly, in the case s = 2 the above

equation is the Einstein’s equation linearized about AdS space, in the s = 2 Coulomb gauge.

Finally, we revisit the boundary action

Sbdry =
1

εd

∫
dd~x $µ

s(ε, ~x)
(
ϕµ

s
(ε, ~x)− ε∆−φ(0)

µ
s

(~x)
)
− δ

Csεd

∫
dd~x $µ

s(ε, ~x)
(
1 +O(ε2)

)
$µ

s
(ε, ~x) (4.69)

which gives us the boundary condition

ϕµ
s
− 2δ

Cs
$µ

s
= ε∆−φ(0)

µ
s

(
1 +O(ε2)

)
(4.70)

Using δ = −2ν − 2 = −(∆+ + s) and the equation of motion (4.64), we get

z∂zϕµ
s
−∆+ϕµ

s
= 2ε∆−φ(0)

µ
s

(
1 +O(ε2)

)
(4.71)

Equation (4.66) implies the asymptotics

lim
z→0

ϕµ
s
(z, ~x) ∼ ϕ(+)

µ
s

(~x)z∆+
(
1 +O(z2)

)
+ ϕ(−)

µ
s

(~x)z∆−
(
1 +O(z2)

)
Therefore, the boundary condition becomes

ϕ(−)
µ
s

= −1

ν
φ(0)
µ
s

(4.72)

or equivalently ϕ̂µ
s
∼ − z2−2s

ν φ
(0)
µ
s

, which is indeed the correct boundary condition up to a

trivial rescaling.

4.3 Higher order terms

So far we have demonstrated that the linearized bulk equations obtained from RG are

canonically equivalent to AdSd+1 Fronsdal equations, up to O(z4~∂4) terms. These higher

derivative terms are only an artifact of choosing a simple canonical transformation. Indeed,

it is possible to construct a more general canonical transformation such that the higher

derivative terms are completely eliminated, as we will now show. For notational simplicity,

we revert back to the spin zero case; all the arguments carry through straightforwardly in

the general spin case. So consider once again a general linear canonical transformation

φ = A·ϕ+B·$ (4.73)

π = C·ϕ+D·$ (4.74)

where we take all the matrices A,B,C,D to be symmetric as well as translationally and

rotationally invariant. The requirement that this be a canonical transformation gives us

one constraint

A·D − C·B = 1 (4.75)
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where 1 of course is the delta function δd(~x− ~y). The original bulk action (4.17) in terms

of the new variables is given by

S
(2)
bulk =

∫
dz

zd+1

{
$·z∂zϕ−$·

(
(Ċ −∆+C)·B −D·(Ȧ−∆−A)− z2ν

2
B·Ġ·A

)
·ϕ

−1

2
ϕ·
(
Ċ·A− C·Ȧ− 2ν(C·A)− z2ν

2
A·Ġ·A

)
·ϕ (4.76)

−1

2
$·
(
Ḋ·B −D·Ḃ − 2ν(D·B)− z2ν

2
B·Ġ·B

)
·$
}

with additional boundary terms coming from the integrations by parts we have performed

above

δSbdry =
1

2εd

(
ϕ·(C·A)·ϕ+$·(D·B)·$ + 2ϕ·(C·B)$

)
(4.77)

Here Ȧ = z∂zA, and recall the definitions

∆+ = d− 2, ∆− = 2, 2ν = ∆+ −∆−

relevant to s = 0. Remember that our aim here is to map this action on to the Klein-

Gordon action in (4.38), with no higher-derivative corrections surviving. So this gives us

three more constraints:

(Ċ −∆+C)·B −D·(Ȧ−∆−A)− z2ν

2
B·Ġ·A = d 1 (4.78)

Ċ·A− C·Ȧ− 2ν(C·A)− z2ν

2
A·Ġ·A =

C0

2

(
1 + αz2�(~x)

)
1 (4.79)

Ḋ·B −D·Ḃ − 2ν(D·B)− z2ν

2
B·Ġ·B =

4(2 + 2ν)

C0
1 (4.80)

where α and C0 are constants. Together with the symplectic constraint A·D − C·B = 1,

we now have four constraints and four unknown kernels — so we can try to solve for them

order by order in an asymptotic expansion in powers of z2�(~x). Of course, we have already

found the solution to these constraints up to second order in derivatives previously, so we

might as well retain the previous solution up to two derivatives. We parametrize the higher

derivatives as follows:

A = δd(~x− ~y) +
(
αA2 z4�2

(~x) + αA3 z6�3
(~x) + · · ·

)
δd(~x− ~y) (4.81)

B = −2(2+2ν)

(
1

αG0
− αG1

(αG0 )2
z2�(~x)

)
δd(~x−~y)+

(
αB2 z4�2

(~x)+α
B
3 z6�3

(~x)+· · ·
)
δd(~x− ~y)(4.82)

C =
(
αC2 z4�2

(~x) + αC3 z6�3
(~x) + · · ·

)
δd(~x− ~y) (4.83)

D = δd(~x− ~y) +
(
αD2 z4�2

(~x) + αD3 z6�3
(~x) + · · ·

)
δd(~x− ~y) (4.84)

where α(i) = (αAi , α
B
i , α

C
i , α

D
i ) for i ≥ 2 are coefficients to be determined from the con-

straints. We have also introduced the convenient notation

Ġ(0,0)(z; ~x, ~y) = z−2ν
(
αG0 + αG1 z2�(~x) + · · ·

)
δd(~x− ~y) (4.85)
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with αG0 6= 0. Note that we have taken the expansions for A,B,C,D to be polynomial in

z2�(~x). While this is correct in odd dimensions, in general one needs to include logarithmic

terms in even dimensions. In order to avoid such complications, we have restricted our

attention to odd dimensions in this paper; the same arguments should go through in even

dimensions with logarithmic terms properly taken into account.

The game now is to determine the coefficients α(i). Let us describe this process

in general. Let’s say we have determined the coefficients to the (r − 1)th order in the

above expansion. At the rth order (r ≥ 2), we now have four variables αAr , · · ·αDr to

determine, from the four constraints (4.75), (4.78)–(4.80) listed above. Plugging our

expansions (4.81)–(4.85) into the constraints, we get four constraint equations on the

coefficients α(r) = (αAr , α
B
r , α

C
r , α

D
r ):

1. Symplectic contraint:

αAr + αDr +
2(2 + 2ν)

αG0
αCr = f

(r)
1 (4.86)

2. $ϕ constraint:

2(2 + 2ν)

αG0
(2r −∆+)αCr + (2r − 2−∆+)αAr −∆−α

D
r +

αG0
2
αBr = f

(r)
2 (4.87)

3. ϕ2 constraint:

(2r − 2ν)αCr − αG0 αAr = f
(r)
3 (4.88)

4. $2 constraint:

− 2(2 + 2ν)

αG0
(2r − 2ν)αDr − (2r − 2ν − 4)αBr = f

(r)
4 (4.89)

where on the right hand side we have functions f (r) = (f
(r)
1 , · · · , f (r)

4 ) of all the previously

determined coefficients and {αGj }, i.e., f (r) = f (r)(α(0), · · · ,α(r−1); {αGj }). So the general

structure of these equations for any r is given by

M (r) ·α(r) = f (r) (4.90)

where

M (r) =


1 0 2(2+2ν)

αG0
1

(2r − 2−∆+)
αG0
2

2(2+2ν)

αG0
(2r −∆+) −∆−

−αG0 0 (2r − 2ν) 0

0 −(2r − 2ν − 4) 0 −2(2+2ν)

αG0
(2r − 2ν)

 (4.91)

and α(r) = (αAr , α
B
r , α

C
r , α

D
r ), f (r) = (f

(r)
1 , · · · , f (r)

4 ) are defined above. The above matrix

has the determinant

det M (r) = −8r(r − ν)(r + ν) (4.92)
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We see that the determinant is non-zero for generic r > 0, except at the pathological

levels r = |ν|, where the determinant vanishes. However, r is an integer, while for d odd,

ν is always half-integral — hence there are no pathologies for any r > 0 when d is odd.

Consequently, det M (r) 6= 0 for any r > 0, which means that we can solve equation (4.90)

to obtain α(r). By induction on r, we can thus determine all the coefficients of the kernels

A,B,C,D uniquely, and determine the canonical transformation at any desired order in

the asymptotic expansion. While we demonstrated this in the case of s = 0 above, the

same calculation generalizes straightforwardly for general spin with the same conclusion.

This completes our proof of the statement that in all odd dimensions, the RG equations

are canonically equivalent to the bulk Fronsdal equations.

A few comments are in order: firstly, if we naively carry over all the above expressions

to d even, then it might seem that the program fails at r = |ν|. This indicates that the

asymptotic form of the expansions for A,B,C,D we have considered above is incomplete

for d even — we must also include terms logarithmic in z2~∂2. Having done so, the

arguments we have presented above will go through for even dimensions as well, but we

will not repeat the details here. Secondly, our discussion does not crucially depend on the

choice of the cut-off function KF — as long as Ġ has an expansion of the form (4.85), all

the arguments go through. Of course, the detailed form of the canonical transformation

would depend on the choice of the cut-off function. From this point of view, we conclude

that the various different choices of cut-off functions in the boundary correspond to

different choices of a canonical-frame in the bulk. Finally, we note that although we

have shown the existence of the canonical transformation to all orders in the expansion

in powers of z2~∂2, these expansions are still somewhat formal, i.e., we do not have any

handle on the convergence of the series we have found for A,B,C,D.

5 Discussion

In conclusion, we have shown that the linearized exact renormalization group equations

for free U(N) vector models in the single-trace sector are precisely canonically equivalent

to the higher-spin Fronsdal equation in AdS space. We will end with some speculative

comments and open problems:

(i) Bulk locality: although it is widely believed that AdS/CFT provides a modern,

geometric viewpoint on the renormalization group, it is somewhat puzzling how non-

local18 RG equations can be equivalent to local bulk equations. We have seen above

in the case of the free vector model/higher-spin duality, that there exists a canonical

frame in which the linearized RG equations give rise to local, second order differential

equations in the bulk for individual local spin-s fields, namely the Fronsdal equations.

A satisfying feature is that this result is not really sensitive to the detailed form of

the chosen cut-off function. The canonical transformation can be thought of as giving

18We say non-local because turning on a certain single-trace, quasiprimary operator generates infinitely

many other operators along the flow, which are important to keep track of in the context of holography.

We were able to do this systematically in the exact RG formlism for free vector models, without any

discrimination between relevant, marginal and irrelevant operators.
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us the correct renormalization scheme in which the bulk is local (at the linearized

level). It will be interesting to try and extend these ideas to more general interacting

CFTs, where the question of bulk locality becomes more significant [41].

(ii) Bulk interactions: another interesting question is whether these results can be

extended beyond the linearized level — more precisely, can we match the cubic inter-

actions obtained from RG with the cubic interactions in Vasiliev theory? Thinking

along the lines of [17] might be fruitful in this case. Of course, we do not expect the

bulk to be local beyond cubic order, and “deriving” the Vasiliev theory from RG is

an open problem.

(iii) Gauge interactions & string field theory: so far we have only focussed on the

case of free vector models with global U(N) symmetry. An extremely interesting

possibility is to turn on gauge fields in the boundary CFT, such as for example in

the d = 2 + 1 Chern-Simons-vector models [42, 43]. As we noted in section 2, one

must be more careful in defining gauge-invariant bilocal operators in the presence

of gauge interactions. The bilocal operator Π̂(~x, ~y) = φ∗m(~x)φm(~y) in the ordinary

vector model must now be improved by the inclusion of a U(N) Wilson line between

the two vectors, and thus becomes a functional of open strings:

Π̂[~xµ(σ)] = φ∗m(~xµ(0))Pexp

(∫ π

0
dσ′ Aµ[~x(σ′)]~̇xµ(σ′)

)m
n

φn(~xµ(π)) (5.1)

where Aµ is the U(N) gauge field. Correspondingly, the bi-local source B(~x, ~y) in

the free vector model now becomes an open-string functional in the Chern-Simons

vector model:

B[~xµ(σ)] (5.2)

For large but finite Chern-Simons level k, it is then natural to conjecture that the

exact renormalization group equations for B[~x(σ)] and Π[~x(σ)] should be interpreted

as open-string field equations in AdS space, in a Hamiltonian form (see the discussion

in footnote 9 for further inspiration).19 Pictorially, this corresponds to filling in the

Witten diagrams of the vector model (fig 1) to obtain open-string worldsheets in

a gauge where the worldsheet time is identified with the radial coordinate of AdS.

Naturally, if we take the Chern-Simons level k → ∞, then the Chern-Simons action

localizes on flat connections, and the dependence on the strings drops out. In this

limit B and Π only depend on the end-points, and we thus collapse back to the

bi-local sources and operators of the ordinary U(N) vector model. In this sense,

the bulk theory dual to free-vector models we described in section 2 (in terms of

bi-locals) should be thought of as a certain tensionless limit of open-string field

theory in AdS. (See also [44] for related discussion, and [45, 46] for a different

approach to emergence of AdS strings from free gauge theory.)

19More precisely, one must also include closed Wilson-loop operators and corresponding sources in the

boundary, and expect to have an open-closed string theory in the bulk.
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(iv) Entanglement renormalization: there has also been an interesting pro-

posal [18, 19] that the tensor network construction of ground states of critical

systems — MERA (Multi-Scale Entanglement Renormalization) — is closely related

to holography. The idea is that coarse-graining a state by progressively removing en-

tanglement at longer and longer length scales (i.e. entanglement renormalization) via

the action of unitary operations (“disentanglers”) gives rise to a holographic descrip-

tion of the critical system. It would be very interesting to connect the ideas in this

paper with the idea of entanglement renormalization; more precisely, are the canoni-

cal transformations we described within the conventional RG language related to the

disentanglers in the MERA description? We leave these questions for future work.
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A The higher spin Coulomb gauge

In this appendix, we discuss the higher spin Coulomb gauge for the linearized higher-spin

fields ϕI1···In , i.e.

ϕz···zµ1···µs = 0 · · · (s < n), ∂µϕ
µ
µ2···µs−1

= 0, ϕµµµ3···µs = 0 (A.1)

The Fronsdal equation (without any gauge fixing) is given by

∇I∇IϕI1...In −n∇I∇I1ϕI I2...In +
1

2
n(n−1)∇I1∇I2ϕI II3...In −2(n−1)(n+d−2)ϕI1...In = 0

(A.2)

where the fields ϕI1···In are double-traceless. We begin by considering the de Donder

condition

(∇ · ϕ)I2...In −
n− 1

2
∇(I2ϕ

′
I3...In) = 0 , (A.3)

where ϕ′I3···In = ϕI II3···In . If the higher spin fields were massive, this would follow from

the equations of motion. In the ‘massless’ case which we are concerned with here, the de

Donder condition can be chosen as a gauge condition. The equations of motion (A.2) in

this gauge simplify to

∇I∇IϕI1...In−
(

2(n−1)(d−2+n)−n(d−1+n)
)
ϕI1...In−n(n−1)g(I1I2ϕ

′
I3...In) = 0 (A.4)

The gauge transformations which preserve this gauge satisfy[
∇I∇I − (n− 1)(n+ d− 2)

]
ΛI2...In = 0. (A.5)
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Further, it was shown in [47], that for on-shell Fronsdal fields the trace ϕI II3···In can be

gauged away, and we thus arrive at the on-shell de Donder condition

(∇ · ϕ)I2...In = 0 , ϕ′I3...In = 0. (A.6)

In this gauge, the Fronsdal equation simplifies greatly(
∇I∇I − (n2 + (d− 5)n− 2(d− 2))

)
ϕI1...In = 0 . (A.7)

It is worth pointing out that the on-shell de Donder gauge is the analog of the Lorentz

gauge in the case of spin one fields.

However, we have still not isolated the physical degrees of freedom. To see why, it is

helpful to think about the spin one case. Naively, in D spacetime dimensions, the spin-one

gauge field AI has D degrees of freedom. The Lorentz gauge condition ∇IAI = 0 reduces

this to (D−1) — however, the number of physical degrees of freedom carried by a spin-one

gauge field is actually (D − 2). This is because closer inspection reveals that one of the

components of the gauge field (which in the context of AdS/CFT, we may take to be the

z component Az) does not contribute to the symplectic structure. In simpler terms, Az
does not have a canonical momentum, and is thus not a dynamical field, but a Lagrange

multiplier which enforces the Gauss’ law constraint. As long as we satisfy the equation of

motion for Az (namely the Gauss’ law), we are at the liberty to set Az = 0. We thus arrive

at the physical degrees of freedom carried by the remaining components Aµ, which further

satisfy the Coulomb gauge condition ~∂µA
µ = 0. Of course, in the AdS/CFT context, this

is precisely the right number of degrees of freedom for a conserved spin-one current in the

boundary CFT!

The same story generalizes to the case of higher-spin fields. Closer inspection of the

on-shell de Donder gauge condition reveals that the conjugate momenta of all the higher-

spin gauge fields of the form ϕz···zµ1···µs for s < n can be written in terms of the spatial

divergence of other fields:

∇zϕzI2···In = −∇µϕµI2···In (A.8)

Therefore, these fields do not contribute to the symplectic structure, and are non-

dynamical. We then have the freedom to set ϕz···zµ1···µs = 0 for s < n. Happily, the

corresponding equations of motion are straightforwardly satisfied upon making this choice,

and therefore this choice is a consistent truncation of the Fronsdal equations. Indeed, the

remaining physical fields, namely ϕµ1···µs , which satisfy

~∂µϕ
µ
µ2···µs = ϕµµµ3···µs = 0 (A.9)

carry precisely the right number of degrees of freedom as the conserved, spin-s quasi-

primary operator in the dual CFT. The Fronsdal equation written in terms of these fields

becomes

z2∂2zϕµ1···µs
+ (2s− d+ 1)z∂zϕµ1···µs

+ z2�(~x)ϕµ1···µs
+ [s(s− d) + (d− 2 + s)(2− s)]ϕµ1···µs

= 0

(A.10)
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p

q

p

p− q

Figure 2. The Feynman diagram which enters the renormalization group equations at the linearized

level. The dotted lines are the external sources, while the solid lines correspond to propagators for

elementary scalars.

B Calculating Ġ(s,s)

In this appendix, we want to explicitly compute the kernel Ġ(s,s) which appeared in section

4, equations (4.31), (4.57). We will first compute the s = 0 case, and then general s.

B.1 s = 0

From the definition (4.20), we have

G(0,0)(z; ~x, ~y) =

∫
dd~p

(2π)d
G(0,0)(z; ~p)ei~p.(~x−~y),

G(0,0)(z; ~p) = c

∫
dd~q

(2π)d
K(z2(~p− ~q)2/M2)

(~p− ~q)2

K(z2~q2/M2)

~q2
(B.1)

where c is some constant factor. This is basically the Feynman diagram shown in figure 2.

For concreteness, let us pick a convenient regulator:

K(s) = e−s

As we have discussed before, the arguments we have presented do not depend on the choice

of the cut-off function. Therefore

G(0,0)(z; ~p) = c

∫
dd~q

(2π)d
e−u

2(~p−~q)2

(~p− ~q)2

e−u
2~q2

~q2
(B.2)

where we have defined

u = z/M

We can use Schwinger parameters to rewrite this as

G(0,0)(z; ~p) = c

∫ ∞
u2

∫ ∞
u2

dtds

∫
dd~q

(2π)d
e−t(~p−~q)

2−s~q2 = c

∫ ∞
u2

∫ ∞
u2

dtds
1

2dπd/2
1

(s+ t)d/2
e−

ts
t+s ~p

2

(B.3)

where we have carried out the ~q integration. We can evaluate the u = 0 limit straightfor-

wardly

G(0,0)(z → 0; ~p) = c
Γ(2− d

2)B(d2 − 1, d2 − 1)

(4π)d/2
1

(~p2)2− d
2

(B.4)
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which in position space goes as |x − y|−2∆+ — the correct boundary two point function.

But what we are interested in is not G(0,0), but Ġ(0,0)

Ġ(0,0)(z; ~p) = z∂zG(0,0)(z; ~p) = −4cu2

∫ ∞
u2

dt
1

2dπd/2
1

(u2 + t)d/2
e
− tu2

t+u2 ~p
2

(B.5)

Defining t = u2τ , we get

Ġ(0,0)(z; ~p) = −4cu4−d
∫ ∞

1
dτ

1

2dπd/2
1

(1 + τ)d/2
e−

τ
τ+1

u2~p2

(B.6)

For u2~p2 � 1, the quantity in the exponential is small, because

1

2
<

τ

1 + τ
< 1

Thus, in the limit u2~p2 → 0, the exponential point-wise (in τ) converges to (and is bounded

by) 1. This is also the case for all derivatives of the above function with respect to u.

Additionally, 1
(1+τ)d/2

is integrable on the domain τ ∈ (1,∞). So, using the dominated

convergence theorem, we get

Ġ(0,0)(z; ~p) = −4cu4−d
∫ ∞

1
dτ

1

2dπd/2
1

(1 + τ)d/2

(
1− τ

τ + 1
u2~p2 +

1

2!

τ2

(τ + 1)2
u4~p4 + · · ·

)
= −4cu4−d 1

2dπd/2

(
I(d; 0)− I(d; 1)u2~p2 +

1

2!
I(d; 2)u4~p4 + · · ·

)
(B.7)

where we have defined

I(d;m) =

∫ ∞
1

dτ
τm

(1 + τ)d/2+m
=

2

d− 2
2F1

(
d− 2

2
,
d

2
+m,

d

2
;−1

)
(B.8)

which is well-defined for all m provided d > 2. The first few of these integrals are given by

I(d; 0) =
22−d/2

d− 2
(B.9)

I(d; 1) =
21−d/2(d+ 2)

d(d− 2)
(B.10)

I(d; 2) =
2−d/2(d2 + 6d+ 16)

d(d2 − 4)
(B.11)

and so on. So, in position space, we get

Ġ(0,0)(z; ~x, ~y) = −4cu−2ν

2dπd/2

(
I(d; 0) + I(d; 1)u2�(x) +

1

2!
I(d; 2)u4�2

(x) + · · ·
)
δd(x− y)

= −Cz−2ν
(
1 + αz2�(~x) + · · ·

)
δd(x− y) (B.12)

where

C =
4cI(d; 0)

2dπd/2
M2ν , α =

d+ 2

2dM2
> 0

are constants, and recall that

2ν = ∆+ −∆− = (d− 4)
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B.2 Higher spins

Now we wish to do the same calculation for generic higher-spin currents. In this case,

G
µ
s
,νs

(s,s) (z; ~x, ~y) =
2i

N
〈Jµ1···µs(~x)Jν1···νs(~y)〉CFT (B.13)

Using

Jµ1···µs(~x) = φ∗m(~x)fµ1···µs(
←−
∂ (x),

−→
∂ (x))φ

m(~x) (B.14)

we get in momentum space

G
µ
s
,νs

(s,s) (z; ~p)=cs

∫
dd~q

(2π)d
K(z2(~p− ~q)2/M2)

(~p− ~q)2 fµ1···µs(i~q, i(~p− ~q))K(z2~q2/M2)

~q2
fν1···νs(−i~q,−i(~p− ~q))

(B.15)

Once again, using K(s) = e−s and Schwinger parameters, we get

G
µ
s
,νs

(s,s) (z; ~p) = cs

∫ ∞
u2

dt

∫ ∞
u2

ds

∫
dd~q

(2π)d
fµ1···µs(i~q, i(~p− ~q))fν1···νs(−i~q,−i(~p− ~q))e−s~q2−t(~p−~q)2

(B.16)

which can be conveniently written as

G
µ
s
,νs

(s,s) (z; ~p)= lim
~j→0

∫ ∞
u2

dt

∫ ∞
u2

ds fµ1···µs

(
∂

∂~j
, i~p− ∂

∂~j

)
fν1···νs

(
− ∂

∂~j
,−i~p+

∂

∂~j

)∫
dd~q

(2π)d
e−s~q

2−t(~p−~q)2+i~q·~j

(B.17)

Upon doing the ~q integration, we get

G
µ
s
,νs

(s,s) (z; ~p) =
cs

2dπd/2
lim
~j→0

fµ1···µs
(
∂

∂~j
, i~p− ∂

∂~j

)
fν1···νs

(
− ∂

∂~j
,−i~p+

∂

∂~j

)
×
∫ ∞
u2

dt

∫ ∞
u2

ds
1

(t+ s)d/2
e
− ts
t+s

~p2− 1
4(t+s)

~j2+i t
t+s

~p·~j
(B.18)

Now taking a u derivative, we see that

Ġ
µ
s
,νs

(s,s) (z; ~p) = −2csu
4−d−2s

2dπd/2
lim
~j′→0

fµ1···µs
(
∂

∂~j′
, iu~p− ∂

∂~j′

)
fν1···νs

(
− ∂

∂~j′
,−iu~p+

∂

∂~j′

)
×
∫ ∞

1
dτ

1

(1 + τ)d/2
e
− τ
τ+1

u2~p2− 1
4(τ+1)

~j′2
(
e

i
τ+1

u~p·~j′ + e
iτ
τ+1

u~p·~j′
)

(B.19)

where ~j = u~j′. In order to proceed, we need to know the explicit form of fµ1···µs , and

the detailed form of the kernel above will depend on this explicitly. However, in the

higher-spin Coulomb gauge we choose the higher-spin fields to be divergenceless, and the

only piece of interest is the term proportional to η<µ1<ν1 · · · ηµs>νs>, where the angular

brackets refer to the traceless, symmetric combination. In this case, it is evident for the

same reason as in the s = 0 case, that we have

Ġµs,νs(~x, ~y) = Csz
−2ν

(
1 + αsz

2�(~x) + · · ·
)
δd(~x− ~y)η<µ1<ν1 · · · ηµs>νs> (B.20)

with αs > 0.
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