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A detailed analysis of the multiple access interference (MAI) for synchronous downlink CDMA systems is carried out for BPSK
signals with random signature sequences in Nakagami-m fading environment with known channel phase. This analysis presents
a unified approach as Nakagami-m fading is a general fading distribution that includes the Rayleigh, the one-sided Gaussian, the
Nakagami-q, and the Rice distributions as special cases. Consequently, new explicit closed-form expressions for the probability
density function (pdf ) of MAI and MAI plus noise are derived for Nakagami-m, Rayleigh, one-sided Gaussian, Nakagami-q, and
Rician fading. Moreover, optimum coherent reception using maximum likelihood (ML) criterion is investigated based on the
derived statistics of MAI plus noise and expressions for probability of bit error are obtained for these fading environments. Fur-
thermore, a standard Gaussian approximation (SGA) is also developed for these fading environments to compare the performance
of optimum receivers. Finally, extensive simulation work is carried out and shows that the theoretical predictions are very well
substantiated.
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1. INTRODUCTION

It is well known that MAI is a limiting factor in the perfor-
mance of multiuser CDMA systems, therefore, its characteri-
zation is of paramount importance in the performance anal-
ysis of these systems. To date, most of the research carried
out in this regard has been based on approximate deriva-
tions, for example, standard Gaussian approximation (SGA)
[1], improved Gaussian approximation (IGA) [2], and sim-
plified IGA (SIGA) [3]. In [4], the conditional characteris-
tic function of MAI and bounds on the error probability are
derived for binary direct-sequence spread-spectrum multiple
access (DS/SSMA) systems, while in [5], the average proba-
bility of error at the output of the correlation receiver was de-
rived for both binary and quaternary synchronous and asyn-
chronous DS/SSMA systems that employ random signature
sequences.

In [6], the pdf of MAI is derived for synchronous down-
link CDMA systems in AWGN environment and the results
are extended to MC-CDMA systems to determine the condi-
tional pdf of MAI, inter-carrier interference (ICI) and noise

given the fading information and pdf of MAI plus ICI plus
noise is derived, where channel fading effect is considered de-
terministic.

In this work, a new unified approach to the MAI analysis
in fading environments is developed when either the channel
phase is known or perfectly estimated. Unlike the approaches
in [4, 5], new explicit closed-form expressions for uncon-
ditional pdfs of MAI and MAI plus noise in Nakagami-m,
Rayleigh, one-sided Gaussian, Nakagami-q, and Rician fad-
ing environments are derived. In this analysis, unlike [6],
the random behavior of the channel fading is included, and
hence, more realistic results for the pdf of MAI plus noise are
obtained. Also, optimum coherent reception using ML crite-
rion is investigated based on the derived expressions of the
pdf of MAI and expressions for probability of bit error are
obtained for these fading environments. Moreover, a stan-
dard Gaussian approximation (SGA) is also developed for
these fading environments. Finally, a number of simulation
results are presented to verify the theoretical findings.

The paper is organized as follows: following the intro-
duction, Section 2 presents the system model. In Section 3,
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Figure 1: System model.

y(t)
× ×

s1(t)e− jφ

∫ iTb
(i−1)Tb

dt
ri

Figure 2: Receiver with chip-matched filter matched to the se-
quence of user 1.

analysis of MAI and expressions for the pdf of MAI and MAI
plus noise in different fading environments are presented.
Optimum coherent reception using ML criterion is investi-
gated in Section 4. In Section 5, the SGA is developed for the
Nakagami-m fading environment while Section 6 presents
and discusses several simulation results. Finally, some con-
clusions are given in Section 7.

2. SYSTEMMODEL

A synchronous DS-CDMA transmitter model for the down-
link of a mobile radio network is considered as shown in
Figure 1. Considering flat fading channel whose complex im-
pulse response for the ith symbol is

hi(t) = αie
jφiδ(t), (1)

where αi is the envelope and φi is the phase of the complex
channel for the ith symbol. In our analysis, we have consid-
ered the Nakagami-m fading in which the distribution of the
envelope of the channel taps (αi) is [7]:

fαi
(
αi
) = 2

Γ(m)

(
m

Ω

)m
α(2m−1)
i exp

(
− mα2

i

Ω

)
, αi > 0,

(2)

where E[α2
i ] = Ω = 2σ2

α, and m is the Nakagami-m fading
parameter.

We have used the Nakagami-m fading model since it can
represent a wide range of multipath channels via the m pa-
rameter. For instance, the Nakagami-m distribution includes
the one-sided Gaussian distribution (m = 1/2, which corre-
sponds to worst case fading) [8] and Rayleigh distribution
(m = 1) [8] as special cases. Furthermore, when m < 1,
a one-to-one mapping between the parameter m and the

q parameter allows the Nakagami-m distribution to closely
approximate Nakagami-q (Hoyt) distribution [9]. Similarly,
when m > 1, a one-to-one mapping between the parame-
ter m and the Rician K factor allows the Nakagami-m distri-
bution to closely approximate Rician fading distribution [9].
As the fading parameter m tends to infinity, the Nakagami-
m channel converges to nonfading channel [8]. Finally, the
Nakagami-m distribution often gives the best fit to the land-
mobile [10–12], indoor-mobile [13] multipath propagation,
as well as scintillating ionospheric satellite radio links [14–
18].

Assuming that the receiver is able to perfectly track the
phase of the channel, the detector in the receiver observes
the signal

y(t) =
∞∑

i=−∞

K∑
k=1

Akbki s
k
i (t)αi + n(t), (3)

where K represents the number of users, ski (t) is the rectan-
gular signature waveform (normalized to have unit energy)
with random signature sequence of the kth user defined in
(i − 1)Tb≤t ≤ iTb, Tb, and Tc are the bit period and the
chip interval, respectively, related by Nc = Tb/Tc (chip se-
quence length), {bki } is the input bit stream of the kth user
({bki } ∈ {−1, +1}), Ak is the received amplitude of the kth
user and n(t) is the additive white Gaussian noise with zero
mean and variance σ2

n. The cross correlation between the sig-
nature sequences of users j and k for the ith symbol is

ρ
k, j
i =

∫ iTb

(i−1)Tb

ski (t)s
j
i (t)dt =

Nc∑
l=1

cki,lc
j
i,l, (4)

where {cki,l} is the normalized spreading sequence (so that the
autocorrelations of the signature sequences are unity) of user
k for the ith symbol.

The receiver consists of a matched filter which is matched
to the signature waveform of the desired user. In our analy-
sis, the desired user will be user 1. Thus, the matched filter’s
output for the ith symbol can be written as follows:

ri =
∫ iTb

(i−1)Tb

yi(t)s1
i (t)dt

= A1b1
i αi +

K∑
k=2

Akbki ρ
k,1
i αi + ni, i = 0, 1, 2, . . . .

(5)

The above equation will serve as a basis for our analysis, espe-
cially the second term (MAI). Denoting the MAI term by M

and representing the term
∑ K

k=2A
kbki ρ

k,1
i by Ui, the ith com-

ponent of MAI is defined as

Mi =
K∑
k=2

Akbki ρ
k,1
i αi = Uiαi. (6)

3. MAI IN FLAT FADING ENVIRONMENTS

In this section, firstly, expressions for the pdf of MAI and
MAI-plus noise in Nakagami-m fading are derived, and sec-
ondly, expressions for the pdf of MAI and MAI-plus noise
in other fading environments are obtained by appropriate
choice of m parameter.
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Table 1: Experimental kurtosis of MAI in AWGN environment.

K = 4 K = 10 K = 20

Kurtosis of MAI 2.928 2.965 2.995

3.1. Behavior of random variableUi

Equation (4) shows that the cross-correlation ρk,1
i is in the

range [−1, +1] and can be rewritten as

ρk,1
i = (Nc − 2d

)
/Nc, d = 0, 1, . . . ,Nc, (7)

where d is a binomial random variable with equal probability
of success and failure. Since each interferer’s component Iki =
Akbki ρ

k,1
i is independent with zero mean, the random variable

Ui is shown in Appendix A to have a zero mean and a zero
skewness. Its variance σ2

u, for equal received powers, is also
derived in Appendix A and given by (A.4).

It can be observed that the random variable Ui is nothing
but the MAI in AWGN environment (i.e., αi = 1). A number
of simulation experiments are performed to investigate the
behavior of the random variable Ui. Figure 3 shows the com-
parison of experimental and analytical results for the pdf of
Ui for 4 and 20 users. It can be depicted from this figure that
Ui has a Gaussian behvior. Results of kurtosis found experi-
mentally are reported in Table 1 which show that kurtosis of
the random variable Ui is close to 3 (kurtosis of a Gaussian
random variable is well known to be 3) even with 4 users and
it becomes closer to 3 as we increase the number of users.
Moreover, the following two normality tests are performed
to measure the goodness-of-fit to a normal distribution.

Jarque-Bera test

This test [19] is a goodness-of-fit measure of departure from
normality, based on the sample kurtosis and skewness. In
our case, it is found that the null hypothesis with 5% sig-
nificant level is accepted for the random variable Ui showing
the Gaussian behavior of Ui.

Lilliefors test

The Lilliefors test [20] evaluates the hypothesis that data has
a normal distribution with unspecified mean and variance
against the alternative data that does not have a normal dis-
tribution. This test compares the empirical distribution of
the given data with a normal distribution having the same
mean and variance as that of the given data. This test too
gives the null hypothesis with 5% significant level showing
consistency in the behavior of Ui.

Consequently, in the ensuing analysis, the random vari-
able Ui is approximated as a Gaussian random variable hav-
ing zero mean and variance σ2

u.

3.2. Probability density function of
MAI in Nakagami-m fading

The Nakagami-m fading distribution is given by (2). Since
channel taps are generated independently from spreading se-
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Figure 3: Analytical and experimental results for the pdf of random
variable Ui (MAI in AWGN environment) for 4 and 20.

quences and data sequences, therefore Mi given by (6) is a
product of two independent random variables, namely Ui

and αi. Thus, the distribution of Mi can be found as follows:

fMi

(
mi
)

=
∫∞
−∞

1
|ω| fαi(ω) fUi

(
mi/ω

)
dω, ω > 0,

= 2
Γ(m)

(
m

Ω

)m 1√
2πσ2

u

∫∞
0
ω(2m−2) exp

(
−mω2

Ω
− m2

i

2σ2
uω2

)
dω,

=
(

m

4πσ2
uσ2

α

)1/2 1
Γ(m)

Γmm2
i /4σ2

uσ2
α

(
m− 1

2

)
,

(8)

where Γb(α) is the generalized gamma function and defined
as follows [21]:

Γb(α) :=
∫∞

0
tα−1 exp (−t − b/t)dt,

(
Re(b)≥0, Re(α) > 0

)
.

(9)

Hence, MAI in Nakagami-m fading is in the form of general-
ized gamma function with zero mean and variance σ2

m given
by

σ2
m = 2σ2

ασ
2
u. (10)

If the noise signal ni in (5) is independent and additive white
Gaussian noise with zero mean and variance σ2

n, the pdf of
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MAI plus noise (Zi =Mi + ni) is given by

fZi

(
zi
)

= fMi

(
mi
)∗ fni

(
ni
) = ∫∞

−∞
fMi

(
zi − t

)
fni(t)dt

=
(

m

8π2σ2
uσ2

ασ2
n

)1/2 1
Γ(m)

∫∞
−∞

Γm(zi−t)2/4σ2
uσ2

α

×
(
m− 1

2

)
exp

(
− t2

2σ2
n

)
dt

=
(

m

8π2σ2
uσ2

ασ2
n

)1/2 1
Γ(m)

exp
(
− z2

i

2σ2
n

)
×
∫∞
−∞

Γmt2/4σ2
uσ2

α

(
m− 1

2

)
exp

(−t2 − 2tzi
2σ2

n

)
dt.

(11)

Now, considering the integral term in the above equation and
letting I represent it, we can simplify it as follows:

I =
∫∞
−∞

(∫∞
0
τm−1/2−1 exp

(
− τ − mt2/

(
4σ2

uσ
2
α

)
τ

)
dτ
)

× exp
(−t2 − 2tzi

2σ2
n

)
dt,

=
∫∞

0
τm−1/2−1 exp (−τ)

×
(∫∞

−∞
exp

(
− mt2/

(
4σ2

uσ
2
α

)
τ

− t2

2σ2
n
− tzi

σ2
n

)
dt
)
dτ,

=
∫∞

0
τm−1/2−1 exp (−τ)

√√√ 2πσ2
nτ

mσ2
n/2σ2

uσ2
α + τ

× exp
(

z2
i τ

2σ2
n

(
mσ2

n/2σ2
uσ2

α + τ
))dτ,

=
√

2πσ2
n exp

(
mσ2

n

2σ2
uσ2

α

)
exp

(
z2
i

2σ2
n

)
I(m),

(12)

where I(m) is the integral given by

I(m) =
∫∞
mσ2

n/2σ2
uσ2

α

(
τ − mσ2

n

2σ2
uσ2

α

)m−1

τ−1/2

× exp
(
− τ − z2

i /
(
4σ2

uσ
2
α

)
τ

)
dτ.

(13)

For special cases when m is an integer value, we can simplify
I(m) as follows:

I(m)

=
m−1∑
l=0

(
m− 1

l

)(
− mσ2

n

2σ2
uσ2

α

)l
Γ
(
m− l − 1

2
,
mσ2

n

2σ2
ασ2

u
;

z2
i

4σ2
ασ2

u

)
,

(14)

where Γ(α, x; b) is the generalized incomplete gamma function
[21] defined as

Γ(α, x; b) :=
∫∞
x
tα−1 exp (−t − b/t)dt. (15)

For α = 1/2, the generalized incomplete gamma function can
be written as follows [21]:

Γ(1/2, x; b) =
√
π

2

[
exp

(− 2
√
b
)
erfc

(√
x −

√
b/x
)

+ exp
(
2
√
b
)
erfc

(√
x +

√
b/x
)]

,
(16)

where erfc(x) := (2/
√
π)
∫∞
x exp (−t2)dt is the error-com-

plement function.
Notice that for α = −1/2, the generalized incomplete

gamma function is related to the error-complement function
as follows [21]:

Γ(−1/2, x; b) =
√
π

2
√
b

[
exp

(− 2
√
b
)
erfc

(√
x −

√
b/x
)

− exp
(
2
√
b
)
erfc

(√
x +

√
b/x
)]

,
(17)

while for α≥1/2, the generalized incomplete gamma function
can be computed from the following recursion [21]:

Γ(α + 1, x; b) = αΓ(α, x; b) + bΓ(α− 1, x; b) + xαe−x−b/x.
(18)

Thus, the pdf of the MAI-plus noise in Nakagami-m fading
environment can be written as follows:

fZi

(
zi
) = ( m

4πσ2
uσ2

α

)1/2 1
Γ(m)

exp
(

mσ2
n

2σ2
uσ2

α

)
I(m) (19)

and in particular, if m is an integer value, we can write the
pdf of the random variable Zi as follows:

fZi(zi) =
(

m

4πσ2
uσ2

α

)1/2 1
Γ(m)

exp
(

mσ2
n

2σ2
uσ2

α

)

×
m−1∑
l=0

(
m− 1

l

)(
− mσ2

n

2σ2
uσ2

α

)l

× Γ
(
m− l − 1

2
,
mσ2

n

2σ2
ασ2

u
;

z2
i

4σ2
ασ2

u

)
.

(20)

Next, expressions for the pdf of MAI and MAI-plus noise are
derived for Rayleigh fading environment using the results de-
rived for Nakagami-m fading environment.

3.3. Probability density function ofMAI
in flat Rayleigh fading

The Rayleigh distribution (Nakagami-m fading with m = 1)
typically agrees very well with experimental data for mobile
systems where no LOS path exists between the transmitter
and receiver antennas. It also applies to the propagation of
reflected and refracted paths through the troposphere [22]
and ionosphere [14, 23], and ship-to-ship [24] radio links.

Now, substituting m = 1 in (8) and using the fact that
Γb(1/2) = √πe−2

√
b [21], it can be shown that (8) reduces to

the following:

fMi

(
mi
) = 1

2σασu
exp

[
−
∣∣mi

∣∣
σασu

]
. (21)
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Hence, MAI in flat Rayleigh fading is a Laplacian distributed
with with zero mean and variance σ2

m = 2σ2
ασ

2
u. Similarly, by

substituting m = 1 in (20) and using the relation given by
(16), the pdf of MAI-plus noise in flat Rayleigh fading envi-
ronment can be shown to be set up into the following expres-
sion:

fZi

(
zi
) = 1

2
√
πσασu

exp

(
σ2
n

2σ2
ασ2

u

)
Γ

(
1/2,

σ2
n

2σ2
ασ2

u
;

z2
i

4σ2
ασ2

u

)
.

(22)

3.4. Probability density function ofMAI in
one-sided Gaussian fading

The one-sided Gaussian fading (Nakagami-m fading with
m = 1/2) is used to model the statistics of the worst case
fading scenario [8]. Now, MAI in one-sided Gaussian fading
is obtained, by substituting m = 1/2 in (8) and using the fact
that Γ(1/2) = √π, as follows:

fMi(mi) =
(

1
8π2σ2

uσ2
α

)1/2

Γm2
i /8σ2

uσ2
α
(0). (23)

Numerical value of Γb(0) can be obtained using either nu-
merical integration or using available graphs of generalized
gamma function [21]. In certain conditions, given below, the
generalized gamma function (Γb(α)) is related to the mod-
ified Bessel function of the second kind (Kα(b)) as follows
[21]:

Γb(α) = 2bα/2Kα
(
2
√
b
) (

Re(b) > 0,
∣∣ arg

(√
b
)∣∣ < π/2).

(24)

Hence, for |mi| > 0, MAI in one-sided Gaussian fading can
be written as

fMi

(
mi
) = ( 1

2π2σ2
uσ2

α

)1/2

K0

(√
m2

i

2σ2
uσ2

α

)
. (25)

Now, the pdf of MAI-plus noise in one-sided Gaussian fading
environment can be obtained by substituting m = 1/2 in (19)
as follows:

fZi

(
zi
) = ( 1

8π2σ2
uσ2

α

)1/2

exp

(
σ2
n

4σ2
uσ2

α

)
I(1/2), (26)

where I(1/2) can be obtained from (13).

3.5. Probability density function ofMAI in
Nakagami-q (Hoyt) fading

The Nakagami-q distribution also referred to as Hoyt distri-
bution [25] is parameterized by fading parameter q whose
value ranges from 0 to 1. For m < 1, a one-to-one mapping
between the parameter m and the q parameter allows the
Nakagami-m distribution to closely approximate Nakagami-
q distribution [9]. This mapping is given by

m =
(
1 + q2

)2

2(1 + 2q4
) , m < 1. (27)

Thus, using (8) and (27), the pdf of MAI in Nakagami-q fad-
ing can be shown to be

fMi

(
mi
) = (

1 + q2
)√

8πσ2
uσ2

α

(
1 + 2q4

)
Γ
((

1 + q2
)2
/2(1 + 2q4

))
× Γ

( (
1 + q2

)2

2(1 + 2q4
) − 1

2
,

(
1 + q2

)2
m2

i

8σ2
uσ2

α(1 + 2q4
)).

(28)

Thus, the pdf of MAI-plus noise in Nakagami-q fading can
be obtained from (19) as follows:

fZi

(
zi
) = (

1 + q2
)√

8πσ2
uσ2

α

(
1 + 2q4

)
Γ
((

1 + q2
)2
/2(1 + 2q4

))
× exp

(
(1 + q2

)2
σ2
n

4σ2
uσ2

α(1 + 2q4
))I(q),

(29)

where I(q) can be shown to be

I(q) =
∫∞

(1+q2)2σ2
n/4σ2

uσ2
α(1+2q4)

×
(
τ −

(
1 + q2

)2
σ2
n

4σ2
uσ2

α

(
1 + 2q4

))(1+q2)2
/2(1+2q4)−1

× τ−1/2 exp

(
− τ − z2

i /
(
4σ2

uσ
2
α

)
τ

)
dτ.

(30)

3.6. Probability density function of
MAI in Rician-K fading

The Rice distribution is often used to model propagation
paths consisting of one strong direct LOS component and
many random weaker components. The Rician fading is pa-
rameterized by a K factor whose value ranges from 0 to ∞.
For m > 1, the K factor has a one-to-one relationship with
parameter m given by

m =
(
1 + K

)2

1 + 2K
, m > 1. (31)

Using the above one-to-one mapping between m and K pa-
rameter, the pdf of MAI and MAI-plus noise can be found
for the Rician-K fading channels. Thus, the pdf of MAI in
Rician-K fading can be shown to be

fMi

(
mi
) = (1 + K)√

4πσ2
uσ2

α(1 + 2K)Γ
(
(1 + K)2/1 + 2K

)
× Γ

(
(1 + K)2

1 + 2K
− 1

2
,

(1 + K)2m2
i

4σ2
uσ2

α(1 + 2K)

)
.

(32)

Now, the pdf of MAI-plus noise in Rician-K fading can be
obtained from (19) as follows:

fZi

(
zi
) = (1 + K)√

4πσ2
uσ2

α(1 + 2K)Γ
(
(1 + K)2/1 + 2K

)
× exp

(
(1 + K)2σ2

n

2σ2
uσ2

α(1 + 2K)

)
I(K),

(33)
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where I(K) can be shown to be

I(K) =
∫∞

(1+K)2σ2
n/2σ2

uσ2
α(1+2K)

(
τ − (1 + K)2σ2

n

2σ2
uσ2

α(1 + 2K)

)K2/(1+2K)

× τ−1/2 exp

(
− τ − z2

i /
(
4σ2

uσ
2
α

)
τ

)
dτ.

(34)

For special cases when K2/(1+2K) is an integer value, we can
simplify I(K) as follows:

I(K) =
K2/(1+2K)∑

l=0

(
K2/(1 + 2K)

l

)(
− (1 + K)2σ2

n

2σ2
uσ2

α(1 + 2K)

)l

× Γ

(
(1 + K)2

1 + 2K
− l − 1

2
,

(1 + K)2σ2
n

2σ2
uσ2

α(1 + 2K)
;

z2
i

4σ2
ασ2

u

)
.

(35)

4. OPTIMUM COHERENT RECEPTION
IN THE PRESENCE OFMAI

In single-user system, the optimum detector consists of a cor-
relation demodulator or a matched filter demodulator fol-
lowed by an optimum decision rule based on either maxi-
mum a posteriori probability (MAP) criterion in case of un-
equal a priori probabilities of transmitted signals or maxi-
mum likelihood (ML) criterion in case of equal a priori prob-
abilities of the transmitted signals [7]. Decision based on any
of these criteria depends on the conditional probability den-
sity function (pdf) of the received vector obtained from the
correlator or the matched filter receiver.

In this section, the statistics of MAI-plus noise derived in
the previous section will be utilized to design an optimum
coherent receiver. Consequently, explicit closed form expres-
sions for the BER will be derived for different environments.

4.1. Optimum receiver for coherent reception in the
presence ofMAI in Nakagami-m fading

The output of the matched filter matched to the signature
waveform of the desired user for the ith symbol is given by
(5) and can be rewritten as follows:

ri = wi,l + zi, l = 1, 2 (for BPSK signals), (36)

where wi,l and zi represents the desired signal and MAI-plus
noise, respectively. If Eb represents the energy per bit, the wi,l

is either +αi
√
Eb or −αi

√
Eb for BPSK signals. Thus, the con-

ditional pdf p(ri | wi,1) is given by

p
(
ri | wi,1

) = ( m

4πσ2
uσ2

α

)1/2
1

Γ(m)
exp

(
mσ2

n

2σ2
uσ2

α

)

×
m−1∑
l=0

(
m− 1

l

)(
− mσ2

n

2σ2
uσ2

α

)l

× Γ

(
m− l − 1

2
,
mσ2

n

2σ2
ασ2

u
;

(ri − αi
√
Eb)

2

4σ2
ασ2

u

)
.

(37)

For the case when wi,1 and wi,2 have equal a priori proba-
bilities, then according to ML criterion, the optimum test
statistic is well known to be the likelihood ratio (Λ = p(ri |
wi,1)/p(ri | wi,2)). Now, first assuming that the channel at-
tenuation (αi) is deterministic, and therefore any error oc-
curred is only due to the MAI-plus noise (zi). It is shown
in Appendix B that the MAI-plus noise term, zi, has a zero
mean and a zero skewness showing its symmetric behavior
about its mean. Consequently, the conditional pdf p(ri | wi,1)
with deterministic channel attenuation will also be symmet-
ric as it was in the case of single user system [7]. Ultimately,
the threshold for the ML optimum receiver will be its mean
value, that is, zero. Finally, the probability of error given wi,1

is transmitted is found to be

P
(
e | wi,1

)
=
∫ 0

−∞
p
(
ri | wi,1

)
dri

=
(

m

4πσ2
uσ2

α

)1/2
1

Γ(m)
exp

(
mσ2

n

2σ2
uσ2

α

)m−1∑
l=0

(
m− 1

l

)(
− mσ2

n

2σ2
uσ2

α

)l

×
∫ 0

−∞
Γ

(
m− l − 1

2
,
mσ2

n

2σ2
ασ2

u
;

(ri − αi
√
Eb)

2

4σ2
ασ2

u

)
dri

=
(
m

4

)1/2 1
Γ(m)

exp

(
mσ2

n

2σ2
uσ2

α

)m−1∑
l=0

(
m− 1

l

)(
− mσ2

n

2σ2
uσ2

α

)l

×
∫∞
mσ2

n/2σ2
ασ2

u

tm−l−1e−terfc

(√√√√ α2
i Eb

4σ2
ασ2

ut

)
dt.

(38)

Now, defining a random variable γz such that

γz =
α2
i Eb

4σ2
ασ2

ut
. (39)

Since αi is Nakagami-m distributed, then α2
i has a gamma

probability distribution [7]. Thus, γz is also gamma dis-
tributed and it can be shown to be given by

p
(
γz
) = mmγm−1

z

γmz Γ(m)
exp

(
−m

γz
γz

)
, (40)

where

γz = E
[
γz
] = Eb

2σ2
ut

, (41)

where we have used the fact that E[α2
i ] = 2σ2

α. Consequently,
(38) becomess

P
(
e | wi,1

) = (m
4

)1/2 1
Γ(m)

exp

(
mσ2

n

2σ2
uσ2

α

)m−1∑
l=0

(
m− 1

l

)

×
(
− mσ2

n

2σ2
uσ2

α

)l ∫∞
mσ2

n/2σ2
ασ2

u

tm−l−1e−terfc
(√

γz
)
dt.

(42)

The above expression gives the conditional probability of er-
ror with condition that αi is deterministic and, in turn, γz is
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deterministic. However, if αi is random, then the probability
of error can be obtained by averaging the above conditional
probability of error over the probability density function of
γz. Hence, for equally likely BPSK symbols, the average prob-
ability of bit error can be obtained as follows:

P(e) =
∫∞

0
P
(
e | wi,1

)
p
(
γz
)
dγz

=
(
m

4

)1/2 1
Γ(m)

exp

(
mσ2

n

2σ2
uσ2

α

)m−1∑
l=0

(
m− 1

l

)(
− mσ2

n

2σ2
uσ2

α

)l

×
∫∞
mσ2

n/2σ2
ασ2

u

tm−l−1e−t
mm

γmz Γ(m)
I
(
γz
)
dt,

(43)

where

I
(
γz
) = ∫∞

0
γm−1
z exp

(
− mγz

γz

)
erfc

(√
γz
)
dγz. (44)

The solution for the integral I(γz) can be obtained using [26]
which is found to be

I
(
γz
) = 1√

π

Γ(m + 1/2)

m
(
1 + m/ γz

)m+1/2

× F

(
1,m + 1/2;m + 1;

m/ γz
1 + m/ γz

)
,

(45)

where F(α,β; γ;ω) is the hypergeometric function and is de-
fined as follows [26]:

F(α,β; γ; z) = 1
B(β, γ − β)

∫ 1

0
tβ−1(1− t)γ−β−1(1− tz)−αdt,

(46)

where B( , ) is the beta function. Thus, the average probabil-
ity of bit error in Nakagami-m fading in the presence of MAI
and noise can be expressed as

P(e) = mm−1/2Γ(m + 1/2)

2
√
π
(
Γ(m)

)2 exp

(
mσ2

n

2σ2
uσ2

α

)m−1∑
l=0

(
m− 1

l

)

×
(
− mσ2

n

2σ2
uσ2

α

)l ∫∞
mσ2

n/2σ2
ασ2

u

tm−l−1e−t(
1 + m/ γz

)m+1/2
γmz

× F

(
1,m + 1/2;m + 1;

m/ γz
1 + m/ γz

)
dt.

(47)

4.2. Optimum receiver for coherent reception in the
presence ofMAI in flat Rayleigh fading

Substitute m = 1 in (43) to get the average probability of bit
error in flat Rayleigh fading as follows:

P(e) = 1
2

exp

(
σ2
n

2σ2
ασ2

u

)∫∞
σ2
n/2σ2

ασ2
u

exp (−t) 1
γz
I
(
γz
)
dt, (48)

where

I
(
γz
) = ∫∞

0
exp

(
− γz

γz

)
erfc

(√
γz
)
dγz. (49)

The solution for the integral I(γz) can be obtained using [26]
which is found to be

I
(
γz
) = γz

[
1−

√√√ γz
1 + γz

]
. (50)

Hence, P(e) can be shown to be given by

P(e) = 1
2
−
√

Eb
8σ2

u
exp

(
σ2
n

2σ2
ασ2

u
+

Eb
2σ2

u

)

× Γ

(
1/2,

σ2
n

2σ2
ασ2

u
+

Eb
2σ2

u

)
,

(51)

where Γ(α, x) is the incomplete Gamma function and defined
as follows [21]:

Γ(α, x) =
∫∞
x
tα−1e−tdt,

(
Re(α) > 0

)
. (52)

5. SGA FOR THE PROBABILITY OF ERROR
IN FADING ENVIRONMENTS

In SGA, MAI is approximated by an additive white Gaussian
process. In this section, SGA for the probability of bit error
in Nakagami-m and flat Rayleigh fading environments are
developed in order to compare the performance of analytical
results derived in Section 4.

5.1. SGA for Nakagami-m fading

First assuming that the channel attenuation (αi) is determin-
istic, so that error is only due to the MAI-plus noise (zi)
which is approximated as additive white Gaussian process.
Thus, the probability of error given wi,1 is transmitted can be
shown to be

P
(
e | wi,1

) = ∫ 0

−∞
p
(
ri | wi,1

)
dri = Q

(√
γz
)
, (53)

where γz = α2
i Eb/σ

2
z is the received signal-to-interference-

plus-noise ratio (SINR). The above expression gives the con-
ditional probability of error with condition that αi is deter-
ministic and in turn γz is deterministic. However, if αi is ran-
dom, then the probability of error can be obtained by av-
eraging the above conditional probability of error over the
probability density function of γz. If the transmitted symbols
are equally likely, the probability of bit error using SGA will
be obtained as follows:

P(e)SGA =
∫∞

0
P
(
e | wi,1

)
p
(
γz
)
dγz. (54)

Since αi is Nakagami-m distributed, α2
i has a gamma prob-

ability distribution [7] and p(γz) is given by (40) with
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γz = 2σ2
αEb/σ

2
z . Hence, the probability of error using SGA

can be shown to be

P(e)SGA =
∫∞

0
Q
(√

γz
)mmγm−1

z

γmz Γ(m)
exp

(
−m

γz
γz

)
dγz. (55)

The solution of the above integral can be obtained using [26]
which is found to be

P(e)SGA = mm−1Γ(m + 1/2)√
8πγmz Γ(m)

(
1/2 + m/ γz

)m+1/2

× F

(
1,m + 1/2 : m + 1 :

m/ γz
1/2 + m/ γz

)
,

(56)

where F(α,β; γ;ω) is the hypergeometric function defined in
(46).

5.2. SGA for flat Rayleigh fading

For flat Rayleigh fading, substitute m = 1 in (55) to obtain
following:

P(e)SGA =
∫∞

0
Q
(√

γz
) 1
γz

exp

(
− γz

γz

)
dγz. (57)

The solution of the above integral can be obtained using [26]
which is found to be

P(e)SGA = 1
2

(
1−

√
γz

2 + γz

)
. (58)

6. SIMULATION RESULTS

To validate the theoretical findings, simulations are carried
out for this purpose and results are discussed below. The
pdf of MAI-plus noise is analyzed for different scenarios in
both Rayleigh and Nakagami-m environments. The results
agree very well with the theory as shown below in this sec-
tion. Then, a more powerful test, nonparametric statistical
analysis, will be carried out to substantiate the theory for the
cumulative distribution function (cdf) of MAI-plus noise in
the case of Rayleigh environment. Finally, the probability of
bit error derived earlier for both Rayleigh and Nakagami-m
environments is investigated.

During the preparation of these simulations, random sig-
nature sequences of length 31 and rectangular chip wave-
forms are used. The channel noise is taken to be an additive
white Gaussian noise with an SNR of 20 dB.

6.1. Analysis for pdf ofMAI-plus noise

The pdf of MAI derived for Nakagami-m fading, (8), is com-
pared to the one obtained by simulations for two different
values of Nakagami-m fading parameter (m), that is, m = 1
(which corresponds to Rayleigh fading) and m = 2. Figure 4
shows the comparison of experimental and analytical results
for the pdf of MAI for 4 and 20 users, representing small and
large numbers of users, respectively. The results show that

543210−1−2−3−4−5
0

0.5

1

1.5

2

2.5

Experimental
Analytical

K = 20

K = 4

Figure 4: Analytical and experimental results for the pdf of MAI for
4 and 20 users in flat Rayleigh fading environment.

543210−1−2−3−4−5
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0.8

1
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1.4

1.6

1.8

Experimental
Analytical

K = 20

K = 4

Figure 5: Analytical and experimental results for the pdf of MAI
plus noise for 4 and 20 users in flat Rayleigh fading environment.

the behavior of MAI in flat Rayleigh fading is Laplacian dis-
tributed and the variance of MAI increases with the increase
in number of users. Similarly, the expression derived for the
pdf of MAI-plus noise in Rayleigh fading, (22), is compared
with the experimental results. Figure 5 shows the comparison
of experimental and analytical results for the pdf of MAI-
plus noise for 4 and 20 users in flat Rayleigh environment,
respectively. Here too, a consistency in behavior is obtained
in this experiment and as can be seen from Figure 5 that the
pdf of MAI plus noise is governed by a generalized incom-
plete Gamma function.

Figure 6 shows the comparison of experimental and ana-
lytical results for the pdf of MAI-plus noise for 4 and 20 users
for Nakagami-m fading parameter m = 2. The results show
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Analytical
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Figure 6: Analytical and experimental results for the pdf of MAI
plus noise for 4 and 20 users in Nakagami-m fading with m = 2.

21.510.50−0.5−1−1.5−2
0

0.5

1
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4

m = 0.1 (Hoyt fading)
m = 0.5 (one-sided Gaussian fading)
m = 1 (Rayleigh fading)
m = 10

Figure 7: Analytical results for the pdf of MAI for 4 users in differ-
ent fading environments.

that the behavior of MAI-plus noise in Nakagami-m fading
is not Gaussian and it is a function of generalized incomplete
Gamma function.

In Figure 7, analytical results for the pdf of MAI for dif-
ferent values of m are plotted using (8). Different values of m
represent MAI in different types of fading environment. Re-
sults show that as the value of m decreases, the MAI becomes
more impulsive in nature.

Finally, Table 2 reports the close agreement of the results
of the kurtosis and the variance found from experiments and
theory for MAI in a Rayleigh fading environment. Note that
the kurtosis for Laplacian is 6.

Table 2: Kurtosis and variance of MAI in flat Rayleigh fading envi-
ronment.

K = 4 K = 20

Experimental Kurtosis of MAI 5.75 5.83

Experimental Variance of MAI 0.0959 0.6204

Analytical Variance of MAI 0.0968 0.6129

6.2. Nonparametric statistical analysis
for cdf ofMAI-plus noise

In this section, the empirical cdf is used as a test to corrob-
orate the theoretical findings (cdf of MAI-plus noise) in a
Rayleigh fading environment. The empirical cdf, F̂(x), is an
estimate of the true cdf, F(x), which can be evaluated as fol-
lows:

F̂(x) = #xi ≤ x

N
, i = 1, 2, . . . ,N , (59)

where #xi ≤ x is the number of data observations that are not
greater than x.

In order to test that an unknown cdf F(x) is equal to a
specified cdf Fo(x), the following null hypothesis is used [27]:

Ho : F(x) = Fo(x) (60)

which is true if Fo(x) lies completely within the (1− a) level
of confidence bands for empirical cdf F̂(x).

For this purpose, the Kolmogorov confidence bands which
are defined as confidence bands around an empirical cdf F̂(x)
with confidence level (1 − a) and are constructed by adding
and subtracting an amount da,N to the empirical cdf F̂(x),
where da,N = da/N , are used. Values of da,N are given in Table
VI of [27] for different values of a. In our analysis, we have
used a = .05 which corresponds to 95% confidence bands.
This test is done by evaluating max x|F̂(x)− Fo(x)| < da,N .

Figure 8 shows the results for empirical and analytical cdf
of MAI-plus noise (obtained from (22) in a flat Rayleigh fad-
ing with 4 users. Also, Figure 9 (zoomed view of Figure 8)
shows Kolmogorov confidence bands. Based on the above-
mentioned test, the null hypothesis is accepted as depicted in
Figure 9.

6.3. Probability of bit error

Figure 10 shows the comparison of experimental, SGA, and
proposed analytical probability of bit error for m = 1
(flat Rayleigh fading environment) versus SNR per bit while
Figure 11 shows the comparison of experimental, SGA, and
proposed analytical probability of bit error versus the num-
ber of users. It can be seen that the proposed analytical re-
sults give better estimate of probability of bit error compared
to the SGA technique.

Figure 12 shows the comparison of experimental, SGA,
and proposed analytical probability of bit error in Nakagami-
m fading environment versus SNR for 25 users for m = 2.
It can be seen that the proposed analytical results are well
matched with the experimental one.
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Figure 8: Empirical cdf with 95% Kolmogorov confidence bands
compared with the analytical cdf of MAI plus noise in flat Rayleigh
fading.

0.010.0060.002−0.002−0.006−0.01
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0.52
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Lower confidence band

Upper confidence band
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dα,n

Kolmogorov confidence bands

Figure 9: Zoomed view of Kolmogorov confidence bands and em-
pirical cdf along with the analytical cdf of MAI plus noise in flat
Rayleigh fading.

7. CONCLUSION

This work has presented a detailed analysis of MAI in syn-
chronous CDMA systems for BPSK signals with random sig-
nature sequences in different flat fading environments. The
pdfs of MAI and MAI-plus noise are derived Nakgami-m
fading environment. As a consequence, the pdfs of MAI and
MAI-plus noise for the Rayleigh, the one-sided Gaussian, the
Nakagami-q, and the Rice distributions are also obtained.
Simulation results carried out for this purpose corroborate
the theoretical results. Moreover, the results show that the be-
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Figure 10: Experimental and analytical results of probability of bit
error in flat Rayleigh fading environment versus SNR.
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Figure 11: Experimental and analytical results of probability of bit
error in flat Rayleigh fading environment versus number of users.

havior of MAI in flat Rayleigh fading environment is Lapla-
cian distributed while in Nakagami-m fading is governed by
the generalized incomplete Gamma function. Moreover, opti-
mum coherent reception using ML criterion is investigated
based on the derived statistics of MAI-plus noise and expres-
sions for probability of bit error is obtained for Nakagami-m
fading environment. Also, an SGA is developed for this sce-
nario.

Finally, a similar work for the case of wideband CDAM
system will be considered in the near future.
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Figure 12: Experimental and analytical results of probability of bit
error in Nakagami-m fading environment versus SNR for 25 users,
with m = 2.

APPENDICES

A. MEAN, VARIANCE, AND SKEWNESS OFUi

In this appendix, the mean, the variance, and the skewness
of the random variable Ui are derived. For the case of equal
received powers,that is, Ak = A∀k, the mean of Ui can be
found as follows:

E
[
Ui
] = A

K∑
k=2

E
[
bki ρ

k,1
i

] = A
K∑
k=2

(
1− 2

Nc
E[d]

)
. (A.1)

Since d is a binomial random variable with equal probability
of success and failure, therefore, its mean, variance and the
third moment about the origin are given by

E[d] = 1
2
Nc,

σ2
d =

1
4
Nc,

E
[
d3] = Nc

2

[
Nc
(
Nc − 1

)
4

+ Nc

]
.

(A.2)

Consequently, E[Ui] is found to be

E
[
Ui
] = A

K∑
k=2

(
1− 2

Nc

1
2
Nc

)
= 0. (A.3)

Since each interferer is independent with zero mean, the vari-
ance of Ui (σ2

u) can be shown to be

σ2
u =

K∑
k=2

A2E
[(

1− 2
Nc

d
)2]

,

= A2
K∑
k=2

(
1− 4

Nc
E[d] +

4
Nc2

E
[
d2]) = A2

(
K − 1

)
Nc

.

(A.4)

Now, the skewness of the random variable Ui denoted by γu
can be found as follows:

γu =
E
[(
Ui − E

[
Ui
])3]

σ3
u

= E
[
U3

i

]
σ3
u

. (A.5)

Knowing that each interferer is independent with zero mean,
and using (A.2), the expectation E[U3

i ] can be shown to be

E
[
U3

i

] = K∑
k=2

A3E
[(

1− 2
Nc

d
)3]

,

= A3
K∑
k=2

(
1− 8

Nc3
E
[
d3]− 6

Nc
E[d]+

12
Nc2

E
[
d2]) = 0.

(A.6)

Consequently, the random variable Ui has a skew of zero.

B. MEAN AND SKEWNESS OF zi

It can be seen from (5) and (6) that the MAI-plus noise in
flat fading zi is given by

zi =
K∑
k=2

Akbki ρ
k,1
i αi + ni = Uiαi + ni. (B.1)

Since channel taps are generated independently from spread-
ing sequences and data sequences, therefore, the mean value
of zi can be found as follows:

E
[
zi
] = E

[
Ui
]
E
[
αi
]

+ E
[
ni
]
. (B.2)

Since the mean value of Ui, E[Ui], has found to be zero from
(A.3) and the noise is also zero mean, therefore, it can be
shown that

E
[
zi
] = 0. (B.3)

Now, to find the skewness of zi, we first find E[z3
i ] as follows:

E
[
z3
i

] = E
[
U3

i α
3
i + n3

i + 3U2
i α

2
i ni + 3Uiαin

2
i

]
,

= E
[
U3

i

]
E
[
α3
i

]
+ 3E

[
Ui
]
E
[
αi
]
σ2
n,

(B.4)

where we have used E[ni] = 0 and E[n2
i ] = 0. Ultimately,

using the results of E[Ui] and E[U3
i ] from (A.3) and (A.6),

respectively, the following is obtained:

E
[
z3
i

] = 0. (B.5)

Consequently, the random variable zi has a skew of zero
which shows that this random variable is symmetric about
its mean.
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