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1 Introduction

The physics of the U(1) axial symmetry in quantum chromodynamics (QCD) has been

a subject of intensive research over many years. While the QCD Lagrangian is invariant

under U(Nf )R ×U(Nf )L at the classical level, the U(1)A symmetry is broken by quantum

effects [1] (see (2.1)). In fact, experimentally observed hadron spectra in the vacuum do not

fully respect the U(Nf )R×U(Nf )L symmetry: the η′ meson concerning the U(1)A symme-

try is much heavier than the other pseudoscalar mesons associated with chiral symmetry

breaking. This U(1)A problem was resolved [2, 3] through the discovery of nonperturbative

topological excitations in the Euclidean spacetime, called instantons.

Recently, much attention has been focused on another “U(1)A puzzle” in QCD at

T > Tc, where Tc is the (pseudo)critical temperature of the chiral transition. Namely,

even though the U(1)A anomaly relation (2.1) itself does not receive any modification at
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finite temperature [4],1 the U(1)A symmetry could be effectively restored at the level of

mesonic two-point (or higher-point) correlation functions [5]. This problem is of particular

interest due to the role played by the axial anomaly in determining the order of chiral

phase transition [6]. It was claimed by Cohen [7] that massless two-flavor QCD at T > Tc
should be effectively symmetric under U(1)A in the sense that two-point correlators in the

π, σ, δ, and η channels become all degenerate. This work was soon followed by counter-

arguments [8, 9]. Later it was recognized by Laine and Vepsäläinen [10] that the U(1)A
violation in the flavor-singlet (axial) vector channel can be shown rigorously at least for

high enough temperatures without any assumptions. This conclusion qualitatively agrees

with [11] that shows U(1)A violation at high temperatures by calculating a nonzero split-

ting of scalar and pseudoscalar screening masses using a semiclassical dilute instanton gas

picture [12]. More recently, Aoki et al. [13] claimed to have shown the effective restoration

of the U(1)A symmetry rigorously under certain assumptions, although the validity of their

assumptions appears to be nontrivial and subtle (see section 5).

Alongside these theoretical studies, the U(1)A problem at finite temperature has also

been studied intensively in first-principles lattice QCD simulations [14, 15], but a consensus

is not reached yet: effective restoration of the U(1)A symmetry was reported in simulations

with overlap fermions [16] and domain-wall fermions [17–20], whereas a violation of the

U(1)A symmetry was reported in simulations using staggered fermions [21–24] and domain-

wall fermions [25].2 We warn that some of the simulations [17, 21–25] were performed for

2 + 1 flavors; the effect of a heavier strange quark on the possible U(1)A violation in the

light-quark sector is not completely clear yet.

In this paper, we do not try to solve this U(1)A puzzle at finite temperature. Rather,

we derive some rigorous results involving the U(1)A symmetry in high-temperature QCD,

assuming that the U(1)A symmetry is violated. (Since the U(1)A violation must be present

at least for high enough temperatures [10, 11], we consider its presence at all T > Tc
to be quite plausible.) We first derive general expressions for chiral susceptibilities and

the topological susceptibility at T > Tc using the method of [15, 26]. They are used to

highlight that, while the majority of the U(1)A violation at small volume comes from exact

(topological) zero modes, the dominant contribution at large volume comes from nonzero

modes. We estimate finite-volume effects suffered by lattice QCD simulations with fixed

topology, and propose a way to measure the U(1)A-violating effects reliably in a finite

volume. Furthermore, we rigorously derive new sum rules and a new Banks-Casher-type

relation for the Dirac eigenvalue spectra at T > Tc. This relation provides a link between

the connected two-point correlation function of Dirac eigenvalues and the U(1)A anomaly.

As a by-product of our spectral analysis, we find a remarkably simple proof of the Aoki-

Fukaya-Taniguchi “theorem” on the effective restoration of the U(1)A symmetry at high

temperature, under the same assumptions as in [13]. It should be emphasized that all

1We noticed that the tensor decomposition of the anomalous correlation function at finite temperature

in [4] is incomplete, and that many more terms need to be included; see appendix A. This does not, however,

affect the conclusion of [4] that the anomaly relation (2.1) remains unchanged at finite temperature.
2In [24] the overlap Dirac operator was used to probe the Dirac spectra while configurations were

generated with improved staggered fermions.
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our results are based on a systematic analysis of QCD. We expect that testing our exact

relations and proposal in future lattice simulations should be a useful step towards the

resolution of the U(1)A puzzle at finite temperature.

The paper is organized as follows. In section 2, we review the argument of [10] for

U(1)A violation at high temperature. In section 3, we discuss the importance of topology

and finite-volume effects on the breaking of the U(1)A symmetry, as well as its implica-

tion for lattice QCD simulations. In section 4, we derive new spectral sum rules and a

Banks-Casher-type relation for Dirac spectra concerning the U(1)A anomaly. In section 5,

we comment on the Aoki-Fukaya-Taniguchi “theorem” in [13]. Section 6 contains our

conclusions.

In appendix A, we point out and correct the deficiency in the tensor decomposition of

the anomalous correlation function in QCD at finite temperature studied by Itoyama and

Mueller [4]. In appendix B, we discuss the microscopic scaling that is different from (4.12) in

the main text. In appendix C we derive (4.19) in the main text. Throughout this paper, we

will work on QCD with quarks in the fundamental representation of the gauge group SU(3).

2 U(1)A anomaly at high temperature

In this section we review an argument for the U(1)A anomaly in massless QCD at high tem-

perature, given by Laine and Vepsäläinen [10].3 Their argument is based on the anomaly

relation

∂µj
Aµ =

Nfg
2

32π2
εαβµνGaαβG

a
µν (2.1)

for the axial current jAµ = ψγµγ5ψ, and the Debye screening of the gauge fields at high

temperature. Here Nf is the number of flavors, g is the QCD coupling constant and Gaµν
is the gluon field strength with a being the color index.

Let us work in Euclidean spacetime with the imaginary time τ = it ∈ [0, β] and a

spatial box of size L1 × L2 × L3. We assume that both quarks and gauge fields obey

periodic boundary conditions in spatial directions, whilst quarks (gauge fields) obey the

anti-periodic (periodic) boundary condition in the temporal direction. As our interest is

in the screening of gauge fields, we shall consider a spatial correlation function. Without

loss of generality we choose a spatial separation in the x3 direction. Then, for the axial

“charge” (integrated over the volume transverse to the x3 axis)

QA3 (x3) ≡
∫

dτ d2x⊥ j
A
3 , (2.2)

one can show that
〈
QA3 (x3)QA3 (y3)

〉
= 0 in the thermodynamic limit if the axial symmetry is

effectively restored, and
〈
QA3 (x3)QA3 (y3)

〉
6= 0 if it is broken. Here 〈. . .〉 is a statistical aver-

age, and the coordinates x3 and y3 are entirely arbitrary. The fact that 〈Q3(x3)Q3(y3)〉 = 0

when U(1)A is unbroken may be shown in two steps as follows. Suppose we add a constant

external field a that couples to the axial charge QA3 . Then the action acquires an additional

3We thank M. Laine for explaining the logic of [10] in detail.
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contribution δS = a

∫
dx3 Q

A
3 (x3). This leads to the susceptibility

χA =
1

V4

∂2

∂a2
logZ(a)

∣∣∣
a=0

=
1

V4

〈∫
dx3 Q

A
3 (x3)

∫
dy3 Q

A
3 (y3)

〉
(2.3)

=
1

βL1L2

∫
dx3

〈
QA3 (x3)QA3 (0)

〉
, (2.4)

where V4 = βL1L2L3 is the total volume of spacetime. As U(1)A is conserved by assump-

tion, χA must be finite in the thermodynamic limit; hence χA < ∞ as L3 → ∞. This

completes the first step of the proof.

In the second step, we use the fact that QA3 (x3) is independent of x3. Actually, this is

a direct consequence of the (assumed) conservation of the axial current:

d

dx3
QA3 (x3) =

∫
dτ d2x⊥ ∂3j

A
3 (2.5)

= −
∫

dτ d2x⊥
(
∂0j

A
0 +∇⊥ · jA⊥

)
= 0 , (2.6)

where the last step follows from the boundary conditions for fields. Note that (2.6) holds

rigorously in a finite volume. Then it is clear that we must have

d

dx3

〈
QA3 (x3)QA3 (0)

〉
=

〈
d

dx3
QA3 (x3)QA3 (0)

〉
= 0 . (2.7)

Combining (2.7) with the finiteness of χA in the limit L3 → ∞, we conclude that〈
QA3 (x3)QA3 (0)

〉
must vanish in the thermodynamic limit for an arbitrary x3. This com-

pletes the second step of the proof.

Next, recall that the anomaly relation (2.1) can be rewritten as a total derivative,

∂µj
A
µ = ∂µKµ, Kµ =

Nfg
2

8π2
εµνλρ

(
Aaν∂λA

a
ρ +

g

3
fabcAaνA

b
λA

c
ρ

)
. (2.8)

In terms of this Kµ, the so-called Chern-Simons charge reads as

QCS
3 (x3) ≡

∫
dτ d2x⊥K3 . (2.9)

Because the gauge fields are Debye screened at high temperature, the correlation of QCS
3

should decay exponentially:

〈QCS
3 (x3)QCS

3 (y3)〉 ∼ e−|x3−y3|/ξ (2.10)

at |x3 − y3| � ξ, where ξ is the correlation length (or the inverse Debye mass); ξ−1 ≈ gT

at leading order in g. Although the correlator (2.10) may appear to vanish trivially due

to the non-gauge-invariance of QCS
3 , this is not necessarily true. As QCS

3 is gauge invariant

up to surface terms, it becomes gauge invariant and its correlator becomes nonzero once

we fix boundary conditions for the gauge fields.
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Since QA3 and QCS
3 have the same quantum numbers, QCS

3 contributes to the correlator

of QA3 . Hence we expect

〈QA3 (x3)QA3 (y3)〉 ∝ 〈QCS
3 (x3)QCS

3 (y3)〉 ∼ e−|x3−y3|/ξ . (2.11)

This shows that 〈QA3 (x3)QA3 (y3)〉 cannot be a constant as a function of x3, indicating that

the U(1)A symmetry is certainly violated at the level of correlation functions of quark

bilinears in QCD at sufficiently high temperature.

It would then be quite natural to expect, by continuity, that the U(1)A symmetry be

violated at any T > Tc. In the following, we shall assume U(1)A violation for T > Tc in

the thermodynamic limit and pursue its consequences in detail.

3 Topology and finite-volume effect

In this section we write down the most general QCD partition function for T > Tc in

terms of quark masses and derive general expressions for the chiral susceptibilities and

topological susceptibility based on the method of [15, 26]. Our arguments here are based

on symmetries of QCD and a systematic expansion in terms of a small parameter m/T � 1,

and are fully under theoretical control. We then elucidate the contributions of topology and

finite-volume effects to the violation of the U(1)A symmetry (characterized by the difference

of two-point functions χπ − χδ to be defined below), and discuss possible implications for

lattice QCD simulations. For definiteness, we will concentrate on two-flavor QCD below.

3.1 Partition function and topological susceptibility

We consider the partition function of two-flavor QCD at finite temperature as a function

of quark masses mu,d. Since there are no massless modes at T > Tc in the chiral limit,4

the free energy density should be analytic in quark mass.5

To write down the general form of the free energy, we consider a generic quark mass

matrix M (= 2× 2 matrix in the flavor space) and let M transform under the symmetry,

G ≡ SU(2)R × SU(2)L ×U(1)A, so that the quark mass term in the QCD Lagrangian

Lmass = ψ†LMψR + h.c. (3.1)

is invariant under G. Here ψR,L are the right- and left-handed quarks, which transform

under G as ψR → eiθA VRψR and ψL → e−iθA VLψL, respectively, where θA is a U(1)A
rotation angle and VR,L ∈ SUR,L(2). It then follows that M should transform as M →
e−2iθA VLMV †R.

Noting that the free energy density at T > Tc is invariant under the restored SU(2)R×
SU(2)L chiral symmetry but not under the U(1)A symmetry, the partition function of

4In the imaginary-time formalism, contributions of massless quarks is infrared (IR) finite because the

lowest Matsubara frequency for fermions ∼ πT acts as an effective IR cutoff.
5It should be stressed that analyticity of the partition function breaks down if the zero-temperature part

is thrown away. For example, in a non-interacting theory the free energy of quarks after subtraction of the

zero-temperature part includes a term ∼ m4 log(m/πT ) [27], which is not analytic in m.
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QCD in a spatial volume V3 can be expanded in terms of a small parameter mu,d/T � 1

as [15, 26]

Z(T, V3,M) = exp

[
−V3

T
f(T, V3,M)

]
, (3.2)

f(T, V3,M) = f0 − f2 trM †M − fA(detM + detM †) +O(M4) , (3.3)

where f0, f2 and fA are functions of T and V3. We assume that this expansion has a

nonzero radius of convergence. The term ∝ fA represents the effect of axial anomaly: for

a U(1)A rotation ψ → eiγ5θA ψ, this term transforms as detM → e4iθA detM , so it breaks

U(1)A down to Z4. The absence of O(M) terms is consistent with the vanishing chiral

condensate in the chiral limit for T > Tc. In the following we will disregard the O(M4)

terms in the free energy as they are suppressed by additional powers of mu,d/T � 1. Since

the partition function (3.2) is obtained with a systematic expansion, this will be called the

“effective theory” in this paper (although there is no dynamical field in it).

We now turn to the study of topological sectors. As is well known, the θ angle can be

incorporated into the partition function via M → M eiθ/Nf [28], where Nf = 2 is of our

interest here. Then the partition function in a sector of given topological charge

Q ≡ g2

32π2

∫
d4xGaµνG̃

a
µν (3.4)

is obtained, from (3.3), as

ZQ(T, V3,M) ≡
∮

dθ

2π
e−iQθ Z(T, V3,Meiθ/2). (3.5)

= e−V4[f0−f2(m2
u+m2

d)]

∮
dθ

2π
e−iQθ e2V4fAmumd cos θ (3.6)

= e−V4[f0−f2(m2
u+m2

d)] IQ(2V4fAmumd) , (3.7)

where V4 ≡ V3/T is the spacetime volume, IQ is the modified Bessel function of Q-th order,

and M = diag(mu, md) was substituted. Intriguingly, the probability distribution of Q is

proportional to IQ in one-flavor QCD, too [28].6

The Taylor expansion of (3.7) in powers of quark masses starts with (V4fAmumd)
|Q|,

which is the contribution of exact zero modes. Hence the topological sectors with Q 6= 0

will all drop out in the chiral limit if V4 is finite. By contrast, topological fluctuations will

not be suppressed at all even near the chiral limit if V4 is sufficiently large. This subtle

balance between topology and volume has an important practical consequence for lattice

simulations, as we will discuss shortly.

An important quantity that characterizes topological fluctuations is the mean square

of the topological charge at θ = 0,

〈Q2〉 =

∞∑
Q=−∞

Q2ZQ
Z

= 2V4fAmumd , (3.8)

6An analogous toy model was also studied in [29, appendix A].
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where (3.7) was used. The topological susceptibility is then given [15, 26] by

χtop ≡
〈Q2〉
V4

= 2fAmumd. (3.9)

Alternatively, one can reach (3.9) by considering that, with the replacement M →M eiθ/2

in (3.3), the θ-dependence of the free energy reads

f(θ) = f̃ − 2fAmumd cos θ +O(m4), (3.10)

where f̃ ≡ f0 − f2(m2
u + m2

d) is the term independent of θ. The topological susceptibility

is then

χtop ≡
∂2f(θ)

∂θ2

∣∣∣∣
θ=0

= 2fAmumd , (3.11)

which is the same as (3.9). Note that our result, obtained assuming fA 6= 0, does not agree

with the result by Aoki et al. [13] that 〈Q2〉/V3 → 0 as V3 →∞ for a small but nonzero m.

The topological susceptibility here should be contrasted with that of the QCD vacuum,

〈Q2〉
V4

= Σ(m−1
u +m−1

d )−1 (3.12)

with Σ being the magnitude of the chiral condensate [28]. This difference can be under-

stood in the following way. In the presence of chiral symmetry breaking, the quark mass

dependence of the free energy can be expanded in terms of the quark mass as

f = f0 − Σ[tr(MU †) + tr(M †U)] +O(M2), (3.13)

where U denotes the SU(2) Nambu-Goldstone field associated with spontaneous chiral sym-

metry breaking. The topological susceptibility is dominated by the second term in (3.13)

and is given by (3.12), with the higher order contributions being O(M2). When chiral sym-

metry is restored (Σ = 0), on the other hand, the leading contribution to the topological

susceptibility is O(M2) and is given by (3.9). The behavior χtop ∝ mumd is also found in

the 2SC phase of dense QCD for the same reason [30].

From the partition function (3.3), higher moments of Q can also be derived [26] as

〈Q2〉 = A, (3.14a)

〈Q4〉 = A(1 + 3A), (3.14b)

〈Q6〉 = A(1 + 15A+ 15A2), (3.14c)

〈Q8〉 = A(1 + 63A+ 210A2 + 105A3), (3.14d)

with A ≡ 2V4fAmumd, while all odd moments vanish.

3.2 Chiral susceptibilities and U(1)A anomaly

We now turn to two-point correlation functions of quark bilinears (also called chiral sus-

ceptibilities). The utility of chiral susceptibilities in two-flavor QCD as a convenient probe

for the U(1)A anomaly has been advocated long time ago [5, 7], and nowadays they are

– 7 –
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measured in lattice simulations with dynamical quarks [16, 17, 25]. It is therefore of

primary interest to relate these susceptibilities to the coefficients f0, f2 and fA of the ef-

fective theory (3.3) [15]. In this paper we will work with the following definitions for chiral

susceptibilities:

χσ ≡
∫

d4x
[
〈ψψ(x)ψψ(0)〉 − 〈ψψ〉2

]
, (3.15a)

χπ ≡
∫

d4x
[
〈ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)〉 − 〈ψiγ5τ3ψ〉2

]
, (3.15b)

χδ ≡
∫

d4x
[
〈ψτ3ψ(x)ψτ3ψ(0)〉 − 〈ψτ3ψ〉2

]
, (3.15c)

χη ≡
∫

d4x
[
〈ψiγ5ψ(x)ψiγ5ψ(0)〉 − 〈ψiγ5ψ〉2

]
, (3.15d)

where ψψ = uu+ dd and ψiγ5ψ = uiγ5u+ diγ5d in our notation, and τ3 is the third Pauli

matrix. Note that these definitions do not necessarily coincide with those in the literature.

Inserting M = diag(mu,md) into f(T, V3,M), we obtain

χσ =
1

V4

(
∂2

∂m2
u

+
∂2

∂m2
d

+ 2
∂2

∂mu∂md

)
logZ = 4f2 + 4fA (3.16)

χδ =
1

V4

(
∂2

∂m2
u

+
∂2

∂m2
d

− 2
∂2

∂mu∂md

)
logZ = 4f2 − 4fA (3.17)

up to O(m2) corrections. Similarly, inserting M = diag(mu + ib,md − ib) into f(T, V3,M)

we find

χπ =
1

V4

[
1

Z

∂2Z

∂b2

∣∣∣
b=0
−
(

1

Z

∂Z

∂b

∣∣∣
b=0

)2
]

= 4f2 + 4fA . (3.18)

In the same way one can also show χη = 4f2 − 4fA. The equality χσ = χπ, as well as

χδ = χη, is a direct consequence of the restored SU(2)R × SU(2)L chiral symmetry.

The axial anomaly manifests itself in the difference [15]

χπ − χδ = 8fA +O(M2) , (3.19)

where the correction is displayed for completeness. Practically, the correlators of π and δ

are most convenient in lattice simulations, because they have no disconnected components

(for degenerate masses). Note that, if one wishes, it is entirely straightforward to extend the

calculation for (3.19) to higher orders by including U(1)A-violating terms such as (detM)2

and (trMM †)(detM) in the free energy (3.3). However this is not expected to bring about

quantitative differences when M/T � 1.

In [11], the two-point correlators 〈π(x)π(0)〉 and 〈δ(x)δ(0)〉 (rather than their spatial

integrals, χπ and χδ) were calculated directly in high-temperature QCD by using the ’t

Hooft vertex of instantons. They found that the difference of the two correlators decreases

at high temperature but does not vanish exactly, in agreement with the general argument

presented in section 2.
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It was emphasized in [8, 9] that the dominant contribution to χπ − χδ comes from

exact zero modes in the Q = ±1 sector. A more recent paper [13] argues to the contrary

that contributions of exact zero modes is suppressed in the thermodynamic limit. In what

follows we aim to clarify this issue.

Let us first decompose the anomalous contribution (3.19) into contributions from each

topological sector. We assume θ = 0 in the following. Since the second terms in (3.15b)

and (3.15c) vanish for degenerate masses, it follows that

lim
mu,d→m

(χπ − χδ) =

∫
d4x
[
〈ψiγ5τ3ψ(x)ψiγ5τ3ψ(0)〉 − 〈ψτ3ψ(x)ψτ3ψ(0)〉

]
=

1

V4

(
1

Z

∂2Z

∂b2

∣∣∣
b=0
− 1

Z

∂2Z

∂c2

∣∣∣
c=0

)
(3.20)

≡
∞∑

Q=−∞

ZQ
Z
PQ , (3.21)

where it is tacitly assumed in (3.20) that the first term is evaluated for M = diag(m +

ib,m − ib) and the second term for M = diag(m + c,m − c). In (3.21) we defined the

contribution PQ from the sector of topological charge Q as

PQ ≡
1

V4

(
1

ZQ

∂2ZQ
∂b2

∣∣∣
b=0
− 1

ZQ

∂2ZQ
∂c2

∣∣∣
c=0

)
(3.22)

=

[
4f2 + 4fA

I ′Q(2V4fAm
2)

IQ(2V4fAm2)

]
−

[
4f2 − 4fA

I ′Q(2V4fAm
2)

IQ(2V4fAm2)

]
(3.23)

= 8fA
I ′Q(2V4fAm

2)

IQ(2V4fAm2)
. (3.24)

Using the identity I ′Q(x) = Q
x IQ(x) + IQ+1(x) or I ′Q(x) = −Q

x IQ(x) + IQ−1(x) depending

on the sign of Q, one may cast PQ into a suggestive form

PQ =


4

V4m2
Q+ 8fA

IQ+1(2V4fAm
2)

IQ(2V4fAm2)
for Q ≥ 0 ,

4

V4m2
|Q|+ 8fA

IQ−1(2V4fAm
2)

IQ(2V4fAm2)
for Q < 0 .

(3.25)

The first terms in (3.25) are the contributions from exact zero modes. This can be easily

seen by plugging ZQ ∝ (m2 + b2)|Q| and ZQ ∝ (m2 − c2)|Q| into the first and the second

terms in (3.22), respectively. Therefore the U(1)A-violating contribution (3.21) may be

split into the zero-mode fraction7 and the nonzero-mode fraction as

lim
mu,d→m

(χπ − χδ) = 8fA(Sz + Snz) , (3.26)

7It is intriguing that (3.27) below has exactly the same form as the fraction of zero modes for the chiral

condensate in one-flavor QCD [28, eq. (7.3)], under the identification 2V4fAm
2 ↔ V4Σm.
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Figure 1. Relative contributions of zero and nonzero Dirac eigenmodes to χπ − χδ as a function

of x ≡ 2V4fAm
2.

where

Sz ≡
1

8fA

(
2

∞∑
Q=1

ZQ
Z

4

V4m2
Q

)
= e−2V4fAm

2 [
I0(2V4fAm

2) + I1(2V4fAm
2)
]
, (3.27)

Snz = 1− Sz . (3.28)

In addition, the contribution of the Q = ±1 sectors to Sz is defined as

S±1 ≡
1

8fA

(
2
Z1

Z

4

V4m2

)
=

1

V4fAm2
e−2V4fAm

2
I1(2V4fAm

2) . (3.29)

The quantities Sz, Snz and S±1 are plotted in figure 1 as functions of x ≡ 2V4fAm
2.

We observe that, in a small volume or near the chiral limit (x � 1), χπ − χδ is

dominated by the contribution of exact zero modes in the Q = ±1 sector, as argued

in [8, 9]. By contrast, if we take the thermodynamic limit (x � 1), the contribution of

nonzero modes dominates, and the exact zero modes are completely irrelevant. This can

be understood from (3.8): since 〈Q2〉 ∼ V4fAm
2, one naturally expects 〈|Q|〉 = O(

√
V4),

implying that the first term in (3.25) is suppressed in a large volume.8 On the other hand,

the second term in (3.25) tends to 8fA, which is the same value as in the full theory (3.19).

This means that the anomaly (fA 6= 0) in the thermodynamic limit must be attributed

to nonzero Dirac eigenmodes. The Q = ±1 sector does not play a distinguished role.

Indeed, one can show for x � 1 that ZQ/Z obeys a Gaussian distribution (see also [28]),

according to which ZQ/Z ∼ 1/
√
V4fAm2 for |Q| .

√
V4fAm2 and is suppressed otherwise.

Therefore, if the volume is sufficiently large with a fixed nonzero mass, all contributions to

χπ − χδ from the sectors with |Q| .
√
V4fAm2 are equally important, in contradistinction

to the finite-volume regime (x . 1) where only the Q = ±1 sectors contribute to χπ − χδ.
To avoid confusion, we stress that the total amount of χπ − χδ is equal to 8fA irre-

spective of the value of x; the order-of-limit issue does not arise, of course, because there

8In this inspection, the positivity of the path-integral measure plays an essential role. We note that the

suppression of exact zero modes does not hold in general for negative or complex masses [28, 31, 32].
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x

I1(x)

I0(x)

Figure 2. The magnitude of (χπ − χδ)
∣∣
Q=0

normalized by (χπ − χδ)
∣∣
full

as a function of x =

2V4fAm
2. At large volume (x� 1), I1(x)/I0(x) ' 1− 1

2x .

is no long-range-order in QCD above Tc. The reason the exchange of dominance occurs

between zero and nonzero modes as we vary the volume is that a long-range correlation is

induced once the global topological charge is fixed [28].

3.3 Implications for lattice QCD simulations

We now discuss implications of the above results for lattice QCD simulations. So far the

U(1)A anomaly at high temperature has been thoroughly investigated on the lattice (as

reviewed in section 1), but despite efforts, a definitive conclusion on the (non-)restoration

of the U(1)A symmetry is not reached yet. This is not surprising, considering that the

physics of U(1)A anomaly is highly sensitive to the explicit breaking of chiral symmetry

by lattice discretization; even domain-wall fermions have serious problems, as pointed out

in [20]. In this regard, the most reliable simulations are those in [16] employing dynamical

overlap fermions. They reported restoration of the U(1)A symmetry based on simulations

with a fixed global topological charge (Q = 0). They also evaluated possible finite-size

effects associated with the topology fixing, by using the formalism developed in [29, 33].

Here we wish to revisit this issue based on our effective-theory framework.

It follows from (3.21) that in the topologically trivial sector (Q = 0) we have

χπ − χδ = 8fA
I1(2V4fAm

2)

I0(2V4fAm2)
. (3.30)

The ratio of (3.30) to (χπ−χδ)
∣∣
full

= 8fA is plotted in figure 2. It shows that the ratio tends

to 0 for small x and obscures the nonzero value in the full theory. This signals a strong

finite-volume effect at small x. It seems necessary to ensure at least x = 2V4fAm
2 & 1 in

order to observe a nonzero value of χπ − χδ clearly.

Our result so far is rigorous, as long as fA 6= 0 and the O(M4) correction to (3.3)

can be neglected. At sufficiently high temperature T � Tc we may resort to the dilute

instanton gas approximation [12], which yields

fA ∼ T 2 e−8π2/g2 ∼ T 2(Λ/T )(11Nc−2Nf )/3 ∝ T−23/3 (3.31)

– 11 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
1

for Nc = 3 and Nf = 2. Since it decays so rapidly, it would be a challenging task to achieve

a sufficiently large volume that satisfies 2V4fAm
2 & 1 while keeping m small. On the other

hand, near Tc, the asymptotic formula (3.31) breaks down and we do not exactly know

how small fA is.

One way to extract fA from a topology-fixed simulation is as follows: if the simulation

volume V4 is not large and hence V4fAm
2 . 1, then we have, to a good approximation,

(χπ − χδ)
∣∣∣
Q=0
' 8V4f

2
Am

2 (3.32)

from (3.30), where we used I1(x)/I0(x) ' x/2 for x . 1. Therefore in principle one can

extract fA by fitting the lattice data to the formula (3.32). This is a proposal for future

lattice simulations with overlap fermions.

4 Dirac eigenvalue spectra and U(1)A anomaly

In this section we derive new spectral sum rules and a novel Banks-Casher-type relation

which link the Dirac spectrum to the violation of the U(1)A symmetry in high-temperature

QCD. We then discuss possible forms of the spectral functions. Throughout this section we

will focus on two-flavor QCD. We denote the purely imaginary eigenvalues of the Euclidean

Dirac operator D = γµ(∂µ + igAµ) by {iλn}n with λn ∈ R and define the spectral density

for a fixed gauge field Aµ in a finite volume as

ρA(λ) ≡
∑
n

δ(λ− λn) . (4.1)

Chiral symmetry of the Dirac operator, {D, γ5} = 0, ensures ρA(λ) = ρA(−λ).

4.1 Spectral sum rules I: macroscopic limit

The partition function of two-flavor QCD in the sector of topological charge Q is given by

ZQ =

〈∏
k

(iλk +mu)
∏
`

(iλ` +md)

〉YM

Q

, (4.2)

where the average is taken with respect to the pure Yang-Mills action, and |Q| exact

zero modes are implicitly included in the product. Equating the microscopic partition

function (4.2) to that of the effective theory (3.7) and taking their derivatives with respect

to mu and/or md, one finds various nontrivial formulas for correlation functions of the

Dirac eigenvalues. The simplest one is given by

∂

∂mu
logZQ =

〈∑
n

1

iλn +mu

〉
Q

(4.3)

=

∫ ∞
−∞

dλ

〈
ρA(λ)

〉
Q

iλ+mu
(4.4)

= 2V4f2mu + 2V4fAmd

I ′Q(2V4fAmumd)

IQ(2V4fAmumd)
+O(m3) , (4.5)
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with I ′Q(x) ≡ dIQ(x)/dx. Now 〈. . .〉Q stands for the average with full Nf = 2 QCD

measure. In the thermodynamic limit, the number of Dirac eigenvalues scales linearly with

V4, so let us define the one-point function (or the macroscopic spectral density) by

R1(λ) = lim
V4→∞

1

V4

〈
ρA(λ)

〉
Q
, (4.6)

in terms of which (4.5) reads as∫ ∞
−∞

dλ
R1(λ)

iλ+mu
= 2f2mu + 2fAmd +O(m3) . (4.7)

Note that R1(λ) depends on mu and md implicitly through the QCD measure used for

averaging. R1(λ) is expected to have no dependence on Q since topology is irrelevant once

the thermodynamic limit is taken. Strictly speaking, we have to specify a UV cutoff scheme

in order to make (4.7) fully meaningful. Equation (4.7) will be used later in section 5.

There exists another relation that directly relates R1(λ) to the U(1)A anomaly [15, 34].

Setting mu = md ≡ m and evaluating the chiral susceptibilities (3.15) in the basis of Dirac

eigenstates, one can straightforwardly obtain

χπ = 4

∫ ∞
0

dλ

λ2 +m2
R1(λ) and χδ = 4

∫ ∞
0

dλ
λ2 −m2

(λ2 +m2)2
R1(λ) . (4.8)

By subtraction we arrive at [15, 34]

χπ − χδ = 8

∫ ∞
0

dλ
m2

(λ2 +m2)2
R1(λ) . (4.9)

Combining this formula with (3.19), we find∫ ∞
0

dλ
m2

(λ2 +m2)2
R1(λ) = fA +O(m2) . (4.10)

It is clear from this relation that small Dirac eigenvalues are necessary for fA to be nonzero.9

Indeed fA = 0 follows immediately if R1(λ) has a spectral gap near zero at T > Tc.

Equations (4.7), (4.9) and (4.10) highlight essential properties of R1(λ).

Unfortunately the form of R1(λ) in the near-zero region cannot be deduced uniquely

from (4.7) and (4.10) alone. Actually there are infinitely many functions that satisfy (4.10);

e.g.,

R1(λ) ∼ fAm
2n+1−kλk

(λ2 +m2)n
and fAm

2δ(λ) , (4.11)

where n ≥ 1 and 0 ≤ k ≤ 2n + 1 are arbitrary integers. Recently, the Dirac spectrum in

two-flavor QCD at T & Tc has been studied intensively in lattice QCD simulations [16,

17, 24, 25] (see also [14, 15, 35–39] for early works). The three possibilities R1(λ) ∼ m, λ,

and m2δ(λ) were examined in detail in [17, 25], whereas the Breit-Wigner form R1(λ) ∼
9Large eigenvalues with density R1(λ) ∼ λ3 only affect the O(m2) part; fA receives no contribution.
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ρ0A/(λ
2 + A2) was nicely fitted to the lattice data in [24, 40] (but see [19, 20, 41, 42]

for detailed investigations of lattice artifacts stemming from partial reweighting). The δ

form is motivated by the dilute instanton gas picture [12] in QCD at T → ∞, but the

exact δ form is unlikely to emerge at T & Tc due to the overlap of neighboring instantons

and anti-instantons. For the moment, contrasting results from different simulations do not

allow us to draw a definitive conclusion on the form of R1(λ).

4.2 Spectral sum rules II: microscopic limit

There is yet another way to take the thermodynamic limit in (4.5): if we let all of λ, mu

and md scale as 1/
√
V4fA in the V4 → ∞ limit, the dependence on the topology does

persist. To see this, let us define a rescaled dimensionless spectral density

ρQ(ζ;µu, µd) ≡ lim
V4→∞

1√
2V4fA

〈
ρA
(

ζ√
2V4fA

) ∣∣∣∣
mu=

µu√
2V4fA

, md=
µd√
2V4fA

〉
Q

, (4.12)

which is analogous to the microscopic spectral density in the ε-regime [28, 43] but note that

the relevant scale of eigenvalues here is 1/
√
V4 rather than 1/V4.10 Then (4.5) becomes∫ ∞

−∞
dζ

1

iζ + µu
ρQ(ζ;µu, µd) =

f2

fA
µu + µd

I ′Q(µuµd)

IQ(µuµd)
. (4.13)

Notice that all O(m3) corrections in (4.5) drop out in this limit; hence (4.13) is exact. This,

of course, comes with a caveat that such a limit is meaningful only when the assumption

fA 6= 0 is correct. (See appendix B for another microscopic scaling.) It is straightforward

to extend the rescaling (4.12) to higher-order spectral correlation functions.

We conjecture that spectral fluctuations on the scale 1/
√
V4 should be universal, i.e.,

determined solely by global symmetries and independent of the detailed form of QCD

interactions in the ultraviolet. Although such a new “microscopic limit” prompts us to

construct a random matrix theory that describes the Dirac spectrum in this regime, we

have not been successful yet. The difficulty in finding a proper random matrix theory may

have something to do with the fact that no global symmetry is spontaneously broken at

T > Tc, unlike in the QCD vacuum [28, 43] and high-density QCD [44, 46, 47].

We can derive infinitely many spectral sum rules rigorously, by expanding the following

expression in powers of quark masses,

(mumd)
−QZQ

lim
m→0

[
(mumd)

−QZQ
] = Q!

IQ(2V4fAmumd)

(V4fAmumd)Q
eV4f2(m2

u+m2
d)

=

〈∏
k

′
(

1 +
m2
u

λ2
k

)∏
`

′
(

1 +
m2
d

λ2
`

)〉
Q

, (4.14)

10Intriguingly, a similar unusual scaling ∼ 1/
√
V4 also appears in color-superconducting phases of QCD

at high density [44, 45], in the superfluid phase of two-color QCD [46, 47] and in an exotic phase proposed

by Stern [48–50].
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where Q ≥ 0 is assumed and the product
∏′ runs only over λn > 0. The average above

is taken for the massless two-flavor QCD measure. Note that both sides of (4.14) are

normalized to unity in the chiral limit. Two examples of the sum rules read〈∑
k

′ 1

λ2
k

〉
Q

= V4f2 and

〈∑
k

′ 1

λ4
k

〉
Q

=
(V4fA)2

1 +Q
. (4.15)

∑′ above denotes a sum over λn > 0. Note that the first sum rule receives UV-divergent

contributions from large eigenvalues with density ∝ λ3, implying that f2 is a regularization-

scheme-dependent quantity. By contrast, the second sum rule is dominated by contribu-

tions from O(1/
√
V4) eigenvalues. UV eigenvalues only give O(V4) correction to the r.h.s. ,

which is negligibly small as compared to the O(V 2
4 ) term in the V4 →∞ limit. Indeed one

can show that fA is free from UV divergences (see appendix B of [49]). The suppression of

the second sum rule for large Q is due to the repulsion of Dirac eigenvalues from the origin

by Q exact zero modes.

In terms of the “microscopic” spectral density, the sum rules (4.15) read∫ ∞
0

dζ
ρQ(ζ; 0, 0)

ζ2
=

f2

2fA
, (4.16a)∫ ∞

0
dζ

ρQ(ζ; 0, 0)

ζ4
=

1

4(1 +Q)
. (4.16b)

To obtain the universal function ρQ(ζ; 0, 0) analytically is an important open problem that

deserves further investigation.

4.3 New Banks-Casher-type relation

If the axial anomaly is present at high temperature, it will be manifested not only in the

Dirac eigenvalue density but also in the n-point spectral correlation functions for n ≥ 2.

To examine this possibility, let us introduce the connected two-point correlation function

(see e.g., [51])11

RC(λ, λ′) ≡ lim
V4→∞

1

V4

[ 〈
ρA(λ)ρA(λ′)

〉
−
〈
ρA(λ)

〉 〈
ρA(λ′)

〉 ]
. (4.17)

RC depends on mu,d implicitly through the averaging weight. Note that RC satisfies the

constraint ∫ ∞
−∞

dλ RC(λ, λ′) =

∫ ∞
−∞

dλ′ RC(λ, λ′) = 0 . (4.18)

If eigenvalues are entirely uncorrelated, they obey the Poisson statistics. In this case, the

two-point function is related to the one-point function (cf. [52, (5.4)] and [53, (3.33)]) as

〈
ρA(λ)ρA(λ′)

〉
Po

=
{
δ(λ− λ′) + δ(λ+ λ′)

} 〈
ρA(λ)

〉
+

(
1− 1

N

)〈
ρA(λ)

〉 〈
ρA(λ′)

〉
, (4.19)

11In the rest of this subsection we will ignore topological zero modes altogether. As argued in section 3.2,

this is justifiable in the macroscopic limit with a positive path-integral measure.

– 15 –



J
H
E
P
0
1
(
2
0
1
6
)
1
4
1

where N denotes the number of chiral pairs of Dirac eigenvalues {±iλn} (hence the to-

tal number of eigenvalues is 2N). The δ-functions in first term represent a trivial self-

correlation. In appendix C we outline the derivation of (4.19) for completeness. Then we

obtain for the uncorrelated Dirac spectra

RPo
C (λ, λ′) =

{
δ(λ− λ′) + δ(λ+ λ′)

}
R1(λ)− V4

N
R1(λ)R1(λ′) . (4.20)

As N grows linearly with V4, V4/N has a well-defined thermodynamic limit. One can check

that (4.20) satisfies (4.18).

Nontrivial two-level correlations among eigenvalues can be characterized by the devia-

tion of RC from the Poisson case. Let us define the two-point cluster function T2(λ, λ′) by

T2(λ, λ′) ≡ RPo
C (λ, λ′)−RC(λ, λ′) . (4.21)

We observe that T2(λ, λ′) = T2(λ′, λ) and

T2(λ, λ′) = T2(−λ, λ′) = T2(λ,−λ′) = T2(−λ,−λ′) (4.22)

owing to chiral symmetry. For the Poisson distribution, T2 vanishes identically by definition.

To see how RC and T2 are related to the axial anomaly, we note that (3.16) and (3.17)

together with χσ = χπ imply

χπ − χδ = 4χdisc = 8fA +O(m2) , (4.23)

where χdisc is the disconnected scalar susceptibility defined by

χdisc ≡ lim
V4→∞

1

V4

∂2

∂mu∂md
logZ

= lim
V4→∞

1

V4

(〈∑
i

1

iλi +mu

∑
j

1

iλj +md

〉
−
〈∑

k

1

iλk +mu

〉〈∑
`

1

iλ` +md

〉)

=

∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
RC(λ, λ′)

(iλ+mu)(iλ′ +md)
. (4.24)

In the limit mu = md = m, we substitute (4.21) into (4.24), obtaining

χdisc =

∫ ∞
−∞

dλ

[
R1(λ)

(iλ+m)2
+

R1(λ)

λ2 +m2

]
− V4

N

(∫ ∞
−∞

dλ
R1(λ)

iλ+m

)2

−
∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
T2(λ, λ′)

(iλ+m)(iλ′ +m)
(4.25)

=

∫ ∞
0

dλ
4m2

(λ2 +m2)2
R1(λ)−

∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
T2(λ, λ′)

(iλ+m)(iλ′ +m)
+O(m2) (4.26)

= 4fA −
∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
T2(λ, λ′)

(iλ+m)(iλ′ +m)
+O(m2) , (4.27)

where (4.7) and (4.10) have been used. Recalling (4.23) we obtain∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
T2(λ, λ′)

(iλ+m)(iλ′ +m)
= 2fA +O(m2) . (4.28)
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Finally, taking the chiral limit in (4.28), we arrive at a new Banks-Casher-type relation

T2(0, 0) =
2

π2
fA (4.29)

for massless two-flavor QCD at T > Tc. To the best of our knowledge, (4.29) is a new

result. It reveals that the U(1)A anomaly is encoded, not only in the spectral density as

in (4.10), but also in the nontrivial two-level correlations among near-zero eigenvalues. If

the near-zero Dirac eigenvalues are entirely uncorrelated, then T2 vanishes and leads to

fA = 0, suggesting effective restoration of the U(1)A symmetry. Whether an analogue

of (4.29) can be derived in Nf > 2 QCD at T > Tc is an interesting open problem.

Some remarks are in order. In taking the chiral limit we have replaced 1/[(iλ +

m)(iλ′+m)] with π2δ(λ)δ(λ′). Strictly speaking, in doing so we have tacitly assumed that

the typical scale over which T2(λ, λ′) varies is much larger than m. Whether this is true

or not in actual QCD is a dynamical problem and must be checked separately.12 We also

remark that (4.29) cannot be extended to T < Tc because of the infrared-singular behavior

T2(λ, λ′) ∼ − Σ2

32π4F 4
log |λ− λ′| for |λ− λ′| � λ [51].

One might suspect that the correlation in the Dirac spectra revealed by (4.29) is at

variance with the quasi-instanton picture proposed in [26] where a Poisson distribution

of topological objects (i.e., dressed instantons called quasi-instantons) was argued at all

T > Tc.
13 In the limit T → ∞, where the interaction is weak, the quasi-instanton gas

is expected to reduce to the conventional dilute bare instanton gas [12]. Let us try to

explain how they can be consistent with each other. The point is that the Poisson distri-

bution of topological zero modes (quasi-instantons) does not necessarily mean the Poisson

distribution of Dirac eigenvalues.

In the quasi-instanton picture, independently distributed topological charges are ex-

pected to generate small Dirac eigenvalues that can be described, to a good approximation,

by a spectral density with a δ-peak at the origin. Let us discuss how to deal with this case

explicitly within the present spectral analysis. The spectral density over a gauge field Aµ
now assumes a form

ρA(λ) = cAδ(λ) + ρ̃A(λ) , (4.30)

where ρ̃A(λ) is the density of eigenvalues away from zero and cA ≥ 0 is an integer which

is equal to the total number of topological objects, N = N+ + N−.14 If we assume that

the density of nonzero eigenvalues ρ̃A(λ) is so small that the anomalous contribution fA
in (4.10) solely originates from the δ peak at the origin, then it follows that〈

cA
〉

= 2V4fAmumd . (4.31)

12This smoothness condition is necessary to derive the original Banks-Casher relation, too [28].
13Topological objects similar to our quasi-instantons have been advocated for color-superconducting

phases of QCD at high density [30, 54]. While quasi-instantons in hot QCD do not interact with each

other [26], those in dense QCD weakly interact via exchange of (pseudo) Nambu-Goldstone modes [30, 54].
14Precisely speaking, the cA modes consist of |Q| = |N+−N−| exact zero modes and Min(N+, N−) chiral

pairs of near-zero modes.
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(In deriving this we have used
∫∞

0 dx δ(x) = 1/2.) It is pleasing to see that (4.31) agrees

with the quasi-instanton density derived in [26, section V].

Next, by plugging (4.30) into (4.17) we find

RC(λ, λ′) =
1

V4

[〈
(cA)2

〉
−
〈
cA
〉2
]
δ(λ)δ(λ′) + R̃C(λ, λ′)

+
1

V4
δ(λ)

[〈
cAρ̃A(λ′)

〉
−
〈
cA
〉 〈
ρ̃A(λ′)

〉]
+

1

V4
δ(λ′)

[〈
cAρ̃A(λ)

〉
−
〈
cA
〉 〈
ρ̃A(λ)

〉]
, (4.32)

where R̃C is the two-point connected function for eigenvalues away from zero. The last

two lines will vanish if there is no correlation between zero and nonzero modes, which we

assume. Then we substitute (4.32) into (4.24) to obtain

χdisc =
1

V4mumd

[〈
(cA)2

〉
−
〈
cA
〉2
]

+

∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′
R̃C(λ, λ′)

(iλ+mu)(iλ′ +md)
. (4.33)

As we have been assuming that the density of nonzero modes is sufficiently low, it follows

that the second term can be neglected in the chiral limit compared to the first term.

Then (4.31) and χdisc = 2fA (cf. (4.23)) imply〈
(cA)2

〉
−
〈
cA
〉2

=
〈
cA
〉

= 2V4fAmumd . (4.34)

This coincidence between the average and the variance of cA indicates that cA is Poisson

distributed. This is indeed what the quasi-instanton picture in [26] suggests.

We mention that the Poisson statistics of topological objects was indeed observed in

recent lattice data at T = 1.5Tc [24]. However, in the real world, quasi-instantons will not

be strictly noninteracting (due to the O(m4) term in the free energy) and the δ-peak of the

spectral density may not be sufficiently narrow to rigorously justify the above treatment.

Also, the correlations between zero modes and nonzero modes will not be negligible in

general. With these caveats in mind, we still believe that the quasi-instanton picture in [26]

and the exact Banks-Casher-type relation (4.29) can be a useful starting point for a fuller

analytical and numerical investigation of the Dirac spectrum in QCD at high temperature

in future.

5 Comment on the Aoki-Fukaya-Taniguchi theorem

Contrary to our assumption that fA 6= 0 for T > Tc, Aoki at al. [13] claim that, under cer-

tain assumptions, the violation of the U(1)A symmetry is invisible in correlation functions

of scalar and pseudoscalar quark bilinears for T > Tc in two-flavor QCD. (This claim does

not generalize to the vector-axial-vector sector, as we discussed in section 2.) There are

two key assumptions in their analysis:15

15Aoki et al. used overlap fermions on the lattice to regularize UV divergences. This is not crucial in the

following discussion, however.
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1. The Dirac spectral density can be expanded in Taylor series

R1(λ) =
∞∑
n=0

〈ρAn 〉m
λn

n!
(5.1)

near the origin, with a radius of convergence that does not vanish in the chiral limit.

In particular, there is no δ(λ) term. The notation 〈ρAn 〉m makes it clear that these

coefficients are dependent on the quark mass m.

2. The expectation value 〈O(A)〉m of any m-independent observable O(A) is an analytic

function of m2 at T > Tc. (Here O(A) must be a functional of the gauge field only.

It does not include fermionic observables, such as the chiral condensate. The quarks

must be integrated out before this assumption is applied.)

It should be noted that none of the examples in (4.11) satisfies the first assumption.

Precisely speaking, ref. [13] assumes that the spectral density for a given gauge field

Aµ can be expanded in Taylor series, while the above assumption 1 is only concerned with

the spectral density averaged over all gauge fields.16

While their original proof [13] is rather involved, we now show that a much simpler

proof of fA = 0 for Nf = 2 based on our analysis in the former sections is possible. Namely,

one can easily prove the following theorem:

Theorem. Under the two assumptions above, fA = 0.

Proof. From (5.1) and the Banks-Casher relation [55], we have

〈ψψ〉 ∝ lim
m→0
〈ρA0 〉m . (5.2)

For T > Tc where 〈ψψ〉 = 0, it must be that

lim
m→0
〈ρA0 〉m = 0 . (5.3)

Since 〈ρA0 〉m is an analytic function of m2 according to the second assumption, (5.3) means

that 〈ρA0 〉m = O(m2); in particular

lim
mu→0

〈ρA0 〉m = O(m2
d) . (5.4)

On the other hand, it follows from (4.7) that∫ Λ

0
dλ

2mu

λ2 +m2
u

R1(λ) = 2f2mu + 2fAmd +O(m3) , (5.5)

where a UV cutoff Λ was inserted. Note that, to derive this expression, we have only used (i)

analyticity of the free energy and (ii) irrelevance of exact zero modes in the thermodynamic

16We thank Sinya Aoki for clarifying this point to us.
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limit (as explained in section 3). If the limit mu → 0 is taken with md fixed, the r.h.s.

of (5.5) converges to 2fAmd +O(m3
d).

17

Next, we introduce an arbitrary scale ε > 0 which is smaller than the radius of con-

vergence of (5.1) in the chiral limit. Then we split the l.h.s. of (5.5) as∫ Λ

0
dλ

2mu

λ2 +m2
u

R1(λ) =

∫ ε

0
dλ

2mu

λ2 +m2
u

R1(λ) +

∫ Λ

ε
dλ

2mu

λ2 +m2
u

R1(λ) (5.6)

≤
∫ ε

0
dλ

2mu

λ2 +m2
u

[ ∞∑
n=0

〈ρAn 〉m
λn

n!

]
+

2mu

ε2

∫ Λ

ε
dλ R1(λ) , (5.7)

where (5.1) was used. The second term in (5.7) is obviously O(mu), whereas the first term

is more nontrivial. To check its behavior near the chiral limit, we use∫ ε

0
dλ

λ

λ2 +m2
u

= − log
|mu|
ε

+O(m2
u) , (5.8a)∫ ε

0
dλ

λ2

λ2 +m2
u

= ε− π

2
|mu|+O(m2

u) , (5.8b)∫ ε

0
dλ

λ3

λ2 +m2
u

=
ε2

2
+m2

u log
|mu|
ε

+O(m4
u) , (5.8c)∫ ε

0
dλ

λn

λ2 +m2
u

=
εn−1

n− 1
+O(m2

u) for n ≥ 4 . (5.8d)

As the leading term in the limit mu → 0 comes from (5.8a), we deduce∫ ε

0
dλ

2mu

λ2 +m2
u

[ ∞∑
n=0

〈ρAn 〉m
λn

n!

]
=

∫ ε

0
dλ

2mu

λ2 +m2
u

〈ρA0 〉m +O(mu logmu) (5.9)

=
[
π +O(mu)

]
〈ρA0 〉m +O(mu logmu) . (5.10)

Plugging this into (5.7), we observe that∫ Λ

0
dλ

2mu

λ2 +m2
u

R1(λ) ≤ π〈ρA0 〉m +O(mu logmu) . (5.11)

Recalling (5.4), it is now clear that

lim
mu→0

∫ Λ

0
dλ

2mu

λ2 +m2
u

R1(λ) = O(m2
d) . (5.12)

This is to be compared with (5.5), which tells that the leading term in the limit mu → 0

is 2fAmd. Thus fA = 0 is concluded. This completes the proof.

This short proof is made possible by treating mu and md as two independent variables,

unlike the original one [13], where only the case of degenerate masses was considered. Of

course, whether the two assumptions are correct or not in QCD is highly nontrivial. If

17The O(m3
d) contribution comes from higher-order U(1)A-violating terms (e.g., tr(MM†) detM + c.c.)

in the free energy.
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fA is non-vanishing in QCD, which has been assumed in the former sections, then one

has to relax at least one of the two conditions above. Considering that recent lattice

simulations [17, 24, 25] have demonstrated a singular peak structure in R1(λ) at small

λ, it seems natural to abandon the Taylor expansion (5.1). This issue deserves further

investigation.

6 Conclusions

In this paper, we derived some rigorous results on the violation of the U(1)A symmetry in

two-flavor QCD at T > Tc, which is characterized by the difference of chiral susceptibilities,

χπ − χδ (see (3.19)) and is parametrized by fA (see (3.3) for the definition). We clarified

how the different topological sectors conspire to violate the U(1)A symmetry and how it

varies with the spatial volume of the system. We demonstrated that any moment of the

topological charge at T > Tc can be obtained, once just a single parameter fA is fixed.

We also derived new spectral sum rules and a Banks-Casher-type relation that relate the

anomaly strength fA to statistical correlations in Dirac spectra. As a by-product of the sum

rules, we found a simple proof of the Aoki-Fukaya-Taniguchi “theorem” on the effective

restoration of the U(1)A symmetry [13]. Since nontrivial assumptions are required to

prove this theorem, we cannot conclude U(1)A restoration in QCD yet. However, our

simplified proof would hopefully serve to understand the importance of these assumptions

more clearly.

All of our new exact relations can, in principle, be tested on the lattice. In particular,

the relation (3.32) can be used to extract the value of fA at T > Tc even in a small volume

with fixed topology (Q = 0). Finally, we note that determination of fA should also be

important from a phenomenological point of view, as it is related, through (3.9), to the

temperature-dependent mass of the QCD axion — an input for the evolution of the axion

density, which might account for the dark matter density of the universe; see, e.g., [56, 57]

for recent works.
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A Tensor decomposition of anomalous correlators at finite temperature

Consider the anomalous three-point function in QCD at finite temperature T in momentum

space,

T σρµ(q, p, T ) ≡
∫

d4x d4y eiqx+ipy
〈
jσ(x)jρ(y)jAµ(0)

〉
, (A.1)
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where jµ = ψγµψ is the vector current and jAµ = ψγµγ5ψ is the axial current. The color

and flavor degrees of freedom are suppressed for simplicity. We take the rest frame of the

medium as ηµ = (1,0).

Itoyama and Mueller wrote down 30 tensor invariants composed of qµ, pν , ηκ, or εαβγδ

for T σρµ [4]. However, their expression is not complete; one can write down 30 more tensor

invariants. We find that the most general decomposition for T σρµ is given by

T σρµ = A1qτε
τσρµ +A2pτε

τσρµ +A3ητε
τσρµ

+A4q
σqαpβε

αβρµ +A5p
σqαpβε

αβρµ +A6η
σqαpβε

αβρµ

+A7q
ρqαpβε

αβσµ +A8p
ρqαpβε

αβσµ +A9η
ρqαpβε

αβσµ

+A10q
σqαηβε

αβρµ +A11p
σqαηβε

αβρµ +A12η
σqαηβε

αβρµ

+A13q
ρqαηβε

αβσµ +A14p
ρqαηβε

αβσµ +A15η
ρqαηβε

αβσµ

+A16q
σqαηβε

αβρµ +A17p
σqαηβε

αβρµ +A18η
σqαηβε

αβρµ

+A19q
ρpαηβε

αβσµ +A20p
ρpαηβε

αβσµ +A21η
ρpαηβε

αβσµ

+ [A22q
σqρ +A23p

σqρ +A24η
σqρ +A25q

σpρ +A26p
σpρ

+A27η
σpρ +A28q

σηρ +A29p
σηρ +A30η

σηρ +A31g
σρ] qαpβηγε

αβγµ

+A32q
µqαpβε

αβσρ +A33p
µqαpβε

αβσρ +A34η
µqαpβε

αβσρ

+A35q
µqαηβε

αβσρ +A36p
µqαηβε

αβσρ +A37ηµqαηβε
αβσρ

+A38q
µpαηβε

αβσρ +A39p
µpαηβε

αβσρ +A40η
µpαηβε

αβσρ

+ [A41q
µqρ +A42p

µqρ +A43η
µqρ +A44q

µpρ +A45p
µpρ

+A46η
µpρ +A47q

µηρ +A48p
µηρ +A49η

µηρ +A50g
µρ] qαpβηγε

αβγσ

+ [A51q
σqµ +A52p

σqµ +A53η
σqµ +A54q

σpµ +A55p
σpµ

+A56η
σpµ +A57q

σηµ +A58p
σηµ +A59η

σηµ +A60g
σµ] qαpβηγε

αβγρ (A.2)

with coefficients Ai ≡ Ai(q
2, p2, k2, q · η, p · η, T ). The terms A31,··· ,60 are new, which

have been missed in [4] but are generally allowed by symmetries. It turns out that A34,

A37, A40, A43, A46, A48, A49, A53, A57, A58, and A59 are not independent of the others

appearing above and can be omitted without loss of generality.18 In particular, we need

not consider tensor invariants whose axial-vector index µ is carried by ηµ. Therefore, there

are 49 independent invariants in total.

B Another microscopic scaling

In (4.12), all dimensionful quantities are rescaled by
√

2V4fA. On the other hand, it is also

allowed (from a mathematical point of view) to use
√

2V4f2 for rescaling. Defining

ρQ(ζ;µu, µd) ≡ lim
V4→∞

1√
2V4f2

〈
ρA
(

ζ√
2V4f2

) ∣∣∣∣
mu= µu√

2V4f2
, md=

µd√
2V4f2

〉
Q

, (B.1)

18For example, there exists an identity for the A46 term,

qαpβp
ρηγη

µεαβγσ = −qαpβpρεαβσµ + (p · η)qαp
ρηβε

αβσµ + (q · η)pβp
ρηαε

αβσµ + qαpβp
ρηγη

σεαβγµ, (A.3)

with which the A46 term can be expressed in terms of the A8, A14, A20, and A27 terms.
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we obtain from (4.5) a modified spectral relation

∫ ∞
−∞

dζ
1

iζ + µu
ρQ(ζ;µu, µd) = µu +

fA
f2
µd
I ′Q

(
fA
f2
µuµd

)
IQ

(
fA
f2
µuµd

) . (B.2)

We suspect, however, that this scheme is precarious because f2 is dominated by UV-

divergent contributions from the perturbative Dirac spectra R1(λ) ∼ λ3 which generally

depends on the regularization scheme. In contrast, fA is free from UV divergences (see

appendix B in [49]). This leads us to consider the microscopic scaling by fA as the most

natural one.

C Derivation of (4.19)

The relation (4.19) for uncorrelated Dirac spectra can be easily shown as follows. With

2N Dirac eigenvalues {±iλn}Nn=1 we have, from (4.1),

〈
ρA(λ)ρA(λ′)

〉
=

〈
N∑
k=1

{δ(λ− λk) + δ(λ+ λk)}
N∑
`=1

{
δ(λ′ − λ`) + δ(λ′ + λ`)

}〉
(C.1)

=

〈
N∑
k=1

{δ(λ− λk) + δ(λ+ λk)}
{
δ(λ′ − λk) + δ(λ′ + λk)

}〉

+

N∑
k=1

〈
{δ(λ− λk) + δ(λ+ λk)}

∑
` 6=k

{
δ(λ′ − λ`) + δ(λ′ + λ`)

}〉
(C.2)

=
{
δ(λ− λ′) + δ(λ+ λ′)

} 〈
ρA(λ)

〉
+

N∑
k=1

〈
δ(λ− λk) + δ(λ+ λk)

〉〈∑
` 6=k

{
δ(λ′ − λ`) + δ(λ′ + λ`)

}〉
. (C.3)

In the last step we factorized the average, which is justified by the absence of correlations

among different eigenvalues. Then, using the trivial identity〈∑
6̀=k

{
δ(λ′ − λ`) + δ(λ′ + λ`)

}〉
=
N − 1

N

〈
ρA(λ′)

〉
, (C.4)

we arrive at the desired formula〈
ρA(λ)ρA(λ′)

〉
=
{
δ(λ− λ′) + δ(λ+ λ′)

} 〈
ρA(λ)

〉
+
N − 1

N

〈
ρA(λ)

〉 〈
ρA(λ′)

〉
. (C.5)

One can see by integrating over λ and λ′ that both sides are normalized to 4N2 correctly.
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