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Abstract We discuss combined effects of stochasticity and time delays in simple evolution-
ary games with a unique mixed evolutionarily stable strategy. We present three models of
time-delay stochastic dynamics of finite well-mixed or random-matching populations. We
show that in the first two models the evolutionarily stable strategy loses its stability and there
appears a stable cycle around it with the time period and the amplitude proportional to the
delay. In the third model, only one randomly chosen individual can update his strategy at a
time. This slows down the dynamics and makes the evolutionarily stable strategy stable with
respect to both time delay and stochastic perturbations.

Keywords Evolutionary game theory · Time delay · Stochastic dynamics · Stochastic
stability · Stable cycles

1 Introduction

Many social and biological processes can be modeled as systems of interacting individuals
within the framework of evolutionary game theory [3, 11, 15, 18, 23, 25, 26, 28]. One may
then try to derive the macroscopic behavior of such populations from individual interactions.
The evolution of very large (infinite) populations is usually modeled by differential or dif-
ference replicator equations which describe time changes of fractions of populations playing
different strategies. For games with a unique mixed evolutionarily stable strategy, such as the
Hawk–Dove game (also known as Chicken or Snowdrift game), the interior stationary point
of replicator dynamics corresponding to such a strategy is globally asymptotically stable.

It is usually assumed (as in the replicator dynamics) that interactions between individuals
take place instantaneously and their effects are immediate. In reality, all social and biologi-
cal processes take a certain amount of time. It is natural therefore to introduce time delays
into evolutionary game models. It is well known that time delays may cause oscillations in
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solutions of ordinary differential equations [4, 5, 8–10, 14]. Effects of time delay in evolu-
tionary games were discussed by Tao and Wang [24]. They considered a two-player game
with two strategies and a unique mixed evolutionarily stable strategy. They proposed a cer-
tain form of a time-delay differential replicator equation and showed that the evolutionarily
stable strategy is asymptotically stable for small time delays and that, for sufficiently large
delays, it becomes unstable and there appear oscillations. However, as we pointed out in [1],
its stability depends on particular causes of time delay. Models with time delays were di-
vided into two families. In social-type models, where individuals react to the information
concerning the state of the population at some earlier time, we should expect oscillations.
On the other hand, in biological-type models, where some changes already take place in the
population at an earlier time, oscillations might not be present for any time delay. In par-
ticular, we constructed two replicator-type dynamics. In the social-type model, we assumed
that individuals at time t imitate a strategy with a higher average payoff at time t − τ for
some delay τ . In the biological-type model, individuals born at time t − τ are able to take
part in contests when they become mature at time t or equivalently they are born τ units of
time after their parents played and received payoffs. We showed that in the first dynamics,
the evolutionarily stable strategy is asymptotically stable for small time delays and becomes
unstable for big ones. In the second dynamics, however, it is asymptotically stable for any
time delay.

Replicator equations describe the population behavior in the limit of an infinite number of
individuals. However, real populations are finite. Stochastic effects connected with random
matching of players, mistakes of players, and biological mutations can play a significant
role in such systems. Therefore, to describe and analyze their time evolution, one should
use stochastic modeling. Stochastic dynamics of well-mixed populations of a fixed number
of players interacting in discrete moments of time were discussed in [12, 13, 16, 17, 22,
23, 25, 27]. For symmetric games with two strategies, a state of the population is given by
the number of individuals playing, say, the first strategy. The selection part of the dynamics
ensures that if the average payoff of a given strategy is bigger than the average payoff of the
other one, then the number of individuals playing the given strategy increases. In the model
introduced by Kandori et al. [13], one assumes (as in the standard replicator dynamics) that
individuals receive average payoffs weighted by fractions of different strategies present in
the population. In the model introduced by Robson and Vega-Redondo [22], at any moment
of time, individuals play only one or few games with randomly chosen opponents—there
appears a noise connected with random matching of players. In both models, players may
mutate with a small probability, hence the population may move against a selection pres-
sure. To describe the long-run behavior of such stochastic dynamics, Foster and Young [6]
introduced a concept of stochastic stability. A state of the system is stochastically stable if
it has a positive probability in the stationary distribution of the corresponding Markov chain
in the zero-noise limit, that is, the zero probability of mistakes or the zero-mutation level. It
means that along almost any time trajectory the frequency of visiting this state converges to
a positive value given by the stationary probability distribution.

For games with two strategies and two symmetric Nash equilibria, one of which is effi-
cient and the other risk dominant, Kandori et al. [13] showed that in their model the risk-
dominant strategy is stochastically stable—we observe it in the long run with the frequency
close to one if the mutation level is small enough. In the model of Robson and Vega-Redondo
[22], the efficient strategy is stochastically stable. We have pointed out [16] that the long-run
behavior of such evolutionary games depends on the relation between the noise and the size
of the population. In the limit of zero noise, the efficient strategy is stochastically stable and
in the limit of the infinite population, the risk-dominant one becomes stochastically stable.
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We see again that the long-run behavior of populations of individuals depends on details of
the dynamics.

Here we will study how time delay affects the long-run behavior of the above models
for two-strategy games with a unique evolutionarily stable strategy. In Sect. 2, we discuss a
random walk with a time delay and show that an invariant cycle is stochastically stable. In
Sect. 3, we discuss well-mixed and random-matching populations and show that, depending
on details of the dynamics, either the unique evolutionarily stable strategy or a cycle around
it is stochastically stable.

2 Random Walk with a Time Delay

To illustrate why time delay may cause oscillations, we discuss a simple discrete-time de-
terministic dynamical model with a finite number of states. Let a state of our system at time
t be described by x(t) ∈ {−m,−m + 1, . . . ,0, . . . ,m − 1,m}, where m is a natural number.
A change of the state of the system at time t + 1 depends on the state at some earlier time
t − τ , where τ is a discrete-time delay. We set

xt+1 =
⎧
⎨

⎩

xt + 1 if xt−τ < 0,

xt − 1 if xt−τ > 0,

xt if xt−τ = 0.

(2.1)

If τ = 0, then x = 0 is the globally asymptotically stable stationary point of our dynamics.
Consider now 0 < τ < m. It is easy to see that in addition to the stationary point x = 0,
the cycle around 0 with the amplitude τ and the time period 4τ + 2 is a trajectory of our
dynamics, that is, it is invariant under the rule (2.1). Moreover, when we start with any
consistent initial condition (x0, x−1, . . . , x−τ ), that is, |xt − xt−1| ≤ 1, t = 0, . . . ,−τ + 1
with not all x’s equal to 0, we end up in the cycle in a finite time. To see this let us first
notice that at some moment t , the system has to be in some state x, |x| > τ/2. It means that
x

t
′ , x

t
′ −1, . . . , xt

′ −τ
will all have the same sign at some future time t ′ and then the system

will arrive immediately at the cycle.
Now let us perturb stochastically our dynamics. Namely, at every time step our system

changes the state according to the rule (2.1) with the probability 1 − ε and with the proba-
bility ε it moves in the other direction; when xt−τ = 0, then the system at time t + 1 moves
to the right or to the left with the probability ε/2; if xt = ±m, then xt+1 = xt with the prob-
ability ε and with the probability 1 − ε the system moves toward the origin. We obtained a
random walk with reflecting boundaries and with a time delay, the simplest model involving
both stochasticity and time delay. Figure 1a shows a trajectory of a deterministic walk start-
ing with the initial condition xt = 1 for t = 0,−1, . . . ,−τ and following the rule (2.1) with
m = 20, τ = 10; Fig. 1b shows a typical trajectory of the stochastic rule with ε = 0.1. One
can see stochastic fluctuations around the deterministic globally stable cycle. Below we will
analyze mathematically such behavior.

It was shown [19, 20] that in a time-delay random walk model without reflecting bound-
aries (that is, with infinite state space Z), the mean square displacement of the walker (that
is, the variance) approaches a stationary value in an oscillatory way for large time delays
and in a monotonic way for small ones. Moreover, this stationary value is a linear function
of the delay.

Now we will redefine states of our stochastic dynamics to be τ + 1-tuples
(xt , xt−1, . . . , xt−τ ) at time t . Then our random walk with a time delay becomes a Markov
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Fig. 1 Simulations of a random walk. (a) Deterministic trajectory, rule (2.1) with initial conditions
xt = 1, t = 0, . . . ,−τ, τ = 10 and m = 20. (b) A typical stochastic trajectory with ε = 0.1

chain with the unique stationary probability distribution denoted by με . Similar dynamical
models with transition probabilities depending upon the finite history are known as high-
order Markov chains [2, 21]. As was discussed in the beginning of this section, there are two
absorbing sets of our dynamics with ε = 0: the stationary state (0, . . . ,0) and the invariant
cycle around 0 with the amplitude τ and the time period 4τ + 2. Now the question is which
absorbing set survives small stochastic perturbations; that is, which one is in the support of
the zero-mutation limit of the stationary probability distribution. The following concept of
stochastic stability was introduced by Foster and Young [6].

Definition A subset S of the state space of a Markov chain with the unique stationary
probability distribution με is stochastically stable if

lim
ε→0

με(S) = 1.

It means that along almost any trajectory, for a small mutation level, the frequency of visiting
S converges to a value close to 1.

We will now use the tree representation of the stationary probability distribution (see the
Appendix) to prove that our cycle is stochastically stable. Let c be a state which is a part of
the cycle. Obviously all such c′s have the same probability in the stationary distribution.

Theorem 1 limε→0 με(c) = 1
4τ+2 .

Proof It follows from the global asymptotic stability of the cycle that the system needs only
one mutation to get out of (0, . . . ,0) and arrive at any state of the cycle. On the other hand,
it needs τ mutations to get out of the cycle and arrive at (0, . . . ,0).

We have shown that the cycle which consists of 4τ +2 consecutive states is stochastically
stable in a simple random walk with a time delay. In the next section, we will discuss vari-
ous time-delay stochastic evolutionary game dynamics and characterize their stochastically
stable states. �
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3 Stochastic Evolutionary Models with Time Delays

We will discuss here time-delay stochastic dynamics of fixed-size populations. Individuals
are paired to play a Hawk–Dove game (also known as Chicken or Snowdrift game) with
payoffs given by the following matrix:

U =
⎛

⎝
A B

A a b

B c d

⎞

⎠

where c > a and b > d so there exists a unique mixed evolutionarily stable strategy, x∗ =
b−d

c−a+b−d
, which is the asymptotically stable stationary point of the replicator dynamics. It is

interpreted as the equilibrium fraction of an infinite population playing A.

Model 1

We will consider a well-mixed population of n players receiving average payoffs with re-
spect to the composition of the population. Let zt be the number of individuals playing the
strategy A at a time t . The average payoffs of strategies A and B are given by

πA(zt ) = a(zt − 1) + b(n − zt )

n − 1
,

πB(zt ) = czt + d(n − zt − 1)

n − 1
,

(3.1)

provided 0 < zt < n.
It means that payoffs are average values weighted by fractions of A and B strategists. If

z = b−d
c−a+b−d

n + d−a
c−a+b−d

, then average payoffs of A and B are equal. To avoid unnecessary
technical complications due to a finite number of players, we assume that z∗ = nx∗ is a
natural number and a = d . It follows that if z < z∗, then πA(z) > πB(z), if z > z∗, then
πA(z) < πB(z), and finally if z = z∗, then πA(z) = πB(z).

The following dynamical rules are direct extensions of stochastic evolutionary dynamics
introduced by Kandori et al. [13] to systems with time delays:

zt+1 =
⎧
⎨

⎩

zt + 1 if πA(zt−τ ) > πB(zt−τ ),

zt − 1 if πA(zt−τ ) < πB(zt−τ ),

zt if πA(zt−τ ) = πB(zt−τ ),

(3.2)

with the probability 1 − ε and with the probability ε the population moves in the other
direction; if πA(zt−τ ) = πB(zt−τ ), then the number of A-strategists decreases or increases by
one at time t + 1 with the probability ε/2; if zt = 0 or n, then zt+1 = zt with the probability
ε and with the probability 1 − ε the system moves toward the interior stationary state. Our
model is of the social type, players want to imitate a strategy with a higher average payoff at
some earlier time. We do not need mutations to get out of a homogeneous state, in such states
individuals would like to be different—the best reply to a given strategy is the other one. It
is easy to see that we obtained a version of the random walk with a time delay discussed in
Sect. 2. One can repeat the proof of Theorem 1 and show that our evolutionary dynamics
with a time delay has a stochastically stable cycle around the evolutionarily stable strategy.
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Fig. 2 Simulations of a random-matching population. (a) A typical mutation-free trajectory with initial con-
ditions xt = 1, t = 0, . . . ,−τ, τ = 10 and n = 40. (b) A typical stochastic trajectory with ε = 0.1

Model 2

Now we will consider a model introduced by Robson and Vega-Redondo [22]. Individuals
are paired only once at every time step and play only one game before the imitation process
takes place. Let pt denote the random variable which describes the number of cross-pairings,
i.e. the number of pairs of matched individuals playing different strategies at the time t . Let
us notice that pt depends on zt . For a given realization of pt and zt , average payoffs obtained
by each strategy are as follows:

π̃A(zt ,pt ) = a(zt − pt) + bpt

zt

,

π̃B(zt ,pt ) = cpt + d(n − zt − pt)

n − zt

,

(3.3)

provided 0 < zt < n.
The dynamical rules are the same as in (3.2), with πA and πB replaced by π̃A and π̃B . Let

us observe though that random matching introduces another sort of stochasticity. Therefore
even without mutations (ε = 0), the population may pass from the evolutionarily stable state
to a cycle and back (unless a payoff matrix is symmetric as below and then we need one mu-
tation to get out of the state z∗ = n/2); we do not have non-overlapping basins of attraction.
Results of numerical simulations of our dynamics for a payoff matrix with a = d = 0 and
b = c = 1 and n = 40 are presented in Fig. 2. Like in Model 1 we see a stochastically per-
turbed cycle around z∗. It is not a surprise because for a big n, random-matching populations
are well described by a well-mixed population model as was shown in Miȩkisz [16].

Model 3

Here we assume the set-up of well-mixed populations present in Model 1. The dynamical
rules are, however, different. At any discrete moment of time, a randomly chosen player has
a chance to revise his strategy. The number of A-players in the population may increase by
one in t + 1 if a B-player is chosen in t which happens with the probability (n − zt )/n.
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Fig. 3 Simulations of a random-player model. (a) A typical mutation-free trajectory with initial conditions
xt = 1, t = 0, . . . ,−τ, τ = 10 and n = 40. (b) A typical stochastic trajectory with ε = 0.01. (c) A typical
stochastic trajectory with ε = 0.001

Analogously, the number of B-players in the population may increase by one in t + 1 if
an A-player is chosen in t which happens with the probability zt/n. The player, who has a
revision opportunity, chooses in t +1 with the probability 1−ε a strategy which had a higher
average payoff at t − τ and the other one with the probability ε. If both strategies provided
the same average payoff at t −τ , then we assume that the player will stay with the probability
1 − ε with his current strategy and with the probability ε he will adopt the other one. If at
time t − τ only one strategy was present in the population, then at time t a player chooses
the other strategy with the probability 1 − ε. Let us notice that even without mutations, the
procedure of choosing a random player introduces stochasticity into the system. Now at any
time t , a player can be chosen whose strategy had a higher payoff at time t − τ . Then with
the probability 1 − ε, the population does not change. The time evolution of the populations
is therefore slower than in previous models. This allows the evolutionarily stable strategy to
be stable against time delays and small stochastic perturbations.

We will now use the tree representation of the stationary probability distribution (see
the Appendix) to prove that (z∗, . . . , z∗) (that is, evolutionarily stable strategy) is stochasti-
cally stable. Let με be the unique stationary probability distribution of the above described
Markov chain.

Theorem 2 limε→0 με(z
∗, . . . , z∗) = 1

Proof It is easy to see that from every state we can arrive at (z∗, . . . , z∗) by the mutation-free
dynamics, that is, the one with ε = 0. On the other hand, we need one mutation to get out of
(z∗, . . . , z∗). �

Figure 3 shows results of simulations. In the absence of mutations, the population settles
at the evolutionarily stable state and stays there forever. For a small mutation level, we
observe stochastic fluctuations around it. For smaller values of ε, the population stays longer
at the evolutionarily stable state; roughly 10 times longer in Fig. 3c (ε = 0.001) than in
Fig. 3b (ε = 0.01). It follows from the rules of the dynamics that an amplitude of these
fluctuations is proportional to the time delay.

4 Discussion

It is well known that time delays may cause oscillations in dynamical systems. We presented
here three time-delay stochastic evolutionary game models with a unique mixed evolutionar-
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ily stable strategy. In the first two models (in well-mixed and random-matching populations),
the evolutionarily stable strategy loses its stability and we obtain a stochastically stable cy-
cle around it. In the third model, we allow only one randomly chosen individual to update
his strategy at a time; hence, the time evolution is slower than in previous models. This al-
lows the evolutionarily stable strategy to be stable against time delays and small stochastic
perturbations. It is important to study combined effects of time delays and stochasticity in
more complex evolutionary systems, and in particular the possibility of stable oscillations.
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Appendix: Stationary Probability Distributions of Ergodic Markov Chains

The following tree representation of a unique stationary probability distribution of an er-
godic Markov chain was proposed by Freidlin and Wentzell [7]. Their formula is especially
useful in the case of random perturbations of deterministic dynamics on a finite state space.
We assume that the system follows some deterministic rule with the probability 1 − ε and
with the probability ε, a mistake is made that moves the system in the other direction.

Let (Ω,P ) be an ergodic Markov chain with a state space Ω and transition probabilities
given by Pε : Ω × Ω → [0,1]. It has the unique stationary probability distribution με . For
x ∈ Ω , an x-tree is a directed graph on Ω (connecting all vertices) such that from every
y �= x there is a unique path to x and there are no outcoming edges out of x. Denote by T (x)

the set of all x-trees and let

qε(x) =
∑

d∈T (x)

∏

(y,y′)∈d

Pε(y, y ′), (5.1)

where Pε(y, y ′) is the element of the transition matrix (that is, a conditional probability that
the system will be at the state y ′ at time t provided it was at state y at time t − 1) and
the above product is with respect to all edges of the x-tree d . In all models of our paper,
Pε(y, y ′) is equal either to 1 − ε, ε, or 0. Now one can show that

με(x) = qε(x)
∑

y∈Ω qε(y)
(5.2)

for all x ∈ Ω.

A state is an absorbing one if it attracts nearby states in the mutation-free dynamics
(ε = 0). We assume that after a finite number of steps of the mutation-free dynamics, the
system arrives at one of the absorbing states and stays there forever. It follows from (5.2)
that the stationary probability distribution can be written as the ratio of two polynomials
in ε. Hence any non-absorbing state has zero probability in the stationary distribution in the
zero-mutation limit. Moreover, in order to study the zero-mutation limit of the stationary
distribution, it is enough to consider paths between absorbing states. Let mxy be a minimal
number of mutations (mistakes) needed to make a transition from the state x to y and myx

the minimal number of mutations to make a transition from y to x. Then qε(x) is of the
order εmyx and qε(y) is of the order εmxy . If for example, myx < mxy , then it follows that
limε→0 με(x) = 1, hence x is stochastically stable.
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