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A novel impulsive noise elimination filter, entitled noise exclusive filter (NEF), which shows a high performance at the restoration
of images distorted by impulsive noise, is proposed in this paper. NEF uses chi-square goodness-of-fit test in order to detect the
corrupted pixels more accurately. Simulation results show that the proposed filter achieves a superior performance compared with
the other filters mentioned in this paper in terms of noise suppression and detail preservation, particularly when the noise density
is very high. The proposed method also achieves the robustness and detail preservation perfectly for a wide range of impulsive
noise density. NEF provides efficient filtering performance with reduced computational complexity.
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1. INTRODUCTION

Corruption of images by impulsive noise is a frequently en-
countered problem in acquisition, transmission, and pro-
cessing of images, therefore one of the most common sig-
nal processing tasks involves the removal of impulsive noise
from signals. Preservation of image details while eliminating
impulsive noise is usually not possible during the restora-
tion process of corrupted images. However, both of them
are essential in the subsequent processing stages. It has been
approved that the standard median filter (SMF) [1] and its
modifications [2, 3, 4, 5, 6, 7, 8, 9, 10] offer satisfying per-
formance in suppression of impulsive noise. However, these
approaches are implemented invariantly across the image,
thus they tend to alter the pixels undisturbed by impulsive
noise and increase the edge jitters when the noise density
is high. Consequently, achieving a good performance in the
suppression of impulsive noise is usually at the expense of
blurred and distorted image features. One way of avoiding
this problem is to include a decision-making component in
the filtering structure, based on a very simple but effective
impulse detection mechanism. The function of the impulse

detection mechanism is to check each pixel in order to find
out whether it is distorted or not. When the mechanism indi-
cates corruption, the nonlinear filtering scheme is performed
for the distorted pixels, while the noise-free pixels are left
unaltered in order to avoid excessive distortion. Recently,
impulse-detection-based filtering methods with threshold-
ing operations have been realized by using different modi-
fications of impulse detectors, where the output is switched
between the identities or filtering scheme [2, 3, 4].

For the impulse detection mechanism, the proposed fil-
ter, NEF, uses chi-square goodness-of-fit test-based statistic,
which supplies more efficient results than the classical im-
pulse detection mechanisms. NEF performs the restoration
of degraded images with no blurring even when the images
are highly corrupted by impulsive noise. In order to evaluate
the performance of the proposed filter, it is compared with
the SMF and the recently introduced complex-structured
impulsive noise removal methods: minimum maximum ex-
clusive mean filter (MMEM) [5], progressive switching me-
dian filter (PSM) [4], iterative median filter (IMF) [4], im-
pulse rejecting filter (IRF) [6], recursive adaptive center-
weighted median filter (AMF) [7], two-state recursive signal
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Figure 1: An illustrative example to detect whether the pixels possessing the intensity level of 128 are corrupted or not: (a) 32×32-pixel-sized
subimages of the corrupted Lena image, which is at the noise density of 20% (corrupted pixels were marked as black for illustration) and
(b) the spatial positions of the pixels possessing the intensity value of 128 (these pixels were marked with white dots for illustration) and the
counted values of the pixels which possess the value of 128 in each of the subimages.

dependent rank order mean filter (SDR) [8], multistate me-
dian filter (MSM) [9], and tri-state median filter (TSM)
[10].

The rest of the paper is organized as follows: the proposed
method is explained in Section 2. Experiments are given in
Section 3, and finally, conclusions are presented in Section 4.

2. PROPOSED FILTER

The proposed filter, NEF, is realized in two main steps: in the
first step, impulse detection is carried out and in the second
step, restoration of corrupted pixels is performed.

2.1. Impulse detection

In real images, noisy pixels scatter positionally uniform
throughout the image surface, since the corruption probabil-
ity of each pixel is numerically equal. Therefore, the intensity
levels that scatter positionally uniform over the image surface
have the probability of being noise. In this paper, chi-square
significance probability value of chi-square goodness-of-fit
test has been used in order to detect whether the intensity
levels scatter positionally uniform throughout the image sur-
face or not. If one intensity level has been detected as scat-
tering positionally uniform, then the pixels possessing this
intensity value are considered as corrupted pixels.

The chi-square goodness-of-fit test, which uses chi-
square significance probability value, can be applied to many
distribution models such as Uniform, Gaussian, Weibull,
Beta, Exponential, and Lognormal distribution models [11,
12, 13, 14]. Therefore, the chi-square goodness-of-fit test
can be used in order to detect corrupted pixels more accu-
rately even if the uniform assumption is not exactly satis-
fied.

In this paper, the image surface is divided into 32 × 32-
pixel-sized unoverlapping subimages, in order to statistically
analyze impulsive behavior of the intensity levels. For each

intensity level, the number of the pixels, which possess this
intensity level, is counted for each subimage. These counted
values have been used for investigating the chi-square signif-
icance probability value of an intensity level. It is observed
empirically that the intensity levels, whose chi-square sig-
nificance probability values are greater than the threshold
0.002 ± 0.0005, belong to the corrupted pixels. The value
of the threshold has been verified by the experiments, which
were realized using various test images under different noise
densities for the commonly known statistical distribution
models, such as Uniform, Gaussian, Weibull, Beta, Exponen-
tial, and Lognormal distribution models [11].

An illustrative example has been given in Figure 1, in
order to detect whether the pixels possessing the intensity
level of 128 are corrupted or not. For this example, the chi-
square significance probability value, p has been computed
as p = 0.00 (p < threshold) for the 256 counted values of 0,
3, 6, 2, 3, 4, 11, 6, 3, 2, 5, 6, 16, 2, 2, 2, 4, 4, 4, 3, 4, 2, 5, 3,
6, 2, 4, 1, 3, 2, 3, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 7, 1, 3, 4, 0, 2, 0,
12, 6, 0, 0, 0, 0, 1, 3, 7, 4, 2, 4, 2, 2, 0, 2, 96, 77, 20, 3, 6, 18,
7, 17, 6, 3, 4, 9, 6, 8, 4, 2, 58, 92, 25, 29, 17, 21, 30, 3, 1, 3, 2,
1, 1, 4, 2, 0, 51, 29, 14, 16, 4, 8, 1, 0, 6, 3, 1, 0, 0, 1, 3, 21, 77,
28, 0, 4, 0, 11, 2, 3, 7, 19, 28, 19, 10, 22, 16, 42,106, 81, 0, 0,
0, 1, 3, 2, 10, 0, 5, 18, 9, 2, 0, 0, 53, 32, 1, 0, 0, 0, 0, 0, 32, 23,
7, 6, 0, 0, 0, 0, 6, 3, 10, 3, 1, 0, 3, 0, 10, 8, 9, 1, 1, 0, 0, 0, 0,
0, 10, 3, 0, 0, 5, 1, 0, 2, 1, 0, 3, 2, 3, 0, 0, 0, 0, 4, 0, 1, 0, 3, 1,
2, 4, 0, 16, 3, 7, 2, 0, 0, 1, 1, 1, 1, 5, 8, 0, 0, 0, 2, 24, 32, 9, 3,
23, 9, 0, 2, 3, 0, 0, 0, 0, 8, 9, 2, 1, 1, 4, 9, 24, 0, 1, 2, 0, 0, 0, 2,
10, 0, 0, 1, 0, 0, 0, 0 which are given in Figure 1b. Therefore,
the pixels possessing the intensity level of 128 are detected as
uncorrupted pixels.

2.2. The chi-square goodness-of-fit test

For the computation of the chi-square goodness-of-fit test-
based chi-square significance probability value [11, 12, 13,
14] of an intensity level, 256 counted values, which denote
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(1) Pad the noisy image by reflecting one pixel at the edges of the noisy image in
order to obtain full windows for the edge pixels.

(2) Find the corrupted pixels within the corrupted image, as explained in Sections
2.1 and 2.2.

(3) Start the iterative computation process of NEF and perform the following steps
for each corrupted pixel within the corrupted image.
(a) LetW be a 3× 3-pixel-sized sliding window whose center pixel is a

corrupted pixel. Find the number of uncorrupted pixels that exist within the
current window,W . Perform the following steps if the number of the
uncorrupted pixels that exist within the currentW is else than zero.
(i) For the current window, compute the Euclidean distances, dt , between

the center pixel and the uncorrupted pixels by using the formula

dt =
∣∣∣√k2t + �2t

∣∣∣, t = 1, 2, 3, . . . , s, (2)

where s denotes the number of uncorrupted pixels that exist within the
current window,W . (k, �) are integers (−1 ≤ k ≤ 1, −1 ≤ � ≤ 1), which
denote the spatial coordinates of the uncorrupted pixels within theW .
The spatial coordinate of the center pixel ofW is (k = 0, � = 0).

(ii) Convert the computed dt values to distance weight, ht , by using (3) given
below:

ht =
(

dt∑s
t=1 dt

)−1
. (3)

(iii) Restore the intensity value of the center pixel in the current window
with the value of vt , which is computed by using (4), given below:

vt =
s∑

t=1
htρt , (4)

where ρt denotes the intensity values of the uncorrupted pixels within
the current window.

(b) If the number of the uncorrupted pixels in currentW is equal to zero, then
don’t replace the intensity value of the center pixel.

(c) Repeat the steps (a), (b), and (c) until each of the corrupted pixels has been
restored.

(4) Delete the padded pixels in order to obtain restored image at the same size of the
original distorted image.

Algorithm 1

the number of the related intensity level within the subim-
ages, have been used. Firstly, the normal distribution param-
eters, that is, mean, µ, and standard deviation, σ , values have
been computed. Then, the inverse of the normal cumula-
tive distribution function values, which denote the equally
spaced probability interval values, have been computed from
5%–95% (with an incremental step of 10% for 10 inter-
vals) by using the parameters of µ and σ . Then these values
have been used at the computational phase of the frequency
counts, Ji (i = 1, 2, . . . , 10). Frequency counts have been ob-
tained by counting the number of the counted values that
exist in each of the probability intervals. By using the fre-
quency counts, the chi-square significance probability value,
p, has been obtained as

p = 1− χ̃2
( 10∑

i=1

(
Ji − 25.6

)2
25.6

∣∣∣∣∣25
)
, (1)

where χ̃2(
∑10

i=1((Ji − 25.6)2/25.6)|25) returns the chi-square
cumulative distribution function [11] value with 25 degrees
of freedom at the value of

∑10
i=1((Ji − 25.6)2/25.6).

2.3. Implementation of the proposed filter

The computational algorithm of NEF is defined step-by-step
in Algorithm 1.

3. EXPERIMENTS

A number of experiments were realized in order to eval-
uate the performance of the proposed NEF in compari-
son with SMF and the recently introduced and highly ap-
proved filters, MMEM, PSM, IMF, IRF, AMF, SDR, MSM,
and TSM. The experiments were carried out on the Lena,
the Mandrill, and the Bridge test images, which are 512 ×
512 pixels-sized and 8 bits per pixel. All the simulations were
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Figure 2: Restoration results of the Lena image for the noise density of 50%: (a) original Lena image, (b) corrupted Lena image (noise
density = 50%), (c) NEF (proposed), (d) MMEM, (e) PSM, (f) IMF, (g) IRF, (h) SMF, (i) AMF, (j) SDR, (k) MSM, and (l) TSM.

realized on Matlab v6.5, which is a highly approved lan-
guage in signal processing community for technical comput-
ing [11].

The restoration results of the proposed NEF and the
comparison filters for the noise densities of 50% and 95% are
illustrated in Figures 2 and 3, respectively, where it is easily
seen that noise suppression and detail preservation are satis-
factorily attained by using the proposed NEF. The restoration
results for a high noise density, 95%, are given in Figure 3, in
order to emphasize that NEF provides visually more pleas-
ing images even if noise density is very high. The major im-
provement achieved by the proposed NEF has been demon-
strated with the extensive simulations of the mentioned test
images corrupted at different noise densities. Restoration
performances of the proposed method and the compari-
son filters are quantitatively measured by the well-known
mean squared error (MSE) criterion [11] and documented in

Tables 1, 2, and 3, where it is exactly seen that the proposed
NEF provides a substantial improvement compared with the
simulated filters, especially at the high noise densities. Impul-
sive noise removal and detail preservation are best achieved
by the proposed NEF. Robustness is one of the most impor-
tant requirements of modern image enhancement filters and
Tables 1, 2, and 3 indicate that the proposed NEF provides
robustness substantially across a wide variation of noise den-
sities.

Apart from the numerical behavior of any algorithm, a
realistic measure of its practicality and usefulness is the com-
putational complexity, which determines the required com-
puting power and run time. Therefore in order to evaluate
the computational complexities of the mentioned methods
in this paper, the average run times of 50 runs were obtained
in seconds and documented in Table 4, where it is seen that
the run time of the proposed method is smaller than the
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Figure 3: Restoration results of the Lena image for the noise density of 95%: (a) original Lena image, (b) corrupted Lena image (noise
density = 95%), (c) NEF (proposed), (d) MMEM, (e) PSM, (f) IMF, (g) IRF, (h) SMF, (i) AMF, (j) SDR, (k) MSM, and (l) TSM.

Table 1: Restoration results in MSE for the Lena image.

Noise density

5% 20% 35% 50% 65% 80% 95%

Noisy Lena 944.55 3712.70 6478.80 9258.90 12051.00 14884.00 17641.00

NEF (proposed) 1.35 5.74 11.00 19.72 33.23 64.05 180.67

MMEM 5.78 13.22 20.65 31.33 50.12 116.63 1925.20

PSM 9.27 37.92 92.45 517.78 2803.80 9502.40 16534.00

IMF 46.55 57.12 76.38 131.92 509.93 3922.80 13931.00

IRF 6.08 62.37 474.57 1934.10 4971.00 10076.00 16310.00

SMF 23.58 81.38 488.72 1936.80 4963.40 10062.00 16304.00

AMF 4.26 32.60 118.34 326.58 991.48 3768.50 13246.00

SDR 5.91 29.05 105.44 317.91 1117.20 5131.80 15724.00

MSM 18.24 703.32 2765.40 6075.00 10122.00 14353.00 17679.00

TSM 7.03 158.18 1065.90 3358.00 7307.10 12730.00 17601.00
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Table 2: Restoration results in MSE for the Mandrill image.

Noise density

5% 20% 35% 50% 65% 80% 95%

Noisy Mandrill 886.96 3563.90 6197.60 8783.50 11480.00 14151.00 16807.00

NEF (proposed) 0.84 3.97 8.98 19.33 41.79 91.86 339.63

MMEM 3.72 12.21 21.36 36.38 65.49 143.13 1742.20

PSM 3.13 15.83 53.25 425.31 2816.70 9416.90 16066.00

IMF 106.65 117.61 138.77 196.56 654.86 3703.70 13353.00

IRF 8.46 64.30 472.53 1833.80 4800.10 9581.60 15593.00

SMF 33.65 94.82 505.19 1862.40 4818.70 9587.80 15593.00

AMF 5.05 30.07 94.72 286.04 946.53 3345.10 12520.00

SDR 7.40 31.74 98.29 313.06 1164.80 4817.40 15312.00

MSM 20.89 698.17 2669.10 5763.30 9643.50 13630.00 16846.00

TSM 8.43 164.49 1043.60 3234.70 7036.90 12128.00 16784.00

Table 3: Restoration results in MSE for the Bridge image.

Noise density

5% 20% 35% 50% 65% 80% 95%

Noisy Bridge 972.93 3902.10 6799.30 9767.80 12660.00 15621.00 18469.00

NEF (proposed) 19.40 54.31 92.45 146.41 226.13 368.75 845.93

MMEM 80.54 116.58 148.51 198.78 277.93 451.30 2601.60

PSM 42.53 111.08 223.07 729.70 3337.10 9923.30 17180.00

IMF 235.97 261.65 307.48 394.44 946.22 4303.40 14671.00

IRF 71.35 170.29 664.27 2252.60 5497.50 10668.00 17112.00

SMF 148.78 242.71 718.68 2279.70 5497.10 10650.00 17103.00

AMF 45.98 128.01 281.17 625.63 1462.90 4373.60 14239.00

SDR 71.51 144.99 288.78 653.90 1684.60 5922.40 16514.00

MSM 53.53 809.53 2997.70 6520.00 10716.00 14976.00 18463.00

TSM 77.86 279.73 1280.70 3786.70 7968.30 13448.00 18410.00

Table 4: Average run times in seconds.

Filter Run times (s)

NEF (proposed) 3.04

MMEM 153.03

PSM 180.63

IMF 1.92

IRF 6.06

SMF 0.29

AMF 280.77

SDR 6.35

MSM 4.86

TSM 2.88

run times of the majority of comparison algorithms. The run
time analysis of the proposed filter and concerned filters was
conducted for test images using Pentium IV, 1.6GHz with
512Mb RAM computer on Windows XP.

4. CONCLUSIONS

The effectiveness of the proposed filter in processing differ-
ent images can easily be evaluated by appreciating Tables 1,
2, and 3, which are given to present the restoration results of
NEF and the comparison filters for images degraded by im-
pulsive noise, where noise density ranges from 5%–95%. It
is seen from Tables 1, 2, and 3 that the proposed NEF gives
absolutely better restoration results and a higher resolution
in the restored images compared with the restoration perfor-
mances of MMEM, PSM, IMF, IRF, SMF, AMF, SDR, MSM,
and TSM. In addition, the proposed NEF supplies a more
pleasing restoration results aspect of visual perception and
also provides the best trade-off between impulsive noise sup-
pression and detail preservation, as can be seen from Figures
2 and 3. In order to appreciate the computational complexi-
ties of the NEF and the comparisonmethods, the average run
times are documented in Table 4, where it is seen that the run
time of the proposed method is smaller than the run times of
the majority of comparison algorithms. NEF yields satisfac-
tory results in suppressing impulsive noise with no blurring
while requiring a simple computational structure.
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Mustafa Alçı was born in Kayseri, Turkey,
in 1957. He received the B.S. degree from
Erciyes University, M.S. degree from Mid-
dle East Technical University, and Ph.D. de-
gree from Erciyes University in 1983, 1986,
and 1989, respectively, all in electronic engi-
neering. Since 1979, he has been a member
of the academic staff in the Electronic Engi-
neering Department, Engineering Faculty,
Erciyes University, Kayseri, Turkey. His cur-
rent research interests include image processing, noise and coding
artifacts suppression, fuzzy systems, medical electronics, chaotic
systems, and circuit design.
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