
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 64369, Pages 1–13
DOI 10.1155/ASP/2006/64369

Rapid Prototyping for HeterogeneousMulticomponent
Systems: AnMPEG-4 Stream over a UMTS
Communication Link

M. Raulet,1, 2 F. Urban,1 J.-F. Nezan,1 C. Moy,3 O. Deforges,1 and Y. Sorel4

1 IETR/Image Group Lab, UMR CNRS 6164/INSA, 20, Avenue des Buttes de Coësmes, 35043 Rennes, France
2Mitsubishi Electric ITE, Telecommunication Lab, 1 Allée de Beaulieu, 35 000 Rennes, France
3 IETR/Automatic & Communication Lab, UMR CNRS 6164/Supelec-SCEE Team,
Avenue de la Boulaie, BP 81127, 35511 Cesson-Sévigné, France

4 INRIA Rocquencourt, AOSTE, BP 105, 78153 Le Chesnay, France

Received 15 October 2004; Revised 24 May 2005; Accepted 21 June 2005

Future generations of mobile phones, including advanced video and digital communication layers, represent a great challenge in
terms of real-time embedded systems. Programmable multicomponent architectures can provide suitable target solutions combin-
ing flexibility and computation power. The aim of our work is to develop a fast and automatic prototyping methodology dedicated
to signal processing application implementation on parallel heterogeneous architectures, two major features required by future
systems. This paper presents the whole methodology based on the SynDEx CAD tool that directly generates a distributed imple-
mentation onto various platforms from a high-level application description, taking real-time aspects into account. It illustrates the
methodology in the context of real-time distributed executives for multilayer applications based on an MPEG-4 video codec and a
UMTS telecommunication link.

Copyright © 2006 M. Raulet et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

New embedded multimedia systems, such as mobile phones,
require more and more computation power. They are in-
creasingly complex in design and have a shorter time to
market. Computation limits of critical parts of the system
(i.e., video processing, telecommunication physical layer) are
often overcome thanks to specific circuits [1]. Neverthe-
less, this solution is not compatible with short time designs
or the system’s growing need for reprogramming and fu-
ture capacity improvements. An alternative can be provided
by programmable software (DSP: digital signal processor,
RISC: reduced instruction set computer, CISC: complex in-
struction set computer) or programmable hardware (FPGA:
field programmable gate arrays) components since they are
more flexible. Efficiency loss can be counterbalanced by us-
ing multicomponent architectures to satisfy hard real-time
constraints. The parallel aspect of multicomponent architec-
tures (programmable software and/or programmable hard-
ware components interconnected by communication media)
and possibly its heterogeneity (different component types)
raise new problems in terms of application distribution.

Real-time executives developed for single-processor applica-
tions can hardly take advantage of multicomponent architec-
tures: handmade data transfers and synchronizations quickly
become very complex and result in lost time and potential
deadlocks. A suitable design-process solution consists of us-
ing a rapid prototyping methodology. The ultimate objective
is then to go from a high-level description of the application
to its real-time implementation on a target architecture [2]
as automatically as possible. The aim is to avoid disruptions
in the design process from a validated system at simulation
level (monoprocessor) to its implementation on a heteroge-
neous multicomponent target. Performances of the process
can be evaluated by different aspects as follows:

(i) maximal independence with regards to the architec-
ture,

(ii) possibility of handling heterogeneous multicompo-
nent architectures,

(iii) maximal automation during the process (distribution/
scheduling, code generation, including data transfers
and synchronizations),

(iv) efficiency of the implementation both in terms of exe-
cution time and resource requirements,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81808842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 EURASIP Journal on Applied Signal Processing

(v) reduced design time,
(vi) enhanced quality and robustness of the final executive.

The methodologies generally rely on a description model,
which must match the application behavior. These applica-
tions are a mixture of transformation and reactive operators
[3]. A transformation operator is based on the data-driven
process: input data is transformed into output data. A reac-
tive operator is one, which is event-driven and has to con-
tinually react to stimuli. In practice, systems are a combina-
tion of both. Nevertheless, an important distinction can be
made between systems with deterministic scheduling whose
operators are mainly transformation-oriented, and systems
with highly dynamic behavior whose operators are mostly
reactive-oriented. For the first class of system (including sig-
nal, image, and communication applications), DFG (data
flow graphs) have proven to be an efficient representation
model. They enable automatic rapid prototyping and lead to
optimized scheduling [4].

This paper deals with a rapid prototyping method-
ology based on the SynDEx tool, which is suitable for
transformation-oriented systems and heterogeneous multi-
component architectures. Major contributions concern two
points as follows:

(i) method and tool, more specifically about automatic
distributed code generation from SynDEx,

(ii) a complex multilayer application including video and
digital communication layers, going from its high-level
description to its distributed and real-time implemen-
tations on heterogeneous platforms.

SynDEx automatically generates synchronized distributed
executives from both application and target architecture de-
scription models. These executives specify the inner compo-
nent scheduling and global application scheduling, and are
expressed in an intermediate generic language. These execu-
tives have to be transformed to be compliant with the type
of component and communication media so that they au-
tomatically become compilable codes. In this article, we will
focus on this mechanism based on the concept of SynDEx
kernels, and detail new developed kernels enabling automatic
code generation on various multicomponent platforms.

The design and the distributed implementation of a mul-
tilayer application composed of a video (MPEG-4) and a
digital communication layer (UMTS) illustrate the method-
ology. An MPEG-4 coding application provides the UMTS
transceiver with a video coded bitstream, whereas the as-
sociated MPEG-4 decoder is connected to the UMTS re-
ceiver in order to display the video. The result is a com-
plete demonstration application with automatic code gener-
ation over several kinds of processors and communication
media.

The digital communication layer under investigation is a
UMTS FDD (frequency-division duplex) uplink transceiver
[5]. UMTS is the European and Japanese selected standard
for 3G. It has already spread to many areas of the world,
but is not yet predominant. 3G should enable us to benefit
from new wireless services requiring quite a high data rate
up to 2Mbps. Typical targeted applications go from wireless

internet to video streaming, and also include high-speed pic-
ture exchanging and of course voice.

MPEG-4 is the latest multimedia compression stan-
dard to be adopted by the moving picture experts group
(MPEG) [6]. The prototyping of MPEG-4 video codecs over
multicomponent platforms and their optimizations are stud-
ied in the IETR Image Group Laboratory. A part of the
project has already been presented in [7]. We will therefore
focus on the coupling between the UMTS and MPEG-4 sub-
systems rather than describe the video codec in detail.

The paper is organized as follows: Section 2 introduces
the SynDEx tool and the AAA methodology. Our contribu-
tion in terms of prototyping platforms and executive ker-
nels is described in Section 3. The UMTS description accord-
ing to the AAA methodology and its implementations are
explained in Section 4. The methodology is illustrated and
validated by the application (MPEG-4 + UMTS) described
in Section 5 what allows to reach a new stage in the rele-
vance of the method. Finally, conclusions and open issues
encountered during the application development are given
in Section 6.

2. SYNDEX OVERVIEW

SynDEx1 is a free academic system-level CAD (computer-
aided design) tool developed in INRIA Rocquencourt,
France. It supports the AAA methodology (adequation algo-
rithm architecture [8, 9]) for distributed real-time process-
ing.

2.1. Adequation algorithm architecture

A SynDEx application (Figure 1) comprises an algorithm
graph (operations that the application has to execute), which
specifies the potential parallelism, and an architecture graph
(multicomponent [10] target, i.e., a set of interconnected
processors and specific integrated circuits), which specifies
the available parallelism. “Adequation” means efficient map-
ping, and consists of manually or automatically exploring the
implementation solutions with optimization heuristics [9].
These heuristics aim to minimize the total execution time
of the algorithm running on the multicomponent architec-
ture, taking the execution time of operations and of data
transfers between operations into account. These execution
times are determined during the characterization process,
which associates a list of characteristics, such as execution
times, necessary memory, and so forth, with each (operation,
processor)/(data transfer, communication medium) pair, re-
spectively.

An implementation consists of both performing a distri-
bution (allocating parts of the algorithm on components)
and scheduling (giving a total order for the operations dis-
tributed onto a component) the algorithm on the architec-
ture. Formal verifications during the adequation avoid dead-
locks in the communication scheme thanks to semaphores

1 www.syndex.org

file:www.syndex.org


M. Raulet et al. 3

Architecture graph Constraints Algorithm graph

Adequation
distribution/scheduling

heuristic

Generic
synchronized distributed executives Timing graph

(predictions)

Target 1
kernel

Target N
kernel

Comm M
kernel·

User

Dedicated executives for specific targets
(specific compilers/loaders)

SynDEx

M4

Figure 1: SynDEx utilization global view.

inserted automatically during the real-time code generation.
Moreover, since the Synchronized Distributed EXecutives
(SynDEx) are automatically generated and safe, part of the
tests and low-level hand-coding are eliminated, decreasing
the development lifecycle.

SynDEx provides a timing graph, which includes simu-
lation results of the distributed application and thus enables
SynDEx to be used as a virtual prototyping tool.

In the AAA methodology, an algorithm is specified as an
infinitely repeated DFG. Each edge represents a data depen-
dence relation between vertices, which are operations; opera-
tion stands for a sequence of instructions, which starts when
all its input data is available and which produces output data
at the end of the sequence. In SynDEx, there is an additional
notion of reference. Each reference corresponds to the defini-
tion of an algorithm. The same definition may correspond to
several references to this definition. An algorithm definition
is a repeated DFG similar to those in AAA, except that ver-
tices are references or ports so that hierarchical definitions of
an algorithm are possible.

2.2. Automatic executive generation

The aim of SynDEx is to directly achieve an optimized im-
plementation from a description of an algorithm and an
architecture. SynDEx automatically generates a generic ex-
ecutive, which is independent of the processor target, into
several source files (Figure 1), one for each processor [11].
These generic executives are static and are composed of a list
of macrocalls. The M4 macroprocessor transforms this list
of macrocalls into compilable code for a specific processor
target. It replaces macrocalls by their definition given in the
corresponding executive kernel, which is dependent on a pro-
cessor target and/or a communication medium. In this way,
SynDEx can be seen as an off-line static operating system that
is suitable for setting data-driven scheduling, such as signal
processing applications [12, 13].

SynDEx kernels are available for several processors, such
as the TI2 TMS320C6x (C62x, C64x) and the Virtex FPGA
families, and for several communication media such as links
SDBs (Sundance digital buses-Sundance high-speed FIFOs),
CPs (comports-Sundance FIFOs), BIFOs (BI-FIFOs-Pentek
FIFOs), PCI bus, and TCP bus presented in the following sec-
tion.

2.3. Design process

Our previous prototyping process integrated AVS3 (ad-
vanced visual systems) as a front-end [14] for functional
checking. AVS is a software designed for DFG description
and simulation. The application was constructed by inserting
existing modules or user modules into the AVS workspace,
and by linking their inputs and outputs. The validated DFG
was next converted into a newDFG by a translator to be com-
pliant with SynDEx algorithm input. The main advantage
was the automatic visualization of intermediate and resulting
images at the input and output of each module. This charac-
teristic enables the image processing designer to check and
validate the functionality of the application with AVS before
the step of the implementation.

Although SynDEx is basically a CAD tool for distribu-
tion/scheduling and code generation, here we demonstrate
that SynDEx can also be directly used as the front-end of
the process for functional checking (as it is possibly done
with AVS). This is made possible thanks to our kernels pre-
sented in Section 3. The design process is now based on a sin-
gle tool and is therefore simpler and more efficient. SynDEx
therefore enables full rapid prototyping from the application
description (DFG) to final multiprocessor implementation
(Figure 2) in three steps as the following:

2 Texas instrument.
3 www.avs.com

file:www.avs.com


4 EURASIP Journal on Applied Signal Processing

SynDEX

Sequential executive (PC) target

visual C++ application

Sequential executive (PC)
with chorno. primitives

visual C++ application

Sequential executive (DSP)
with chorno. primitives

code composer application

Distributed executive
(PC + DSPs)

Step 1

Step 2

Step 3

Functional
checking

Nodes
timing

estimation

Parallel
application

Figure 2: SynDEx utilization global view.

Step 1. The user creates the application DFG using SynDEx.
Automatic code generation provides a standard C code for a
single host computer (PC) implementation (SynDEx PC ker-
nel). In this way, the user can design and check each C func-
tion associated with each vertex of its DFG, and can check the
functionalities of the complete application with any standard
compilation tools. With automatic code generation, visual-
ization primitives or binary error rate computation can be
used for easy functional checking of algorithms. The user can
easily check his or her own DFG on a cluster of PCs intercon-
nected by TCP buses. With this cluster, the user can emulate
his or her embedded platform thanks to SynDEx distributed
scheduling.

Step 2. The developed DFG is then used for automatic proto-
typing on monoprocessor targets so that to chronometric re-
ports are automatically inserted by the SynDEx code genera-
tor. Each duration associated with each function (i.e., vertex)
executed on each processor of the architecture graph is auto-
matically estimated using dedicated temporal primitives.

Step 3. The user can easily use these durations to character-
ize the algorithm graph by entering these values in SynDEx.
Then, SynDEx tool executes an adequation (optimized distri-
bution/scheduling) and generates a real-time distributed and
optimized executive according to the target platform. Several
platform configurations can be simulated (processor type,
their number, and also different media connections).

The main advantage of this prototyping process is its
simplicity because most of the tasks performed by the user
concern the description of an application and a compiling
environment. Only a limited knowledge of SynDEx and com-
pilers is required. All complex tasks (adequation, synchro-
nization, data transfers, and chronometric reports) are exe-
cuted automatically, thus reducing the “time to market.” The
user can rapidly explore several design alternatives by modi-
fying the architecture graph or adding constraints.

3. SYNDEX EXECUTIVE KERNELS

As described above, the SynDEx generic executive will be
translated into a compilable language. The translation of
SynDEx macros into the target language is contained in li-
brary files (also called kernels). The final executive for a
processor is static and composed of one computation se-
quence and one communication sequence for each medium
connected to this processor. Multicomponent platformman-
ufacturers must insert additional digital resources between
processors to make communication possible. Thus, SynDEx
kernels depend on specific platforms.

3.1. Development platforms

Different hardware providers (Sundance, Pentek) were cho-
sen to validate automatic executive generation. Many com-
ponent and intercomponent communication links are used
in their platforms, ensuring accuracy and the generic aspect
of the approach. The use of several hardware architectures
guarantees generic kernel developments.

Sundance4 platform: A typical Sundance device is made
up of a host PC with one or more motherboards, each sup-
porting one or more TIMs (Texas instrument module). A
TIM is a basic building block from which you build your sys-
tem. It contains one processing element, which is not nec-
essarily a DSP, but an Input/Output device, or an FPGA. A
TIM also provides mechanisms to transfer data from mod-
ule to module. These mechanisms, such as SDBs (200MB/s),
CPs (20MB/s), or a global bus (to access a PCI bus up to
40MB/s), are implemented on the TIMs using FPGAs.

The SMT320 motherboard (Figure 3) is modular, flex-
ible, and scalable. Up to four different modules can be
plugged into the SMT320 and connected using CP or SDB
cables. The SMT361 TIM with a TMS320C6416 (400Mhz)
is very suitable for imaging processing solutions as the
TMS320C64xx has special functions for handling graph-
ics. The SMT319 TIM is a framegrabber, which includes a
TMS320C6414 and two nonprogrammable devices: a BT829
PAL to YUV encoder, and a BT864 YUV to PAL decoder.
These two devices are connected to the TMS320C6414 DSP
thanks to two FIFOs, which are equivalent to SDBs with the
same data rate. An SMT358 is composed of a programmable
Virtex FPGA (XCV600) which integrates specific communi-
cation links and specific IP blocks (computation).

Pentek5 platform. The Pentek p4292 platform (Figure 4)
is made up of four TMS320C6203 DSPs. Each DSP has three
communication links: two bidirectional (300Mhz) inter-
DSP links and one for the Input/Output interface. The four
DSPs are already connected to each other in a ring struc-
ture. Some daughterboards may be added to the p4292
thanks to the VIM (velocity interfacemezzanine) bus, such as
analog-to-digital converters (ADC p6216), digital-to-analog
converters (DAC p6229), or FPGAs (XC2V3000, XC2Vx Vir-
tex2 family).

4 http://sundance.com/
5 http://www.pentek.com/

http://sundance.com/
http://www.pentek.com/


M. Raulet et al. 5

PC (pentium)

PCI
Personal computer

Embedded motherboard: SMT320

DSP2 (TMS320C6416)
PCI (Bus)PCI

Bus 6 (CP)

Bus 3 (SDB)

FPGA1 (Virtex)

DSPC3 (TMS320C6414)

SDBa
SDBb
CP0
CP1
PCI

SDBa
SDBb
CP0
CP1
CP2
CP3

SDBa
SDBb
VID in
VID out

Bus 1 (SDB)

In (VID in)

Out (VID out)

PAL to YUV (BT829)

VID in

YUV to PAL (BT864a)

VID out

SMT361

SMT358

SMT319

Figure 3: Example of Sundance architecture topology.

This stand-alone Pentek platform is connected to an Eth-
ernet network. This allows TCP/IP (1.5MB/s) communica-
tions between DSPs and any computer in the network in
order to check a binary error rate, or to visualize a decoded
image. However, this Bus’s throughputs will not authorize
the transfer of uncompressed data.

3.2. Software component kernels

Most of the kernels are developed in C language so that they can
be reused for any C software programmable device. These
kernels are similar for the host computer (PC) and the em-
bedded processors (DSPs). The generated executive is com-
posed of a sequential list of function calls (one for each
DFG operation). This kind of executive and the fact that the
adapted C compiler for DSPs has really improved in terms of
resource use mean that the gap between an executive writ-
ten in C and an executive written in an assembly language
is narrow. The user can design each function associated with
each vertex of its DFG in C or assembly language for better
results [15].

SynDEx creates a macrocode made of several interleaved
schedulers: one for computation and the others for commu-
nications allowing parallelism of those actions. We have cho-
sen to use multichannel enhanced DMA (direct memory ac-
cess) transfers, thus maximizing parallelism and timing per-
formance. Data transfers are executed in parallel with com-
putation minimizing communication duration. DMA and
CPU have their own bus to access the internal memory,

therefore bus conflicts only appear when CPU and DMA
access an external memory. As all data buffers are in inter-
nal memory, memory bus conflicts are null between CPU
and DMA accesses. Communication overhead is only due to
DMA setup which is negligible to take transfers into account
(a few assembly instructions) [16].

The development of an application on TI processors
can be hand-coded with TI RTOS (real-time operating sys-
tem) called DSP/BIOS [17]. DSP/BIOS is well-suited for
multithread monoprocessor applications. Several processors
must be connected to improve computational performances
and reach real-time performances. In this case, the multi-
thread multiprocessor 3L diamond6 RTOS is more appro-
priate for this situation than DSP/BIOS. Applications are
built as a collection of intercommunicating tasks. The map-
ping and scheduling of each task are chosen manually. Then
data transfers and synchronizations are implemented by the
RTOS using precompiled libraries. 3L enables multiproces-
sor application development easier, faster, and suited to dy-
namic communications between tasks. Data transfers are re-
alized using DMA, but without any computation parallelism
which is nearly equivalent to polling technique.

Data transfers in a signal processing application are gen-
erally statically defined both in terms of data type and
number so that their description with a DFG is suitable.
The execution of DFG operations is also well defined so that

6 http://www.31.com

http://www.31.com


6 EURASIP Journal on Applied Signal Processing

ADC
daughterboard

ADC 1 (DAC)
VIM

VIM 1 (BIFO)
TCP (TCP)

Bus 1 (BIFO)

Bus 4 (BIFO) Bus 2 (BIFO)

Bus 3 (BIFO)

DSP-A (TMS320C6203)
XX
YY
IO
TCP

DSP-B (TMS320C6203)

XX
YY
IO
TCP

DSP-C (TMS320C6203)
XX
YY
IO
TCP

DSP-D (TMS320C6203)
XX
YY
IO
TCP

PC (Pentium)

TCP

Personal computer

P4292 motherboard

Embedded boards

Figure 4: Pentek 4292 motherboard and its daughterboard.

data transfers can be implemented with static processes. As
static processes are faster than dynamic ones, SynDEx ker-
nels are developed without any RTOS. That is to say that the
SynDEx generic executive is not transformed into dynamic
RTOS functions, but into specific static optimized functions.

3.3. Communicationmedia kernels

With AAA methodology, two different models are possi-
ble for communication media between processors: the SAM
(single access memory) and RAM (random access memory,
shared memory) models.

The SAM model corresponds to FIFOs in which data are
pushed by the producer if it is not full, and then pulled by
the receiver if the FIFO is not empty. Synchronizations be-
tween the two processors are hardware signals (empty and
full flags) and are not handled by SynDEx semaphores. The
data must be received in the same order as it is sent. Most of
our kernels are designed according to this model. SDBs, CPs,
and BIFO DMAs enable parallelism between calculation and
communications, whereas TCP and BIFO do not enable it
(data polling mechanism).

The RAMmodel corresponds to an indexed shared mem-
ory. A memory space is allocated, and an interprocessor syn-
chronization semaphore is created for each item of data that
has to be transferred. This mechanism allows the destination
processor to read data in a different order to which it has been
written by the source processor. Interprocessor synchroniza-
tions are handled by SynDEx. The first implementation of
the RAMmodel, through the PCI bus, is described in the fol-
lowing section.

A PCI transfer kernel, for communications between a
DSP on Sundance platforms and the host computer, is first

developed with the SAMmodel. First, the host and DSPmust
be synchronized. Each data transfer therefore encloses two
synchronizations because the PCI bus does not have hard-
ware signals like a usual FIFO (full or empty flag). The re-
ceiver must first wait for the sender to write new data in the
PCI memory. Then, the receiver can read data from the PCI
memory and send an acknowledgement back to the sender.
This “rendez-vous as soon as possible mechanism” induces
idle or wait states, but is mandatory to ensure the medium
is ready for the next transfer and to guarantee transfer order.
PCI communications using the SAM model reach a maxi-
mum transfer rate of 16MB/s. This mechanism drastically
slows down PCI transfers. In addition, a shared buffer is actu-
ally allocated to the PC’s RAM by the PCI bus driver. There-
fore, a new PCI kernel implementing the RAM model has
been developed, and the transfer rate has been improved (up
to 40MB/s). Each item of data that has to be transferred
has its own address allocation in the PCI memory and cor-
responding semaphores, which allows several buffers to be
written before the first one is read. This results in less wait
states and more time for computation. The PCI scheduler
is controlled by interrupt when using this model. Conse-
quently, communications and computations can be concur-
rent on the DSP, thus reducing overall execution time.

3.4. Hardware component kernel

Moreover, an FPGA kernel for programmable hardware
components has been developed in HDL (hardware descrip-
tion langage) and could be considered as a coprocessor in
order to speed up a specific function of the algorithm. This
kernel handles automatic integration of intercomponent
communication syntheses and instantiates a specific IP (in-
tellectual properties) block.



M. Raulet et al. 7

Code generation

Generic
SynDEX.m4x

Architecture-
dependent

Application-dependent

Application name.m4x

Processor type-
dependent

C62x.m4x
C64x.m4x
Pentium.m4x
FPGA.m4x

Media-type-dependent
SDB.m4x (C62x, C64x, FPGA)
CP.m4x (C62x, C64x, FPGA)
Bus-PCI-SAM.m4x (C62x, C64x, Pentium)
Bus-PCI-RAM.m4x (C62x, C64x, Pentium)
TCP.m4x (Pentium, C62x)
BIFO.m4x (C62x, C64x, FPGA)
BIFO-DMA.m4x (C62x, C64x, FPGA)

Figure 5: SynDEx kernel organization.

Programming of a communication link depends on its
type, but also on the processor. Previous works have al-
ready validated these libraries [18], however, they need to
evolve with processors or communication links (depending
on provider’s additional logic).

3.5. Kernel organization

The libraries are classified to make developments easier and
to limit modifications when necessary. As shown in Figure 5,
these files are organized in a hierarchical way. An application-
dependent library contains macros for the application, such
as the calls of the algorithm’s different functions. A generic li-
brary contains macros used regardless of the architecture tar-
get (basic macros). The others are architecture-dependent:
processor or communication type-dependent. Processor-
dependent libraries contain macros related to the real-time
kernel, such as memory allocations, interrupt handling, or
the calculation sequence. Communication type-dependent
libraries contain macros related to communications: send,
receive, and synchronization macros, communication se-
quences. As different processor types (with different pro-
gramming of the link) can be connected by the same com-
munication type, one part per processor type can be found
in one library. The right part of the file is used during the
macroprocessing.

Kernels have been developed for every component of the
platforms described in Section 3.1. When SynDEx is used for
a new application, only the application-dependent library
needs to be modified by the user. Architecture-dependent
libraries are added or modified when a new architecture is
used (a processor or a medium that does not have its kernel).

4. UMTS APPLICATION

UMTS is much more challenging than previous 2G sys-
tems, such as GSM. In particular, UMTS signals have a
3.84MHz bandwidth compared with 270 kHz for GSM. Both

Table 1: Legenda of UMTS FDD transmitter.

SRC Source (pseudorandom generator)

CRC Add of cyclic redundancy check bits

SEG Segmentation

COD Channel coding

EQU Equalization

INT1 First interleaving

INT2 Second interleaving

SPRdata Spreading of information bits

SPRctrl Spreading of control bits

SUM Creation of a complex signal

CST-SCR-code Generation of the scrambling code

SCR Scrambling

DPCCH Generation of control bits

PSH Pulse shaping

application and signal processing layers are very demand-
ing. This partially explains the delay in the effective arrival
of UMTS on the market. It presents a very interesting case
study for high efficiency multiprocessing heterogeneous im-
plementations. This becomes even more relevant in a soft-
ware radio [19] context, which aims to implement as much
radio processing as possible in the digital domain, and es-
pecially onto processors and reconfigurable hardware. The
advantages firstly consist of easing the system design, while
privileging fast software instead of heavy low-level hardware
development. Secondly, the system supports new services
and features thanks to software adaptation capability during
system operation [20].

4.1. General description

UMTS FDD physical layer algorithms explained in [5] are
implemented for baseband from cyclic redundancy check
(CRC) to pulse shaping (PSH) (Table 1) for the transmitter



8 EURASIP Journal on Applied Signal Processing

Transport block

SRC CRC SEG COD EQU INT1 INT2 SPR data

SPR ctrlDPCCH

SUM SCR PSH

CST SCR codeFrame/frame

Slot/slot

Figure 6: UMTS FDD transmitter (Tx).

Transport block

BER DCRC DSEG DCOD DEQU DINT1 DINT2 DSPR data DSCR RAKE MFL

Slot/slot

CST SCR codeFrame/frame

Figure 7: UMTS FDD receiver (Rx).

as shown in the DFG in Figure 6. This does not represent
a total real UMTS since synchronization is artificial and no
propagation channel is used (the link is completely digital).
Data may be generated by an arbitrary source (SRC Figure 6:
not in the standard) for bit-error-rate verifications or ex-
tracted from a real application, such as a video stream, to
make demonstrations.

Link characteristics in the measured version are as fol-
lows:

(i) 1 transport channel,
(ii) 1 physical channel,
(iii) no channel coding,
(iv) spreading factor of 4,
(v) data rate of 950 kbps.

The receiver [5] extracts the information necessary for
the application using the scheme represented in Figure 7
(Table 2).

The number of operations effectively in use is much
greater than the figures shown, as most of them are dupli-
cated several times. The generation of a 10ms frame (com-
posed of 15 slots) requires the instantiation of approximately
140 operations for Tx and 240 for Rx in this version, which is
a minimum. The granularity of the operations has the same
level of complexity as a FFT, FIR, or a memory reorganiza-
tion.

4.2. FIR implementation

The filter operation is of particular interest because its im-
plementation complexity makes it very resource consum-
ing. This is a FIR (finite impulse response) with a raised-
root cosine impulse response specified by the UMTS stan-
dard at both transmitter baseband output and receiver base-
band input. Here, the impulse response is symmetric around
its center; this characteristic can be exploited to minimize
the number of memory accesses, the required memory for

storing the filter coefficients and the number of multiplica-
tion operations. In order to obtain a convenient rejection of
contiguous bands, the filter impulse response is spread over
16 chips and consequently has 33 taps with an oversampling
of 2. The same coefficients are used for Tx and Rx.

Equation (1) gives us the representation of a FIR filter
with an odd number of coefficient, where h is the real coef-
ficient vector of the filter impulse response (filter taps), K is
number of coefficients (or taps), x[n] and y[n], the nth input
and output complex data samples, respectively.

y[n] = h
[
K − 1
2

]
· x
[
n− K − 1

2

]

+
(K−1)/2−1∑

k=0
h[k] · (x[n− k] + x[n− K + 1 + k]

)
.

(1)

A real filter (i.e., filter whose coefficients are real) applied
to complex data is very frequent in baseband (BB) process-
ing and consists of applying the same filter independently
to the real and imaginary parts of the data samples. In our
case we are interested in fixed point implementations, so care
must be taken to avoid overflow while preserving signal qual-
ity (in terms of SNR). The filter at Tx is called pulse shap-
ing (PSH), and at Rx matched filtering (MFL). At Tx PSH
and oversample (which consists of inserting zero between bi-
nary digits), operation can be combined in order to mini-
mize computation. In this case we obtain the following: if n
is even,

y[n] =
(K−1)/4∑
k=0

h[2k] ·
(
x[n− k] + x

[
n− (K − 1)

2
+ k
])

,

(2)



M. Raulet et al. 9

Table 2: Legenda of UMTS FDD receiver.

MFL Matched filter

RAKE
Simplified RAKE (one perfectly
synchronized finger)

CST-SCR-code Generation of the scrambling code

DSCR Descrambling

DSPRdata Despreading of information bits

DINT2 Deinterleaving 2

DINT1 Deinterleaving 1

DEQU Equalization inverse operation

DCOD Channel decoding

DSEG Transport block extraction

DCRC Analysis of cyclic redundancy check bits

BER Bit error rate

if n is odd,

y[n] = h
[
K − 1
2

]
· x
[
n− K − 1

2

]

+
(K−1)/4−1∑

k=1
h[2k] ·

(
x[n− k]+x

[
n− (K−1)

2
+k
])

.

(3)

The nature of a FIR operation is particularly suited to
FPGA implementations, but can also be implemented on
DSP processors. A specific characteristic of the DSP is that
it has a MAC (multiply accumulate) or a VLIW struc-
ture to support filtering computing in one clock cycle. The
TMS320C6x family, based on VLIW architecture, has six
adders and two multipliers, which operate in parallel and
complete execution in one clock cycle. A fixed point multiply
accumulate takes two instructions: multiply on one cycle and
accumulate on the next. Thanks to pipelining, it is possible to
effectively compute two multiply accumulates per cycle.

The performance then directly depends on filter length
and processor clock frequency as each tap is processed se-
quentially. In an FPGA, it is possible to parallelize part or
all of these operations, depending on the available gate sur-
face. FIR implemented in the FPGA is a distributed arith-
metic (DA) filter [21]. Features of this FIR are not multipli-
ers, but only read only memory (ROM) and accumulators.
The complexity of this filter only depends on the number of
bits per sample, not on the number of taps.

In the particular case of C6x, it is possible to use a data
buffer organization of the FIR as shown in Figure 8. FIR is
a typical case where functional units in the microprocessor
datapath can speed up processing. Data is processed in
blocks. The interface consists of an input data buffer, the co-
efficient buffer, and an output data buffer.

The algorithm for each input sample performs the func-
tion of y[n] in a for-loop. At the end of each block process-
ing operation, the filter state is updated by copying the last K
input data into a state buffer (Figure 8). For the sake of pro-
cessing efficiency, it is assumed that the input data buffer is
stored in a memory after the state data buffer so that negative

h(0, . . . , K)

x(−K + 1, . . . ,−1, 0, . . . , N − 1)

State New data

FIR
(K taps)

y(0, . . . , N − 1)

State update

Figure 8: Data management for DSP implementation of an FIR.

Table 3: Timing of PSH (input: 2560 samples).

Target
C62x C64x XC2Vx

300Mhz 400Mhz 100Mhz

Time/slot (microseconds) 576 320 338

Table 4: Timing of MFL (input: 5120 samples).

Target
C62x C64x XC2Vx

300Mhz 400Mhz 100Mhz

Time/slot (microseconds) 1130 640 338

Table 5: Tx timings and PSH ratio.

Target Sundance Pentek

Configuration 1∗C64x 1∗C62x 2∗C62x
1∗XC2Vx
1∗C62x

Time/frame 9.5ms 11.8ms 8.5ms 9.6ms

PSH ratio 50% 73% 53% 52%

indices of the input data buffer point to the state buffer data.
In Tables 3 and 4, the differences in timing between C62x

and C64x (without taking clock rates into account) are due
to the fact that compilers are not the same for each pro-
cessor, and that those DSPs have different internal architec-
tures. In an FPGA (XC2Vx), this FIR operation could be
more parallelized giving better acceleration to the detriment
of the gate surface. However, these time values are sufficient
to get a Tx or Rx real-time application, that is why we use
the same FIR implementation for PSH and MFL. An ele-
mentary oversampling function just has to be added before
PSH. On the contrary to FPGAs, we take advantage of the
FIR features (cf. Section 4.2) on DSPs to optimize and di-
vide by 2 the computation complexity of PSH at Tx, so that
576microseconds versus 1130microseconds are obtained on
C62x, and 320microseconds versus 640microseconds on
C64x.

4.3. Tx and Rx implementations

Four different implementations (Table 5) of a UMTS trans-
mitter have been automatically tested using SynDEx: three
are implemented on Pentek platform and one on Sundance
platform. A transmitter application must last under 10ms to
be real time.



10 EURASIP Journal on Applied Signal Processing

Table 6: Rx timings and MFL ratio.

Target Sundance Pentek

Configuration 1∗C64x 1∗C62x
1∗XC2Vx
1∗C62x

Time/frame 15.9ms 20.2ms 9.9ms
MFL ratio 60% 84% 32%

Principally, due to PSH (Table 5, timing PSH ratio com-
pared to a Tx implementation), the first transmitter imple-
mentation onto the Pentek platform did not reach real time
with one C62x DSP, however, it is possible to parallelize PSH
in order to process half of the samples on two processors. Be-
fore filtering, two buffers of 1296 samples (as described in
Figure 8) must be created. Each block processing operation
overlaps 16 transient samples. The length of this PSH is re-
duced by 1.5 when transfers are taken into account.

Furthermore, code generation and kernels can be used
to quickly shift to another platform. UMTS prototyping on
the Sundance platform required indeed few hours to reach to
a real-time transmitter application, thanks to our previous
works (UMTS algorithm description, SynDEx code genera-
tion and kernels) on Pentek platform. This is a tremendous
proof of the portability capabilities offered by the methodol-
ogy.

UMTS Rx has been implemented according to three dif-
ferent configurations (Table 6). A real-time application has
been achieved on the Pentek platform with one DSP and
one FPGA. MFL parallelization is also possible on several
DSPs on Pentek platform, however, more than two DSPs are
added compared with one FPGA in the previous configura-
tion. A configuration with 4DSPs requires many transfers in
the Pentek ring structure, thus not reducing MFL computa-
tion length by too much.

5. MPEG-4 OVER UMTS: AMULTILAYER SYSTEM

MPEG-4 is the latest compression standard. An MPEG-4
codec can be divided into ten main parts (e.g., system, vi-
sual, and audio) with different timing requirements and exe-
cution behaviors. Each part is divided into profiles and levels
for the use of the tools defined in the standard. Each profile
(at a given level) constitutes a subset of the standard so that
MPEG-4 can be seen as a toolbox where system manufactur-
ers and content creators have to select one or more profiles
and levels for a given application. The application handled
here is an MPEG-4 part 2 codec developed in our laboratory,
which is based on the Xvid7 codec. This MPEG-4 codec has
also been tested on several distributed platform configura-
tions [7] (multi-DSP implementation). Here, our aim is to
interface UMTS with MPEG-4 to provide a bitstream to the
UMTS application.

The methodology permits to merge the design of very
different (heterogeneous) parts of the system in terms of
hardware processing support (PC, DSP, FPGA) as well as

7 www.xvid.org

processing nature. A conventional methodology would re-
quire different environments, which is a cause of bugs and in-
compatibility at the integration step. This causes delays in the
best case, and could even completely question the design in
the worst case. Our approach permits to gather the different
parts of the design very early in the design flow and anticipate
integration issues. Nevertheless, MPEG-4 over UMTS arises
a new difficulty: the complete application is a multilayer sys-
tem (two layers MPEG-4 and UMTS) with different data pe-
riodicities between layers. A consequence is that the whole
application cannot be represented by a single DFG. The so-
lution consists of breaking up the UMTS physical layer and
the video codec layer into four algorithm subgraphs. Then
these subgraphs (coder, decoder, modulation, and demodu-
lation) have been implemented onto several processors con-
nected each other with media (FIFO) following the topology
of Figure 9.

The MPEG-4 codec is not embedded here: firstly, TCP
throughputs on the Pentek platform do not enable uncoded
or uncompressed data to be transferred, and secondly, too
few Sundance TIMs are available in our laboratory to em-
bed a complete application with UMTS+MPEG-4. Our real-
time MPEG-4 codec provides the maximum data rate sup-
ported by our UMTS transceiver (950 kbps). An MPEG-4
bitstream, coded on a PC, is sent via a UMTS telecommuni-
cation link to another PC to be decoded. Once the commu-
nication transceiver has been implemented on a platform, it
can be viewed as a communication medium equivalent to a
FIFO.

So the platform integrating the MPEG-4 codec could be
described as two PCs interconnected by a UMTS commu-
nication medium. A FIFO is used to connect asynchronous
applications (codec to UMTS communication link). Asyn-
chronous means different periodicities and different data ex-
change formats. A codec cycle corresponds to one image pro-
cessing operation producing a variable compressed bitstream
in a variable time (about 40ms). A UMTS cycle executes
one fixed size frame in 10ms. FIFO material signals (empty
and full flags) ensure the self-regulation of the global system
(UMTS+MPEG-4). Two implementations of this global sys-
tem have been rapidly done onto two platforms thanks to
developed kernels as described in Figure 9. The global sys-
tem runs in real time on Pentek platform and is not far from
real time on Sundance platform (Rx is in 16ms and must
be 10ms). The first implementation of the global application
on Pentek platform takes quite a long time (two months) to
find and solve the multilayer issue, but this implementation
is instantaneously transposed on Sundance platform, which
exactly illustrates the efficiency and the pertinence of the ap-
proach.

6. CONCLUSIONS ANDOPEN ISSUES

The design process proposed in this paper covers every step,
from simulation to integration in digital signal application
development. Compared with a manual approach, the use of
our fast prototyping process ensures easy reuse, reduced time
to market, design security, flexibility, virtual prototyping, ef-
ficiency, and portability.

file:www.xvid.org


M. Raulet et al. 11

MPEG-4
coder

UMTS
modulation

UMTS
demodulation

MPEG-4
decoder

PC

FIFO

TCP
PCI bus

FPGAs
+

DSPs
Sundance
Pentek

FIFO

SDB
BIFO

FPGAs
+

DSPs

FIFO

TCP
PCI bus

PC

Sundance
Pentek

Figure 9: MPEG-4 over UMTS.

On the one hand, we have shown how SynDEx is capable
of manually or automatically exploring several implementa-
tion solutions using optimization heuristics, and on the other
hand, how it automatically generates dedicated distributed
real-time executives from kernels dependent on the proces-
sors and the media. These executives are dedicated to the ap-
plication because they do not use any support of RTOS, and
are generated from the results of the adequation taking oper-
ation and data transfer distribution and scheduling into ac-
count while providing synchronizations between operations
and data transfers and between consecutive repetitions of the
DFG. The kernels enable recent multiprocessor platforms to
be used and also enable the process to be extended to het-
erogeneous platforms. It was tested on several different ar-
chitectures composed of TI TMS320C6201, TMS320C6203,
TMS320C6416 DSPs, Xilinx Virtex-E and Virtex-II FPGAs,
and PCs.

The calculations and data transfers are executed in paral-
lel. RAM and SAM communication models have been tested
for PCI transfers. Higher transfer rates are reached using the
RAMmodel enabling real-time video transfers between a PC
and a DSP platform.

Several complex tasks are performed automatically, such
as distribution/scheduling, code generation of data transfers
and synchronizations. So the development of a new applica-
tion is limited to the algorithm description and to the adap-
tation of kernels for platforms or components. Furthermore,
as the C language is used and there is a large number of tested
topologies, developed DSP kernels can easily be adapted to
any other DSP and communication media.

The current MPEG-4 + UMTS application is still in
progress to achieve wireless communication. A new version
already integrates the channel coding (Turbo code) steps,
which only slightly increases the overall complexity.

This approach ensures fast prototyping of digital sig-
nal applications over heterogeneous parallel architectures in
many technological fields. Other applications have already
taken advantage of it. A SynDEx description of a MC-CDMA
(probably planned as 4G) application has been developed
by the IETR SPR laboratory [22]. LAR codec is a video
codec studied in the IETR Image Group Laboratory. A sim-
ilar scheme (Figure 9) has already been tested on different
configurations: LAR over MC-CDMA, MPEG-4 over MC-
CDMA, and LAR over UMTS.

The complex MPEG-4 + UMTS application stresses that
a multilayer system presents some specific characteristics in

terms of data flow. In the future, this case study may be cap-
italized on creating in SynDEx new hierarchical models of
architecture graphs in such a way the physical layer (telecom-
munication link) may appear as a particular medium. An-
other issue is the memory allocation in SynDEx. At each out-
put of each vertex, SynDEx creates an allocation. At this time,
memory allocations are reordered and reused manually to
give an optimal solution. Current works deal with an auto-
matic solution, based on graph coloring techniques and life
memory allocation.

REFERENCES

[1] A. M. Eltawil, E. Grayver, H. Zou, J. F. Frigon, G. Poberezh-
skiy, and B. Daneshrad, “Dual antenna UMTS mobile sta-
tion transceiver ASIC for 2 Mb/s data rate,” in Proceedings of
IEEE International Solid-State Circuits Conference (ISSCC ’03),
vol. 1, pp. 146–484, San Francisco, Calif, USA, February 2003.

[2] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A.
Sangiovanni-Vincentelli, “System-level design: orthogonaliza-
tion of concerns and platform-based design,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 19, no. 12, pp. 1523–1543, 2000.

[3] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree,
“From control models to real-time code using Giotto,” IEEE
Control Systems Magazine, vol. 23, no. 1, pp. 50–64, 2003.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Syn-
thesis fromDataflow Graphs, Kluwer Academic, Norwell, Mass,
USA, 1996.

[5] 3GPP TS 25.213 v3.3.0: Spreading and Modulation FDD, re-
lease 1999.

[6] F. Pereira and T. Ebrahimi, The MPEG-4 Book, Prentice-Hall
PTR, Upper Saddle River, NJ, USA, 2002.

[7] N. Ventroux, J. F. Nezan, M. Raulet, and O. Déforges, “Rapid
prototyping for an optimized MPEG-4 decoder implemen-
tation over a parallel heterogenous architecture,” in Proceed-
ings of 28th IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP ’03), vol. 2, pp. 433–436, Hong
Kong, China, April 2003, Conference cancelled - Invited paper,
ICME 2003.

[8] Y. Sorel, “Massively parallel computing systems with real
time constraints: the “Algorithm Architecture Adequation”
methodology,” in Proceedings of 1st IEEE International Confer-
ence on Massively Parallel Computing Systems (MPCS ’94), pp.
44–53, Ischia, Italy, May 1994.

[9] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Optimized rapid
prototyping for real-time embedded heterogeneous multipro-
cessors,” in Proceedings of 7th International Workshop on Hard-
ware/Software Codesign (CODES ’99), pp. 74–78, Rome, Italy,
May 1999.



12 EURASIP Journal on Applied Signal Processing

[10] Y. Sorel, “Real-time embedded image processing applications
using the A3 methodology,” in Proceedings of IEEE Interna-
tional Conference on Image Processing (ICIP ’96), vol. 2, pp.
145–148, Lausanne, Switzerland, September 1996.

[11] T. Grandpierre and Y. Sorel, “From algorithm and architec-
ture specifications to automatic generation of distributed real-
time executives: a seamless flow of graphs transformations,” in
Proceedings of 1st ACM and IEEE International Conference on
FormalMethods andModels for Co-Design (MEMOCODE ’03),
pp. 123–132, Mont Saint-Michel, France, June 2003.

[12] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-
Vincentelli, “Scheduling for embedded real-time systems,”
IEEE Design and Test of Computers, vol. 15, no. 1, pp. 71–82,
1998.

[13] L. A. Hall, D. B. Shmoys, and J.Wein, “Scheduling tominimize
average completion time: off-line and on-line algorithms,” in
Proceedings of 7th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’96), pp. 142–151, Atlanta, Ga, USA, Jan-
uary 1996.

[14] V. Fresse, O. Déforges, and J. F. Nezan, “AVSynDEx: a rapid
prototyping process dedicated to the implementation of dig-
ital image processing applications on Multi-DSP and FPGA
architectures,” EURASIP Journal on Applied Signal Processing,
vol. 2002, no. 9, pp. 990–1002, 2002, Special Issue on imple-
mentation of DSP and communication systems.

[15] Texas Instruments, “TMS320C6000 Optimizing Compiler
User’s Guide,” reference spru187l, March 2004.

[16] Y. Le Méner, M. Raulet, J. F. Nezan, A. Kountouris, and C.
Moy, “SynDEx executive kernel development for DSP TI C6x
applied to real-time and embedded multiprocessors architec-
tures,” in Proceedings of 11th European Signal Processing Con-
ference (EUSIPCO ’02), Toulouse, France, September 2002.

[17] Texas Instruments, “TMS320 DSP/BIOS User’s Guide,” refer-
ence spru423b, September 2002.

[18] F. Nouvel, S. Le Nours, and I. Herman, “AAA methodology
and SynDEx tool capabilities for designing on heterogeneous
architecture,” in Proceedings of 18th Conference on Design of
Circuits and Integrated Systems (DCIS ’03), Ciudad Real, Spain,
November 2003.

[19] A. Kountouris, C. Moy, and L. Rambaud, “Reconfigurability:
a key property in software radio systems,” in Proceedings of 1st
Karlshruhe Workshop on Software Radios, Karlsruhe, Germany,
March 2000.

[20] C. Moy, A. Kountouris, and A. Bisiaux, “HW and SW archi-
tectures for over-the-air dynamic reconfiguration by software
download,” in Proceedings of Software Defined Radio workshop
of IEEE Radio andWireless Conference (RAWCON ’03), Boston,
Mass, USA, August 2003.

[21] S. A. White, “Applications of distributed arithmetic to digi-
tal signal processing: a tutorial review,” IEEE ASSP Magazine,
vol. 6, no. 3, pp. 4–19, 1989.

[22] S. Le Nours, F. Nouvel, and J. F. Helard, “Example of a Co-
Design approach for a MC-CDMA transmission system im-
plementation,” in Journées Francophones sur l’Adéquation Al-
gorithme Architecture (JFAAA ’02), Monastir, Tunisie, Decem-
ber 2002.

M. Raulet received his postgraduate certifi-
cate in signal, telecommunications, images,
and radar sciences from Rennes University
in 2002, and his Engineering degree in elec-
tronic and computer engineering from Na-
tional Institute of Applied Sciences (INSA),
Rennes Scientific and Technical University
in 2002, where he is currently working as
a Ph.D. student in collaboration with Mit-
subishi Electric. His interests include image
compression and telecommunication algorithms and rapid proto-
typing.

F. Urban received his postgraduate certifi-
cate in signal, telecommunications, images,
and radar sciences from Rennes Univer-
sity in 2004, and his Engineering degree in
electronic and computer engineering from
INSA, Rennes Scientific and Technical Uni-
versity in 2004. He is currently working as a
Ph.D. student in collaboration with Thom-
son R&D, France. His interests include im-
age compression, rapid prototyping, DSP
optimization, and codesign.

J.-F. Nezan is an Assistant Professor at Na-
tional Institute of Applied Sciences (INSA)
of Rennes and a Member of the IETR Lab-
oratory in Rennes. He received his post-
graduate certificate in signal, telecommu-
nications, images, and radar sciences from
Rennes University in 1999, and his Engi-
neering degree in electronic and computer
engineering from INSA, Rennes Scientific
and Technical University in 1999. He re-
ceived his Ph.D. degree in electronics in 2002 from the INSA. His
main research interests include image compression algorithms and
multi-DSP rapid prototyping.

C. Moy has been an Engineer at the Na-
tional Institute of Applied Sciences (INSA),
Rennes Scientific and Technical University,
France, 1995. He received his M.S. and
Ph.D. degrees in electronics in 1995 and
1999 from the INSA. He worked from 1995
to 1999 on spread-spectrum and RAKE re-
ceivers for the Institute on Electronics and
Telecommunications of Rennes (IETR). He
then worked 6 years at Mitsubishi Electric
ITE-TCL Research Laboratory where he was focusing on software
radio systems and concepts. He is now an Assistant Professor at
Supélec. His research is done in the SCEE Laboratory of the UMR
CNRS 6164 IETR, which focuses on cognitive radio. He addresses
heterogeneous design techniques for SDR as well as cross-layer op-
timization topics.



M. Raulet et al. 13

O. Deforges is a Professor at National
Institute of Applied Sciences of Rennes
(INSA). He graduated in electronic engi-
neering from the École Polytechnique, Uni-
versity of Nantes, France, in 1992, where he
also received a Ph.D. degree in image pro-
cessing in 1995. In 1996, he joined the De-
partment of Electronic Engineering at the
INSA, Rennes Scientifc and Technical Uni-
versity. He is a Member of the UMR CNRS
6164 IETR Laboratory in Rennes. His principal research interests
are image and video lossy and lossless compressions, image under-
standing, fast prototyping, and parallel architectures.

Y. Sorel is a Research Director at INRIA
(National Institute for Reseach in Com-
puter Science and Control) and a Scien-
tific Leader of the Rocquencourt’s Team
AOSTE (Analysis and Optimization for Sys-
tems with Real-Time and Embedding Con-
straints). His main research topics are mod-
eling of distributed real-time systems with
graphs and partial order, uniprocessor and
multiprocesseur real-time scheduling opti-
mizations of systems withmultiple constraints, and automatic code
generation for hardware/software codesign. He is also the Founder
of SynDEx, a system-level CAD software distributed free of charge
at www.syndex.org.

http://www.syndex.org.

	Introduction
	SynDEx overview
	Adequation algorithm architecture
	Automatic executive generation
	Design process

	SynDEx Executive Kernels
	Development platforms
	Software component kernels
	Communication media kernels
	Hardware component kernel
	Kernel organization

	UMTS application
	General description
	FIR implementation
	Tx and Rx implementations

	MPEG-4 over UMTS: a multilayer system
	Conclusions and open issues
	REFERENCES

