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Abstract We consider the problem of finding a dual formulation of gravity in the
presence of non-trivial matter couplings. In the absence of matter a dual graviton can be
introduced only for linearised gravitational interactions. We show that the coupling of
linearised gravity to matter poses obstructions to the usual construction and comment
on possible resolutions of this difficulty.
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1 Introduction

One of the remarkable features of D = 4 electrodynamics is that it allows for both an
electric formulation, using the vector potential Aµ, and for a magnetic formulation,
using a dual vector potential Ãµ, in any background described by a metric gµν . The
duality relation between these two fields can be written as

Fµν = 1

2
εµνρτ F̃ρτ , Fµν = 2∂[µAν], F̃µν = 2∂[µ Ãν]. (1)
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40 E. A. Bergshoeff et al.

The integrability condition for the local existence of Ãµ is the original field equation:
− 1

2ε
νσ1σ2σ3∇σ1 F̃σ2σ3 = ∇µFµν = 0. Generally, the duality exchanges field equations

and Bianchi identities. The duality property can be preserved when the Maxwell field
is coupled to other matter, e.g., axion/dilaton scalar fields, but breaks down when
generalised to non-abelian gauge groups. The construction (1) in D = 4 generalises
to any p-form Ap (that is any field with p antisymmetric spacetime indices) in D
dimensions, the dual of the field Ap being a (D − p − 2)-form ÃD−p−2.

It is natural to ask whether a similar dual formulation exists for the gravitational
field. For linearised gravity in vacuo1 such a formulation is known to exist [3–13]
but a BRST analysis reveals, under rather general assumptions [14], obstructions to
extend this to a theory with covariant and local interactions (see also [15]).

Expanded around a flat background the metric takes the form

gµν = ηµν + κhµν + O
(
κ2h2

)
(2)

and the curvature tensors simplify in linear order to

Rµν ρσ = 2∂[µων] ρσ , Rµν = −∂µωρ ρν − ∂ρωµνρ, R = −2∂ρωσ σρ, (3)

where now all derivatives are partial and indices are raised and lowered with the
flat Minkowski metric and we disregard higher order terms in the graviton hµν from
now on. Evidently, the curvature tensors are of order O(κh).2 The spin connection is
ωµνρ = 2κ∂[νhρ]µ in terms of the graviton and satisfies ω[µνρ] = 0. The linearised
vacuum Einstein equations in D-dimensional space–time can be written as [5]

0 = Rνρ − 1

2
δνρR = − 1

(D − 2)!ε
νσ1...σD−1∂σ1 Yσ2...σD−1,ρ, (4)

where

Yµ1...µD−2,ρ = 1

2
εµ1...µD−2

σ1σ2
(
ωρ σ1σ2 − 2ηρσ1ω

ν
νσ2

)
(5)

is obtained from dualising the spin connection and its trace. Y is contained in the tensor
product of a vector with a (D−2)-form, we use a comma to seperate the antisymmetric
indices from the single vector index. Equation (4) suggests the introduction of a dual
graviton Dµ1...µD−3,ρ via

(D − 2)∂[µ1 Dµ2...µD−2],ρ = Yµ1...µD−2,ρ (6)

as solution to the Y -Bianchi identity (4), which is equivalent to the graviton equation of
motion. The consequence of linearisationω[µνρ] = 0 is equivalent to Yµ1...µD−3ν

ν = 0,
which is a differential condition on the dual graviton. It was argued in [7] that the

1 For a discussion of gravitational duality in (Anti) de Sitter space see [1,2].
2 The dimensions are: [κ] = 2−D

2 , [hµν ] = D−2
2 , [ωµνρ ] = 1 and [Rµν ρσ ] = 2.
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Dual gravity and matter 41

condition D[µ1...µD−3,ρ] = 0 can be imposed by a local Lorentz transformation. The
Eqs. (4) and (5) can be derived from the Einstein action in first order formulation as
shown in [5]. One introduces Y as an auxiliary field in the action which then depends
on the vielbein and Y . Substituting the solution of the algebraic equation of motion
for Y gives back the Einstein action. In this framework (5) is the algebraic equation of
motion for Y whereas (4) is the equation of motion obtained by varying with respect
to the vielbein and linearising (see also [7]).

A slightly different approach for the introduction of a dual graviton starts from
the Riemann tensor and its symmetries [3,6,8]. Dualising the full linearised Riemann
tensor Rµνρσ on one set of antisymmetric indices gives the tensor

Sµ1...µD−2 ρσ = 1

2
εµ1...µD−2

ν1ν2 Rν1ν2 ρσ . (7)

The (algebraic and differential) identities for the Riemann tensor together with the
linearised equations of motion then imply that on-shell [6,8]

Sµ1...µD−2 ρσ = ∂σ ∂[µ1 D̃µ2...µD−2],ρ − ∂ρ∂[µ1 D̃µ2...µD−2],σ

= ∂σ Ỹµ1...µD−2,ρ − ∂ρ Ỹµ1...µD−2,σ (8)

in terms of a dual graviton D̃µ1...µD−3,ρ which manifestly satisfies D̃[µ1...µD−3,ρ] = 0.
The linearised Einstein equation in this case is obtained by taking antisymmetric parts
of S, e.g.

1

(D − 3)!ε
µσ1...σD−1 Sνσ1...σD−1 = Rµν − 1

2
δµν R. (9)

In this approach there is no local duality relation similar to (5). Arguably the best one
can hope for is

Ỹµ1...µD−2,ρ = 1

2
εµ1...µD−2

σ1σ2ωρ σ1σ2 + ∂ρ�̃µ1...µD−2 , (10)

where �̃µ1...µD−2 is a possibly non-local term which ensures that all symmetry prop-
erties are satisfied. The term �̃µ1...µD−2 is allowed for since it drops out in S, cf. (8).

This paper is organised as follows. In Sect. 2, we will show that the dual graviton can
also be introduced in the context of linearized supergravity in D = 4. Our approach
uses the duality relation (10). In Sect. 3, we discuss dual gravity in the presence of
gravity and matter, in an arbitrary number of dimensions, and determine the conditions
on the energy–momentum tensor that this matter coupling requires. The analysis of
these conditions shows that linearised gravity and dual gravity cannot be combined
with matter. In Sect. 4, we discuss these results and possible escape routes.
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42 E. A. Bergshoeff et al.

2 Supersymmetry in D = 4

In this section, we show that the supersymmetry algebra of minimal supergravity in four
dimensions closes on the dual graviton D̃µν at the linearised level. At lowest order in
the fermions, the supersymmetry transformations of the vielbein and the gravitino are

δeµ
a = 1

2
ε̄ γ aψµ ,

(11)

δψµ =
(
∂µ − 1

4
ωµαβγ

αβ

)
ε ,

where the spinor ε and the gravitino are Majorana. We want to linearise gravity around
a flat background, and this corresponds to considering linearised global supersymme-
try transformations

δhµν = ε̄γ(µψν) ,

(12)
δψµ = −1

4
γ αβωµαβε ,

where ωµαβ is the linearised spin connection, and hµν is the first order fluctuation of
the metric.

In four dimensions the dual graviton has the same spacetime index structure as
the graviton, and thus we denote it with D̃µν , where the spacetime indices are meant
to be symmetrised. This field varies with respect to general coordinate transforma-
tions, that at the linearised level are translations, but it also possesses its own gauge
transformations, that have the form

δ D̃µν = ∂(µ�ν) , (13)

where �µ is an arbitrary gauge parameter. This gauge transformation has precisely
the same structure as the general coordinate transformation of the linearised graviton.
This would not be true in dimensions other than four.

We require the supersymmetry transformation of the dual graviton to be

δ D̃µν = i

2
ε̄γ(µγ5ψν) , (14)

where in our conventions γ5 = −iγ0γ1γ2γ3, and we are using mostly + signature.
Using Eq. (12), the commutator of two supersymmetry transformations on D̃µν gives

[δ1, δ2]D̃µν = − i

4
ω(µ

αβ ε̄2γν)αβγ5ε1 = −1

2
ω(µ

αβεν)αβγ ξ
γ , (15)

where

ξµ = 1

2
ε̄2γ

µε2 (16)
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Dual gravity and matter 43

is the general coordinate transformation parameter that occurs in the commutator of
two supersymmetry transformations on the graviton and on the gravitino.

In this four dimensional case, the duality relation (10) becomes

Ỹµν,ρ + ∂ρ�̃µν = 1

2
εµναβωρ

αβ, (17)

where

Ỹµν,ρ = ∂µ D̃νρ − ∂ν D̃µρ. (18)

Using these equations, Eq. (15) becomes

[δ1, δ2]D̃µν = ξγ ∂γ D̃µν − ξγ ∂(µ D̃ν)γ − ξγ ∂(µ�̃ν)γ . (19)

Given that at the linearised level we can treat ξ as a constant, this result shows that
this supersymmetry commutator produces a gauge transformation as in Eq. (13), with
parameter

�µ = −ξγ (D̃µγ + �̃µγ ) , (20)

as well as translations. This proves that one can close the supersymmetry algebra of
minimal supergravity in four dimensions on the dual graviton at the linearised level.

3 Inclusion of matter

Matter couples to gravity via its energy–momentum tensor

Rµν − 1

2
gµνR = κ2Tµν. (21)

One can retain non-linear matter while linearising gravity. At lowest non-vanishing
order in the graviton, matter and gravity decouple and one is left with the sum of a
free spin two field and the remaining, possibly self-interacting, matter propagating on
a Minkowski background. In this situation one can dualise the graviton as before since
there are no matter contributions in the defining equations. This trivial dualisation
is, however, not satisfactory from the point of view of the recently proposed infinite-
dimensional symmetries [5] where the dual graviton should bear some marks of the
matter present in the theory.3

Repeating the steps that led to (6) in the matter coupled action yields again the
duality relation (5), but now (4) is replaced by

∂[µ1 Yµ2...µD−1],ρ = κ2T̃µ1...µD−1,ρ, (22)

3 Indeed, in the example of D = 11 supergravity one would expect from the structure of the E11 coset
element that the dual graviton transforms non-trivially under the gauge transformations of the three-form
potential and its dual six-form and that these transformations cannot be completely removed by field
redefinitions.
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where the right hand side in (22) is dual to the energy momentum tensor Tµν :

T̃µ1...µD−1,ρ = (−1)D−2

(D − 2)! εµ1...µD−1
σ Tσρ. (23)

The symmetry of Tµν implies that the trace of the dual energy–momentum tensor
vanishes. Now, since the r.h.s. of (22) is no longer zero we are not immediately led
to the introduction of a dual graviton Dµ1...µD−3,ρ ; the integrability condition has
changed. If, however, the dual of the energy–momentum tensor satisfies

T̃µ1...µD−1,ρ = −∂[µ1 Mµ2...µD−1],ρ , (24)

which is equivalent to

T λρ = (−1)D−2

D − 1
εµ1...µD−1λ∂µ1 Mµ2...µD−1,ρ , (25)

we can define an improved Y by

Yµ1...µD−2,ρ → Yµ1...µD−2,ρ + Mµ1...µD−2,ρ . (26)

This improved Y then satisfies the standard integrability relation and gives rise to the
dual graviton as before. This improvement is only useful if M has a local expression
in the matter fields and their duals. In other words, the introduction of a dual graviton
in the presence of matter is equivalent to peeling one derivative off the dual energy
momentum tensor in (24).

A similar conclusion is reached by studying the approach via the Riemann tensor.
To obtain the Einstein equation as an integrability condition from (9) one requires
that S gives rise to the energy–momentum contribution from the matter sector. This
requires that there exists a tensor M̃ which plays the same role with respect to Ỹ as M
to Y in (26):

Ỹµ1...µD−2 ρ → Ỹµ1...µD−2 ρ + M̃µ1...µD−2 ρ , (27)

which again leads to the problem of finding a local expression M̃ such that the Einstein
equation arises from (9).

We have investigated, in a variety of cases related to supergravity systems with
hidden symmetries, the relation (24) for the dual energy–momentum tensor to obtain
local expressions for M and M̃ . For simplicity we present the analysis in D = 4 with
gravity coupled to a single Maxwell field Aµ with the covariant energy–momentum
tensor

Tµν = Fµσ1 Fν
σ1 − 1

4
gµνFσ1σ2 Fσ1σ2 . (28)
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Dual gravity and matter 45

In lowest order the dual energy–momentum tensor (23) then takes the form

T̃µ1µ2µ3,ρ = 3

4
Fρ[µ1 F̃µ2µ3] − 3

4
F̃ρ[µ1 Fµ2µ3] + 3

2
ηρ[µ1 Fµ2

σ F̃µ3]σ . (29)

Since Tµµ = 0 here we also have the constraint that T̃[µ1µ2µ3,ρ] = 0. According to
(24) we make the ansatz

Mµ1µ2,ρ = α1 A[µ1∂µ2] Ãρ + α2 A[µ1∂|ρ| Ãµ2] + α3 Aρ∂[µ1 Ãµ2] + β1 Ã[µ1∂µ2] Aρ

+β2 Ã[µ1∂|ρ| Aµ2] + β3 Ãρ∂[µ1 Aµ2] + γ1ηρ[µ1 Aµ2]∂ν Ãν

+γ2ηρ[µ1 Aν∂µ2] Ãν + γ3ηρ[µ1 Aν∂|ν| Ãµ2] + γ4ηρ[µ1 Ãµ2]∂ν Aν

+γ5ηρ[µ1 Ãν∂µ2] Aν + γ6ηρ[µ1 Ãν∂|ν| Aµ2], (30)

without any restrictions on the real coefficients αi , βi γi .4 The terms with coefficients
αi and βi are needed to reproduce the first two terms in (29) whereas the γi terms in the
ansatz correspond to the third term in (29). Taking a curl of (30) through ∂[µ1 Mµ2µ3],ρ
and demanding that all terms combine into covariant field strengths after dualisation
implies for αi and βi that

α1 + β3 = 0, α3 + β1 = 0, α2 = 0, β2 = 0 (31)

and all γi = 0. Any Mµ1µ2,ρ satisfying this condition leads to ∂[µ1 Mµ2µ3],ρ = 0 which
implies T̃µ1µ2µ3,ρ = 0. Therefore one cannot recover the matter coupled Einstein
equations from a dual formulation in this way.5

Turning to the introduction of the dual graviton via the dualised Riemann tensor as
in (8) one can again use the ansatz (30) for M̃µ1µ2,ρ . Now the matter coupled Einstein
equation should arise as in (9), which leads to the following condition between M̃ and
the energy–momentum tensor:

1

2
εµσ1σ2σ3∂σ3 M̃νσ1,σ2 = Tµν. (32)

Without making any assumptions on the symmetry of M̃µ1µ2,ρ one finds a one-
parameter family of non-trivial solutions represented by

α1 = −α3 = 1

15
, α2 = 1, β1 = −β3 = 1

3
, β2 = 1

5
. (33)

All coefficients can be rescaled by the same constant. However, insisting on the irre-
ducibility condition of the dual graviton (which automatically holds in the approach

4 Demanding that Mµ1µ2,ρ comes from the dual graviton requires that M[µ1µ2,ρ] = 0, or α1 −α2 +α3 =
β1 − β2 + β3 = 0 but we relax this condition for the moment.
5 Allowing for a term which is a total ρ derivative as in (10) there are additional possibilities and there is
a solution which gives the first two terms in (29). The third term cannot be accounted for in this way.
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through the dualised Riemann tensor), removes this solution. This difficulty was
already anticipated in [8].

The result of the explicit analysis above can be summarized in the following way
[16]. If we could find a solution for M in (25) [or M̃ in (32)] the energy–momentum
tensor would be defined in terms of a local improvement term, and would be conserved
independently of the equations of motion. This is clearly undesirable.

4 Discussion

In both approaches to the dual graviton we found that there is no satisfactory way
of coupling linearised gravity to matter and then describing both the gravity and the
matter sector using dual variables in a local and covariant way. This is reminiscent of
the findings of [17,18] where it was also argued that the coupling of linearised gravity
to dynamical matter sources induces a non-linear completion of the gravity sector.
Treating the gravity sector non-linearly, one is however immediately faced with the
problem of the obstructions established in [14] when trying to maintain locality and
covariance. One possible way out then is to abandon covariance [13], see also [19].

One of the motivations for this work was to add the dual graviton to the super-
symmetry algebra in eleven dimensions in the same spirit as was done for the dual
matter fields in D = 10 maximal supergravity theories in [20,21]. The supersym-
metry algebra in D = 10 closes on the dual matter fields if one imposes appropriate
duality equations which imply the dynamical matter equations of supergravity. This
computation can also be done using algebraic correspondences [22] and it is therefore
tempting to use the same techniques to derive the supersymmetry rules of the dual
graviton coupled to matter in maximal supergravity. If successful, this would reveal
the way the dual graviton transforms under the A(3) and A(6) gauge transformations
as required by supersymmetry, which could then be compared to the predictions of,
e.g., E11. Whereas the dual graviton of pure minimal supergravity in D = 4 can be
included in the supersymmetry algebra if one linearises and uses a duality relation of
the type (10) (see Sect. 2) we find that in D = 11 matter enters the duality relation in
such a way that it no longer gives rise to the correct, gauge invariant Einstein-matter
equations. Phrased differently, the supersymmetry algebra can be closed on the dual
graviton in maximal supergravity (and the answer agrees with the algebraic consid-
erations) but the duality relation is not an equivalent reformulation of the Einstein
equation. This result is in agreement with the non-existence of a dual graviton coupled
to matter using the approach we outlined in Sect. 3.

Finally, we discuss some possible resolutions of this apparent difficulty in addition
to abandoning Lorentz covariance which was already mentioned. A possible but trivial
resolution is to fully decouple the matter and the gravity sector (as suggested by a κ
expansion of the equations) and treat them as sums of free fields.6 One should keep
in mind that there are (at least) two ways to introduce the dual graviton, as presented

6 This is what happens also in Kaluza–Klein reduction. Linearised pure gravity in D dimensions admits a
dual graviton. After dimensional reduction to D − 1 dimensions this gives again dual gravitation but the
Kaluza–Klein scalar and vector do not couple to gravity in D − 1 dimensions.
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Dual gravity and matter 47

in Sect. 1. Additional possibilities or combinations might be envisaged, and it would
be useful to understand the precise relation between these different approaches. The
way the Einstein equations were constructed from the tentative dual graviton involved
very specific choices of taking derivatives, cf. (4) and (9). Since the dual graviton is
a mixed symmetry tensor there be might other curvatures one could construct from
it which then give the Bianchi identities and field equations of the original theory.
However, this has to be done in such a way that the assumptions of the generalised
Poincaré lemma [8] are satisfied, and we could not find any non-trivial solution this
way. This leads us to conclude that the requirement of a local and covariant expression
for M (M̃) cannot be maintained.
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