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1 Introduction

Liouville field theory is one of a few well-studied irrational conformal field theories and

has been studied thoroughly in various context such as noncritical string theory, two-

dimensional quantum gravity, tachyon condensation and quantum gravity in the de-Sitter

spacetime (see comprehensive reviews [1, 2] and references therein). Furthermore, it has

been drawing renewed attention recently because of its relation to four-dimensional N = 2

supersymmetric gauge theories, known as the AGT correspondence [3].

In this paper, we consider the semiclassical limit of the Liouville field theory, in which

the central charge goes to positive infinity. In particular, we discuss semiclassical correla-

tion functions on a two-sphere when all vertex operators have large conformal dimensions.

In the AGT correspondence, the semiclassical limit of the Liouville field theory is known to

correspond to a special limit of the gauge theory, called the Nekrasov-Shatashvilli limit [4].

In this limit, an intriguing relation between the gauge theories and the quantum integrable

models has been discovered [4–23]. Although this limit is extensively studied in the liter-

ature, the nature and the mechanism of this mysterious relation are still to be elucidated.

Thus, for deeper understanding of this relation, it would be worthwhile to investigate the

structure of the semiclassical Liouville theory more in detail.

To compute the semiclassical correlation functions in the usual method, we need the

explicit form of the solution to the classical Liouville equation. However, the solution to

the Liouville equation is known only for three-point functions [24–26], and it is considered
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to be extremely difficult to obtain the solutions for higher-point functions.1 To overcome

this difficulty, we propose a new method, which does not necessitate the explicit solution

to the Liouville equation and is based on a kind of Riemann-Hilbert method developed

recently for the holographic calculation of correlation functions in AdS/CFT [28–32]. To

demonstrate its utility, we study the three-point functions in this paper and show that it

reproduces the known results correctly.

The key of the method is a certain second-order ordinary differential equation2 associ-

ated with the solution to the classical Liouville equation. This equation plays a pivotal role

in the analysis since the classical action of the Liouville field theory can be re-expressed

in terms of the Wronskians of this differential equation. To compute such Wronskians, we

take the following steps. First, from the simple fact that there is no insertion of vertex

operators at infinity, we determine certain products of the Wronskians. Next, to compute

the individual Wronskians, not just their products, we introduce an extra parameter called

spectral parameter and consider a one-parameter deformation of the Wronskians. Then,

we discuss the analyticity of the Wronskians with respect to the spectral parameter using

a newly introduced quantity called exact WKB curves, which is a generalization of the

ordinary WKB curves defined in [34]. With the exact WKB curves, we can fully determine

the analyticity of the Wronskians. Then, using the analytic properties thus obtained, we

set up the Riemann-Hilbert problem and solve it explicitly in terms of gamma functions.

The three-point functions computed in this way turn out to agree completely with the clas-

sical limit of the DOZZ three-point functions [24, 35, 36]. The agreement provides strong

evidence for the validity and the utility of this method.

The rest of this paper is organized as follows. Firstly, in section 2, we will give a brief

summary on the semiclassical limit of the Liouville correlation functions. In particular, we

explain that the classical action can be expressed in terms of the Wronskians of certain

ordinary differential equations. Secondly, in section 3, we will determine the Wronskians

using the exact WKB curves and the Riemann-Hilbert analysis, and compute the three-

point functions exactly. Finally, in section 4, we will conclude and indicate several future

directions including the generalization to the higher-point functions and the relation to the

four-dimensional N = 2 supersymmetric gauge theories.

2 Classical Liouville correlation functions

In this section, we summarize the basics of semiclassical analysis of the Liouville field the-

ory. First, starting from the fully quantum path integral expression of the Liouville field

theory, we show that the semiclassical approximation is valid when vertex operators have

large conformal dimensions. Then, we move onto the three-point functions. The semiclas-

sical limit of the three-point functions is a well-studied subject (see [24–26]). However,

1Although one can write down the general form of the solutions to the Liouville equation in terms of

a meromorphic function and its complex conjugate (see for instance [27]), it is difficult to determine their

explicit form in the case of higher-point functions.
2This differential equation originates from the null-vector decoupling equation in the quantum Liouville

field theory and is often referred to as the oper in the literature [33].
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our approach is different from the previous works as we do not make use of the classical

solutions. After reviewing the long-known fact that the classical solutions of the Liouville

equation can be constructed from the solutions of a certain second-order ordinary differ-

ential equation, we show that the semiclassical correlation functions can be re-expressed

in terms of the Wronskians of this differential equation. Such Wronskians will be directly

evaluated in the next section.

2.1 Semiclassical analysis of Liouville field theory

The path integral expression of the Liouville correlation function on a two-sphere is given

as follows3

〈V1(z1)V2(z2) · · · Vn(zn)〉 =

∫
Dφ exp

[
− 1

2πb2

∫
d2z

(
∂φ∂̄φ+ 2λe2φ

)] n∏
i=1

Vi(zi) , (2.1)

where Vi is a vertex operator given by

Vi(zi) = e2αiφ(zi)/b . (2.2)

Precisely speaking, the boundary term at infinity is necessary to make the action integral

convergent [24–26]. However, in what follows, we will not evaluate the action directly and

the precise form of the boundary term will not be needed.

Let us now discuss the semiclassical limit. The semiclassical limit of the Liouville field

theory is basically b → 0 limit. As (2.1) shows, the action part has 1/b2 prefactor, which

diverges in the limit. Therefore, the path integral in this limit is dominated by its saddle-

point value. However, if we take the naive b→ 0 limit with αi fixed, the vertex operators

in the limit scale as 1/b, which is b(→ 0) times smaller than the action part. Then, the

saddle point will be insensitive to the vertex operators and the result will become trivial.4

To obtain a nontrivial result, we need to properly scale αi so that ηi ≡ bαi stays finite. We

call the operators whose conformal dimensions are scaled in this way “heavy” operators.

In such a limit, the path integral (2.1) can be evaluated as

〈V1(z1)V2(z2) · · · Vn(zn)〉 b→0∼ exp

(
− S
b2

)
, (2.3)

S ≡ 1

2π

∫
d2z

(
∂φ∗∂̄φ∗ + 2λe2φ∗ − 4π

∑
i

ηiφ∗δ
2(z − zi)

)
, (2.4)

where φ∗ is the saddle-point value of φ which satisfies the classical Liouville equation,

∂∂̄φ∗ = λe2φ∗ − π
∑
i

ηiδ
2(z − zi) . (2.5)

In what follows, we only consider the case where ηi, which parametrize the vertex operators,

are real-valued and smaller than 1/2. When ηi satisfy these conditions, the exponential

3This action, which is slightly different from the usual one, is obtained after the field redefinition φ→ φ/b.

For a further detail, see, for instance, [26].
4In such cases, the quantum correction (or equivalently the one-loop correction) will become important.
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term in (2.5) can be neglected5 in the vicinity of the vertex operators and the asymptotic

behavior of φ∗ is given by

φ∗
z→zi∼ −2ηi ln |z − zi|+ Ci +O(z − zi) . (2.6)

The inequality ηi < 1/2 is known as the Seiberg bound [27] in the literature. The modern

interpretation6 of this bound is that, in the quantum Liouville field theory, the operator

with η > 1/2 is equivalent to the operator with 1 − η by some rescaling factor, called the

reflection coefficient.

There is another constraint we impose on the values of ηi. Integrating (2.5) over the

two-sphere and using the Gauss-Bonnet theorem, we obtain∑
i

ηi − 1 =
λ

π
(Area) , (2.7)

where (Area) denotes the area of the Riemann surface computed with the metric gij =

eφ∗δij . Therefore, when the Liouville equation has a real-valued solution, (2.7) must be

positive. This provides the necessary condition for the existence of the real solution, which

we impose throughout this paper. In summary, we require the parameters ηi to be in the

following region, which we call the physical region,

ηi <
1

2
,
∑
i

ηi > 1 . (2.8)

Note that, for the three-point functions, ηi > 0 follows from the above conditions.

Now, using (2.5), we can define the following holomorphic quantity:7

T (z) ≡ −(∂φ∗)
2 + ∂2φ∗ . (2.9)

This quantity is, in fact, a semiclassical limit of the stress-energy tensor and plays an

important role in the subsequent analysis. From (2.6), the asymptotic behavior of T (z)

can be determined in the following form:

T (z) =
∑
i

ηi(1− ηi)
(z − zi)2

+
ai

z − zi
. (2.10)

Here, the parameters ai are called accessory parameters. They are constrained by the

condition that the stress-energy tensor is not singular and decays as T (z) ∼ z−4 at infinity

in the following way:∑
i

ai = 0,
∑
i

(aizi + ηi(1− ηi)) = 0,
∑
i

(aiz
2
i + 2ηi(1− ηi)zi) = 0 . (2.11)

5If we consider the operator with η > 1/2, the asymptotic behavior will be affected by the exponential

term in (2.5).
6In the context of two-dimensional gravity, the Liouville field plays the role of the metric gij = e2φδij

on the two-sphere in the conformal gauge. Then, the insertion point of a vertex operator with η becomes

a singularity with a deficit angle 2π(1 − 2η) and the Seiberg bound η < 1/2 naturally follows from the

geometric requirement.
7We can also define the anti-holomorphic quantity which corresponds to the anti-chiral stress energy

tensor by T̄ (z̄) ≡ −(∂̄φ∗)2 + ∂̄2φ∗.
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In the case of the three-point functions, (2.11) is restrictive enough to fully determine the

form of T (z) as

T (z) =

(
η1(1− η1)z12z13

z − z1
+
η2(1− η2)z21z23

z − z2
+
η3(1− η3)z31z32

z − z3

)
1

(z−z1)(z−z2)(z−z3)
,

(2.12)

where zij is given by zi − zj .
Let us now explain how to compute the semiclassical correlation functions. The most

straightforward way to compute them is to evaluate the integrand of the path integral (2.1),

which consist of the action and the vertex operators, on the saddle-point classical solution.

Although this line of approach was taken in the study of correlation functions in AdS/CFT,

there is much an easier way for the Liouville field theory. The idea is to consider the

variation of the semiclassical correlation functions with respect to the parameters of the

vertex operators, ηi. The correlation functions evaluated on the saddle-point depends on ηi
in two different ways: first, the integrand has an explicit dependence on ηi, exp(2ηiφ/b

2).

Second, as the saddle-point solution itself depends on ηi, the integrand depends on ηi
implicitly through the saddle-point solution. However, the second dependence is always of

the form,

δS

δφ

δφ

δηi
δηi , (2.13)

which vanishes since the saddle point satisfies the equation of motion. Therefore, we

conclude the only dependence we need to consider is the explicit dependence on ηi in the

integrand. This way, we arrive at the following important formula:

∂S

∂ηi
= −2Ci , (2.14)

where Ci is the subleading term8 in (2.6). Consequently, the evaluation of the semiclassical

limit of the correlation functions boils down to the evaluation of Ci.

2.2 Correlation functions and Wronskians

In the previous works, Ci is determined by using the explicit solutions of the classical

Liouville equation [24–26]. However, it is extremely difficult to obtain the explicit solutions

for the higher-point functions. To overcome this problem, we will propose another method

based on the Riemann-Hilbert analysis in this paper. The purpose of this section is to

express Ci in (2.14) in a form to which our method is readily applicable.

First, we use the following famous fact of the classical Liouville field theory: the

classical solution of the Liouville field theory can be expressed as the bilinear of the solutions

to the ordinary differential equation,(
∂2 + T (z)

)
ψi = 0 ,

(
∂̄2 + T̄ (z̄)

)
ψ̄i = 0 , (2.15)

8Although the leading term in (2.6) produces the divergent contribution, it is absorbed by the renor-

malization of the vertex operators. For details, see [24].
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as follows:

e−φ =
√
λ(ψ1ψ̄1 − ψ2ψ̄2) , (2.16)

〈ψ1 , ψ2〉〈ψ̄1 , ψ̄2〉 = 1 , (2.17)

where 〈A ,B〉 is a Wronskian between A and B, defined by A∂B − B∂A or A∂̄B − B∂̄A.

Existence of such a linear differential equation is one of the important characteristics of

integrable systems and plays a pivotal role in the context of the holographic calculation of

correlation functions in AdS/CFT [28–32]. Following the convention in that context, we

will call the equation (2.15) the auxiliary linear problem.

Let us now make an important remark on (2.16). Although it is always true that

the classical solution of the Liouville field theory can be represented by a certain bilinear

of the solutions to the auxiliary linear problem, not all the bilinears provide a consistent

solution of the Liouville field theory. This is because, while the left hand side of (2.16),

e−φ, is always single-valued, the single-valuedness is not guaranteed if we choose a bilinear

arbitrarily. Thus, the correct statement is as follows: If the bilinear of the auxiliary linear

problem, defined by the right hand side of (2.16), is single-valued on the Riemann surface

we consider, it provides a classical solution of the Liouville field theory.

Having clarified the relation between the solution of the Liouville field theory and the

solutions to the auxiliary linear problem, let us discuss the asymptotic property near the

vertex operators. In the vicinity of the vertex operator, zi, there are two independent

solutions i± to the auxiliary linear problem (2.15) with different asymptotic behavior.

i+ ∼ (z − zi)ηi , i− ∼ (z − zi)1−ηi/(1− 2ηi) , (2.18)

ī+ ∼ (z̄ − z̄i)ηi , ī− ∼ (z̄ − z̄i)1−ηi/(1− 2ηi) . (2.19)

Here, we normalized i± so that they satisfy the normalization conditions, 〈i+, i−〉 =

〈̄i+, ī−〉 = 1. In terms of i± and ī± defined above, the solutions to (2.15) which appears in

the formula (2.16) can be expressed as follows.

ψk = 〈ψk , i−〉i+ − 〈ψk , i+〉i− , (2.20)

ψ̄k = 〈ψ̄k , ī−〉̄i+ − 〈ψ̄k , ī+〉̄i− , (2.21)

These expressions are useful to determine the asymptotic behavior of ψk and ψ̄k. Since ηi
is smaller9 than 1− ηi, ψk and ψ̄k can be approximated near zi as

ψk∼〈ψk , i−〉(z − zi)ηi , ψ̄k∼〈ψ̄k , ī−〉(z̄ − z̄i)ηi . (2.22)

Thus, the asymptotic behavior of φ can be determined as

φ ∼ −2ηi log |z − zi| − log
(
〈ψ1 , i−〉〈ψ̄1 , ī−〉 − 〈ψ2 , i−〉〈ψ̄2 , ī−〉

)
− 1

2
log λ . (2.23)

We have not hitherto considered seriously the single-valuedness of e−φ. Thus, let us

next discuss what kind of constraints the single-valuedness imposes. Although we will

9Recall that ηi is smaller than 1/2 owing to the condition (2.8).
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henceforth consider only the three-point functions, the discussion in this subsection can

be generalized to the higher-point functions. First, consider the single-valuedness around

z1. To be single-valued, or equivalently monodromy-free, around z1, e
−φ must be of the

following form:

e−φ/
√
λ = A1+1̄+ −A−11−1̄− . (2.24)

In other words, ψ1 and ψ̄1 must be proportional to 1+ and 1̄+, and ψ2 and ψ̄2 must be

proportional to 1− and 1̄−. For the reality of e−φ, we should take A to be real. Now, let

us re-express (2.24) in terms of the solution around z2.
10 Using the following relation,

1+ = 〈1+ , 2−〉2+ − 〈1+ , 2+〉2− etc. (2.25)

we obtain

e−φ/
√
λ =

(
A〈1+ , 2−〉〈1̄+ , 2̄−〉 −A−1〈1− , 2−〉〈1̄− , 2̄−〉

)
2+2̄+

+
(
A〈1+ , 2+〉〈1̄+ , 2̄+〉 −A−1〈1− , 2+〉〈1̄− , 2̄+〉

)
2−2̄−

−
(
A〈1+ , 2−〉〈1̄+ , 2̄+〉 −A−1〈1− , 2−〉〈1̄− , 2̄+〉

)
2+2̄−

−
(
A〈1+ , 2+〉〈1̄+ , 2̄−〉 −A−1〈1− , 2+〉〈1̄− , 2̄−〉

)
2−2̄+ . (2.26)

e−φ is single-valued if and only if the last two terms in the above equation vanishes. There-

fore, we obtain the following constraints,

A〈1+ , 2−〉〈1̄+ , 2̄+〉 −A−1〈1− , 2−〉〈1̄− , 2̄+〉 = 0 , (2.27)

A〈1+ , 2+〉〈1̄+ , 2̄−〉 −A−1〈1− , 2+〉〈1̄− , 2̄−〉 = 0 . (2.28)

Solving the above two equations (2.27) and (2.28), we arrive at the following expression:

e−φ√
λ

=

√∣∣∣∣〈1− , 2−〉〈1− , 2+〉〈1+ , 2+〉〈1+ , 2−〉

∣∣∣∣1+1̄+ −

√∣∣∣∣〈1+ , 2+〉〈1+ , 2−〉〈1− , 2−〉〈1− , 2+〉

∣∣∣∣1−1̄− . (2.29)

From the single-valuedness condition around z3, we can derive an equation similar to (2.29),

but with 2± replaced with 3±. Combining these two expressions, the following symmetric

expression can be written down:

e−φ√
λ

=

∣∣∣∣〈1− , 2−〉〈1− , 2+〉〈1+ , 2+〉〈1+ , 2−〉
〈3− , 1−〉〈3+ , 1−〉
〈3+ , 1+〉〈3− , 1+〉

∣∣∣∣ 14 1+1̄+

−
∣∣∣∣〈1+ , 2+〉〈1+ , 2−〉〈1− , 2−〉〈1− , 2+〉

〈3+ , 1+〉〈3− , 1+〉
〈3− , 1−〉〈3+ , 1−〉

∣∣∣∣ 14 1−1̄− . (2.30)

10The monodromy-free condition around z3 is trivial since the contour around z3 can be decomposed into

a sum of contours around z1 and z2.
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The expression in terms of 2± or in terms of 3± can be obtained by the permutation of 1,

2 and 3 as follows:

e−φ√
λ

=

∣∣∣∣〈2− , 3−〉〈2− , 3+〉〈2+ , 3+〉〈2+ , 3−〉
〈1− , 2−〉〈1+ , 2−〉
〈1+ , 2+〉〈1− , 2+〉

∣∣∣∣ 14 2+2̄+

−
∣∣∣∣〈2+ , 3+〉〈2+ , 3−〉〈2− , 3−〉〈2− , 3+〉

〈1+ , 2+〉〈1− , 2+〉
〈1− , 2−〉〈1+ , 2−〉

∣∣∣∣ 14 2−2̄− , (2.31)

e−φ√
λ

=

∣∣∣∣〈3− , 1−〉〈3− , 1+〉〈3+ , 1+〉〈3+ , 1−〉
〈2− , 3−〉〈2+ , 3−〉
〈2+ , 3+〉〈2− , 3+〉

∣∣∣∣ 14 3+3̄+

−
∣∣∣∣〈3+ , 1+〉〈3+ , 1−〉〈3− , 1−〉〈3− , 1+〉

〈2+ , 3+〉〈2− , 3+〉
〈2− , 3−〉〈2+ , 3−〉

∣∣∣∣ 14 3−3̄− . (2.32)

From (2.30)–(2.32), the parameters Ci can be easily read off as

Ci = −1

2
log λ+

1

4

 ∑
ε=±,j 6=i

log |〈i+ , jε〉| −
∑

ε=±,j 6=i
log |〈i− , jε〉|

 . (2.33)

Thus, the semiclassical three-point functions can be computed once we know the values of

the Wronskians 〈i± , j±〉.

3 Determination of Wronskians

Having seen that the Wronskians are fundamental objects for the evaluation of the semi-

classical three-point functions, we shall evaluate such Wronskians in this section. First we

show that certain products of Wronskians can be determined from the triviality of the mon-

odromy at infinity. To obtain the individual Wronskians, we next consider a one-parameter

deformation of the auxiliary linear problem and the Wronskians. Then, we determine the

analyticity of the Wronskians and set up the Riemann-Hilbert problem. Finally, solving

the Riemann-Hilbert problem, we compute the parameters Ci in (2.33) and see that Ci’s

thus computed coincide with the known result derived in [24–26].

3.1 Monodromy relation

Let us consider the monodromy of solutions to the first equation of (2.15). Since we are

considering the solutions on the sphere, only noncontractable cycles are cycles around

punctures (vertex operators). The eigenvalues of each monodromy matrix are determined

purely by the local behavior of the solutions and therefore can be expressed purely by the

parameter of the corresponding vertex operator.

Ωi ∼

(
eipi 0

0 e−ipi

)
, (3.1)

where pi is the Liouville momentum defined by pi ≡ 2πηi .

Although Ωi’s can be separately diagonalized as (3.1), they cannot be diagonalized

simultaneously, owing to the nontrivial global behavior of the solution to the auxiliary linear

– 8 –
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problem. Nevertheless, the simple relation, Ω1Ω2Ω3 = 1, which expresses the triviality of

the monodromy at infinity, is enough to restrict the form of Ωi sufficiently, although not

completely. To see this, let us take a basis of solutions in which Ω1 is diagonal,

Ω1 =

(
eip1 0

0 e−ip1

)
, (3.2)

and express the matrix Ω2 in this basis as

Ω2 =

(
a b

c d

)
. (3.3)

Since Ω2 has eigenvalues exp(±ip2), a-d must satisfy the following relations.

a+ d = 2 cos p2 , ad− bc = 1 . (3.4)

Next, let us consider Ω3. Owing to the relation, Ω1Ω2Ω3 = 1, Ω3 can be expressed in terms

of a-d as follows.

Ω3 = Ω−12 Ω−11 =

(
e−ip1d −eip1b
−e−ip1c eip1a

)
. (3.5)

Then, using the fact Ω3 has eigenvalues exp(±ip3), we can obtain one more constraint.

e−ip1d+ eip1a = 2 cos p3 (3.6)

It is easy to see that (3.4) and (3.6) completely determines a and d, while only the product bc

can be determined.11 With these explicit form of the monodromy matrix, we can compute

various Wronskians between i±, which are the eigenvectors of the monodromy matrices.

However, because of the aforementioned ambiguity of b and c, only the following products

of Wronskians can be determined:

〈1+ , 2+〉〈1− , 2−〉 =
sin p1+p2−p3

2 sin p1+p2+p3
2

sin p1 sin p2
, (3.7)

〈2+ , 3+〉〈2− , 3−〉 =
sin −p1+p2+p32 sin p1+p2+p3

2

sin p2 sin p3
, (3.8)

〈3+ , 1+〉〈3− , 1−〉 =
sin p1−p2+p3

2 sin p1+p2+p3
2

sin p3 sin p1
, (3.9)

〈1+ , 2−〉〈1− , 2+〉 =
sin p1−p2−p3

2 sin p1−p2+p3
2

sin p1 sin p2
, (3.10)

〈2+ , 3−〉〈2− , 3+〉 =
sin −p1+p2−p32 sin p1+p2−p3

2

sin p2 sin p3
, (3.11)

〈3+ , 1−〉〈3− , 1+〉 =
sin −p1−p2+p32 sin −p1+p2+p32

sin p3 sin p1
. (3.12)

11For a detail of the derivation, see [29].

– 9 –



J
H
E
P
0
3
(
2
0
1
4
)
0
3
8

To compute the semiclassical three-point functions, we need to compute the individual

Wronskians, not just their products. For this purpose, let us introduce the following one-

parameter deformation of the auxiliary linear problem:(
∂2 +

1

ξ2
T (z)

)
ψ = 0 . (3.13)

In what follows, we will call ξ the spectral parameter following the convention in integrable

systems. (3.13) coincide in form with the Schrödinger equation12 if we identify ξ with ~.

The asymptotic behavior of the solutions i± (2.18) and (2.19) is modified as

i+ ∼ (z − zi)ηi(ξ) , i− ∼ (z − zi)1−ηi(ξ)/(1− 2ηi(ξ)) , (3.14)

ī+ ∼ (z̄ − z̄i)ηi(ξ) , ī− ∼ (z̄ − z̄i)1−ηi(ξ)/(1− 2ηi(ξ)) , (3.15)

where

ηi(ξ) ≡
1

2
−

√
1

4
− ηi(1− ηi)

ξ2
. (3.16)

Thus, all the formulae derived in this subsection, in particular the formulae for the products

of Wronskians (3.7)–(3.12), are valid under the following replacement:

pi → pi(ξ) ≡ 2πηi(ξ) . (3.17)

Below, we often omit writing the dependence on ξ and denote pi(ξ) simply by pi.

3.2 Poles of Wronskians

Having introduced the one-parameter deformation, we will next discuss the analytic prop-

erties, namely poles and zeros, of the Wronskians with respect to ξ. As (3.7)–(3.12) shows,

the products of the Wronskians have poles at sin pi = 0 and zeros at sin (
∑

i εipi/2) = 0,

where εi takes +1 or −1. Thus, our practical task is to allocate these poles and zeros

between two Wronskians.

Let us first discuss poles of the Wronskians. For simplicity, we will only consider

poles at sin p1 = 0. Generalization to other poles is straightforward. At sin p1 = 0, two

eigenvalues of Ω1, e
+ip1 and e−ip1 become both +1 or both −1. This, however, does not

mean that Ω1 is proportional to the unit matrix at such points: if Ω1 is proportional to the

unit matrix, Ω2 must satisfy Ω2 = ±Ω−13 owing to the monodromy relation Ω1Ω2Ω3 = 1.

However, for generic p2 and p3, there is no reason for this to be satisfied since p1, p2 and p3
can be chosen completely independently. Therefore, the only remaining possibility is that

Ω1 becomes a Jordan-block:

Ω1 ∼ ±

(
1 c

0 1

)
at sin p1 = 0 . (3.18)

This means two eigenvectors of Ω1 degenerate at sin p1 = 0.

12Later, utilizing this analogy, we will discuss the WKB expansion of (3.13).
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To see what happens at sin p1 = 0 more explicitly, let us study the behavior of 1±
near z1. Owing to the normalization conditions (3.14), the expansion of 1± around z1 is in

general given by

1+ = (z − z1)η1(ξ)
(

1 + a
(1)
+ (z − z1) + a

(2)
+ (z − z1)2 + · · ·

)
, (3.19)

1− =
(z − z1)1−η1(ξ)

1− 2η1(ξ)

(
1 + a

(1)
− (z − z1) + a

(2)
− (z − z1)2 + · · ·

)
, (3.20)

where a
(n)
± are functions of ξ. An important observation here is that, although 1+ and 1−

degenerate at sin p1 = 0, their leading terms, (z − z1)η1 and (z − z1)1−η1/(1− 2η1), do not

degenerate in general. This apparent contradiction can be resolved if and only if one of

1± appears in the expansion of the other with a divergent coefficient. More precisely, we

expect one of the following two situations is realized at sin p1 = 0:

1+ = (z − z1)η1(ξ) + · · ·+A(ξ)1− + · · · , (3.21)

A(ξ)→∞ at sin p1 = 0 ,

or

1− =
(z − z1)1−η1(ξ)

1− 2η1(ξ)
+ · · ·+B(ξ)1+ + · · · , (3.22)

B(ξ)→∞ at sin p1 = 0 .

The first case (3.21) is realized if 1+ is bigger than 1− in the neighborhood of z1, namely if

η1(ξ) is smaller than 1−η1(ξ). On the other hand, the second case (3.22) is realized if 1+ is

smaller than 1− around z1 and η1(ξ) is bigger than 1−η1(ξ). From this simple analysis, we

can conclude that, among two solutions i±, the solution which is bigger around zi diverges

at sin pi = 0 whereas the solution which is smaller is finite. This leads to the following

rules for determination of poles of the Wronskians:

At sin pi = 0

[
if ηi(ξ) < 1/2⇒ 〈i+ , •〉 =∞ , 〈i− , •〉 6=∞ ,

if ηi(ξ) ≥ 1/2⇒ 〈i+ , •〉 6=∞ , 〈i− , •〉 =∞ .
(3.23)

Note that, at the boundary value ηi(ξ) = 1/2, the Wronskians containing i− diverge owing

to the explicit factor 1/(1− 2ηi(ξ)) contained in (3.14).

3.3 Zeros of Wronskians

Having determined the pole structures, let us next discuss zeros of the Wronskians. The

determination of zeros is substantially more difficult than the determination of poles since

zeros are determined by the global properties on the Riemann surface while the poles are

determined solely by the local properties around the punctures. As shown in the previous

works [28, 29, 31, 34, 37], the WKB curve is one of the central tools to explore such global

properties. However, as its name suggests, the WKB curve is useful only when we can

approximate the solutions to the auxiliary linear problem by the leading term in the WKB

expansion. For this reason, it is not powerful enough to fully determine the zeros of the
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Wronskians in the whole spectral parameter region. In this subsection, we shall introduce

an appropriate generalization of the WKB curve, to be called the exact WKB curve, which

allows us to determine zeros of the Wronskian on the whole parameter plane.

3.3.1 WKB approximation and WKB curves

Before introducing the generalized version, let us briefly review the ordinary WKB curves

defined in [34]. When ξ is sufficiently close to zero, we can construct approximate solutions

to the auxiliary linear problem by the WKB expansion. For instance, the approximate

solutions around the singularity zi can be constructed as follows:

ψ ∼ exp

(
±1

ξ

∫ z

zi+εi

√
−Tdz

)
, (3.24)

where εi(� 1) is the regularization parameter. (3.24) gives two different approximate

solutions depending on the choice of the sign. One of the solutions is the small solution,

which decreases exponentially as it approaches zi. The other is the big solution, which

increases exponentially as it approaches zi. Now let us define the WKB curves as the

curves along which the phase of the leading term (3.24) in the WKB expansion is constant.

More explicitly, they are given by

Im

(√
−T
ξ

dz

)
= 0 . (3.25)

By analyzing (3.25), we can confirm that there are three different structures of the WKB

curves. First, at generic points on the worldsheet, the WKB curves are completely smooth

and non-intersecting. Second, at a puncture, the WKB curves radiate in all direction

from the puncture. Third, at a zero of T (z), there are three special WKB curves13 which

radiate from the zero and separate three different configurations of the WKB curves. For a

detail, see figure 1. Along the WKB curve, the magnitude of the leading term in the WKB

expansion (3.24) monotonically increases or monotonically decreases until they reach a zero

or a pole of T (z). Thus, if two punctures zi and zj are connected by a WKB curve and

the spectral parameter ξ is sufficiently small, the small solution defined around zi, to be

denoted si, will grow exponentially as it approaches the other puncture zj . This means that

the small solution si behaves like the big solution around zj . Therefore it will be linearly

independent of sj , the small solution defined at zj . Consequently, the Wronskian between

these two small solutions 〈si , sj〉 will be nonzero. Applying this logic, we conclude that the

Wronskians 〈i± , j±〉 are nonzero if the following three conditions are satisfied: first, two

punctures zi and zj are connected by the WKB curves. Second, two eigenvectors i± and j±
are both small solutions. Third, the approximation by the leading WKB solutions (3.24)

is sufficiently good.

3.3.2 Exact WKB curves

Evidently, the above analysis is valid only in a restricted region on the spectral parameter

plane where the approximation by the leading term in the WKB expansion is reliable.

13These special WKB curves are called Stokes lines in the literature.
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Zero Pole

Figure 1. Structures of the WKB curves around zeros and poles. There are three WKB curves

radiating from a zero, while infinitely many WKB curves emanate from a pole. The exact WKB

curves, to be discussed later, also have similar structures.

To understand the structure of zeros on the whole spectral parameter plane, we need to

generalize the notion of WKB curves.

To motivate our definition of the exact WKB curves, let us first make a small detour

and discuss the general structure of the WKB expansions. If we express the solution to

the auxiliary linear problem (3.13) as

ψ(z, ξ) = exp

(∫ z

z0

P (z′, ξ)dz′
)
, P (z, ξ) =

∞∑
n=−1

ξnPn(z) , (3.26)

we obtain the following Riccati equation for P (z; ξ):

P 2 + ∂P +
1

ξ2
T (z) = 0 . (3.27)

Since the left hand side of this equation must vanish at each order of ξ expansion, Pn can

be determined recursively,

P 2
−1 = −T , Pn =

−1

2P−1

(
n−1∑
m=0

PmPn−m−1 + ∂Pn−1

)
, n ≥ 0 . (3.28)

Then, dividing P into the odd powers and the even powers of ξ,

P = Podd + Peven , Podd =
∞∑
n=0

ξ2n−1P2n−1 , Peven =
∞∑
n=0

ξ2nP2n , (3.29)

we obtain the following relation,

Peven = −1

2
∂ logPodd . (3.30)
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Using (3.30), we can express the solutions only in terms of Podd. In summary, the WKB

expansion of two independent solutions to the auxiliary linear problem can be expressed

in the following simple form:

ψ
(±)
WKB =

1√
PWKB(z, ξ)

exp

(
±
∫ z

z0

PWKB(z′, ξ)dz′
)
, (3.31)

where PWKB in (3.31) denotes Podd in the preceding equations.

Motivated by the simple form of (3.31), let us express the exact solutions to the

auxiliary linear problem as

ψ =
1√

2Pex(z; ξ)
exp

(
−
∫ z

z0

Pex(z; ξ)dz

)
. (3.32)

Although (3.31) and (3.32) are almost identical in form, there is a notable difference:

while PWKB is given only by an asymptotic series with respect to ξ and is ambiguous in a

non-perturbative sense, Pex is defined unambiguously as it is directly defined by the exact

solution, ψ. Of course, if we expand Pex perturbatively with respect ξ, we will get the same

expansion as PWKB. Therefore, Pex can be regarded as a non-perturbative completion of

PWKB. One of the virtues of the expression (3.32) is that we can easily construct another

solution satisfying 〈ψ , ψ̃〉 = 1 as

ψ̃ =
1√

2Pex(z; ξ)
exp

(
+

∫ z

z0

Pex(z; ξ)dz

)
. (3.33)

Using (3.32), let us now discuss the generalization of the WKB curves. The quantity we

used to define the original WKB curves,
√
−T/ξ, is the leading term in the expansion of

PWKB. Therefore, the most natural generalization of the WKB curves would be to use Pex,

which is a non-perturbative completion of PWKB and define the curves by

Im (Pex(z; ξ)dz) = 0 . (3.34)

However, this definition is ambiguous since a different choice of the exact solution ψ leads

to a different Pex and thus to different curves. To fix such ambiguities, we define the

generalization of the WKB curves, to be called exact WKB curves, separately for each

puncture:

Exact WKB curves. Exact WKB curves for the puncture zi, to be denoted eWKB(i),

are defined by

Im
(
P (i)
ex (z; ξ)dz

)
= 0 , (3.35)

where P
(i)
ex is the exponential factor for the smaller eigenvector among i±. More

explicitly, it is defined by

si =
1√

2P
(i)
ex (z; ξ)

exp

(
−
∫ z

zi+εi

P (i)
ex (z; ξ)dz

)
, (3.36)

where si denotes the smaller solution among i± and εi(� 1) is the parameter we

introduced for the regularization.
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Let us now make several comments. First, it is easy to see that this definition of the exact

WKB curves reduces to that of the ordinary WKB curves when ξ is close to zero. Second,

if we flip the sign in the exponent of (3.36) as

bi ≡
1√

2P
(i)
ex (z; ξ)

exp

(
+

∫ z

zi+εi

P (i)
ex (z; ξ)dz

)
, (3.37)

we obtain another solution bi, which is big near the puncture zi and satisfies 〈si , bi〉 = 1.

The solution bi, constructed in this way, is not guaranteed to be an eigenvector of Ωi.

The other eigenvector is in general given by some linear combination of si and bi, bi + csi.

However, as si is exponentially smaller than bi near zi, bi coincide, up to exponentially

small corrections, with the eigenvector in the neighborhood of zi.

When ξ is not close to zero, P
(i)
ex and P

(j)
ex will in general differ by the terms non-

perturbative with respect to ξ. Therefore eWKB(i) and eWKB(j) will be different. Nev-

ertheless, in a sufficient neighborhood of zi or zj , we expect eWKB(i) and eWKB(j) to be

identical. To see this, let us consider the behavior of the small solution si along eWKB(i).

Along eWKB(i), the phase of the exponential factor in si is constant and its magnitude

monotonically increases14 until it reaches some endpoint. Then, if the punctures zi and

zj are connected by some curves in eWKB(i), si will grow exponentially as it approaches

zj along the curves, which means that si behaves like the big solution around zj . Since

requiring a solution to be exponentially big around a puncture does not uniquely specify

the solution, si is in general expressed as si ∝ bj + csj , where c is some unknown constant.

However, since sj is exponentially smaller than bj around zj , we can neglect the second

term csj and approximate si in the neighborhood of zj as

si ∝ bj =
1√

2P
(j)
ex (z; ξ)

exp

(
+

∫ z

zj+εj

P (j)
ex (z; ξ)dz

)
, (3.38)

up to exponentially small corrections. From (3.38), we can show that P
(i)
ex ∼ −P (j)

ex near

the puncture zj . Then, since the exact WKB curves do not depend on the overall sign of

P
(i)
ex , we conclude eWKB(i) and eWKB(j) coincide in the vicinity of zj .

Let us now use the exact WKB curves to determine the analyticities of the Wronskians.

Following exactly the same logic as in the case of the ordinary WKB curves, we can

conclude that the Wronskian involving two small solutions si and sj must be nonzero if

two punctures zi and zj are connected by some exact WKB curves. However, unlike the

ordinary WKB curves, it is difficult to determine the configuration of the exact WKB

curves since the explicit form of P
(i)
ex cannot be obtained unless we solve the auxiliary

linear problem explicitly. Nevertheless, we shall show below that the local properties of

the exact WKB curves, in particular the “number densities” of the curves emanating from

14Strictly speaking, the small eigenvector (3.36) also contains a prefactor in front of the exponential. This

prefactor, however, does not play a significant role in our discussion since it drops out if we consider the

ratio of two solutions si/bi. It is in fact sufficient to know the ratio in order to identify the small solution

and the big solution.
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punctures, turn out to give enough restrictions to determine the full topology (connectivity)

of the curves. To see this, let us first give a definition of the number density of the exact

WKB curves. Since the exact WKB curves are defined as curves on which Im
∫
P

(i)
ex dz is

constant, the number density of the exact WKB curves emanating from zi can be counted

by measuring how Im
∫
P

(i)
ex dz changes as we go around the puncture. This leads to the

following formula:

Ni ≡
1

2π

∮
Ci
|ImP (i)

ex dz| , (3.39)

where the integration contour Ci is an infinitesimal circle encircling the puncture zi coun-

terclockwise. From the asymptotic behavior of i± (3.14), we can determine the behavior

of P
(i)
ex as follows:

P (i)
ex ∼ ±

(
ηi(ξ)−

1

2

)
1

z − zi
as z → zi (3.40)

where + or − sign is chosen depending on which of i± is small. Then Ni can be computed

explicitly as

Ni ≡
∣∣∣∣Re

(
ηi(ξ)−

1

2

)∣∣∣∣ . (3.41)

Next, we shall derive two important properties of the eWKB(i)’s which will be necessary

to determine their configurations. Let us first show the following property:

Non-contractibility. All the exact WKB curves which start and end at the same

puncture are non-contractible. In other words, such curves go around a different

puncture at least once.

To understand this, recall that the Wronskians between small solutions should be nonzero if

two punctures are connected by the exact WKB curves. Then, if there exists a contractible

cycle connecting the same puncture zi, the Wronskian between two identical small solutions

〈si , si〉 must be nonzero. However, this obviously contradicts the definition of the Wron-

skian. On the other hand, if the curve connecting the same puncture is non-contractible,

namely if the curve goes around a different puncture at least once, we need to take into

account the effect of the monodromy Ω̃ around the punctures and the Wronskian which

should be nonzero is now replaced by 〈si , Ω̃si〉. This does not lead to any contradiction

and thus we conclude the curves which connect the same puncture should always be non-

contractible. The next property to show is given as follows:

Endpoints. All but finitely many exact WKB curves terminate at punctures.

To derive this, let us first classify possible endpoints of the exact WKB curves. As in the

case of ordinary WKB curves, possible endpoints are zeros or poles of P
(i)
ex . Among these

two, zeros are unimportant since the number of the exact WKB curves flowing into zeros

is always finite as shown in figure 1. On the other hand, a pole can be an endpoint for

infinitely many curves and thus plays a crucial role in the analysis. There are basically three
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different types for poles. The first type is the punctures, at which the vertex operators

are inserted. The second type is the singularities of the small eigenvector si, different

from the punctures. However, since the auxiliary linear equation we are solving is of the

Fuchsian type, we expect si becomes singular only at the punctures and other singularities

are absent. The last type is the zeros of the eigenvector si. Although si in general has

several zeros on the Riemann surface, such points cannot be the endpoints of the exact

WKB curves for the following reason: at zeros of si, the ratio between si and bi, si/bi,

must also be zero.15 However, this contradicts the basic property of the exact WKB curve

that such a ratio, determined by the exponential factor in (3.36), monotonically increases

along the exact WKB curve as we move away from zi. From these considerations, we can

conclude that all but finitely many exact WKB curves end at punctures.

Having proven two important properties, now we are in a position to discuss the

configuration of the exact WKB curves. There are essentially two different cases. First

consider the case where Ni’s satisfy the triangle inequality:

Ni +Nj −Nk > 0 . (3.42)

In this case, to be called the symmetric case, the only allowed configuration which obeys

the properties derived above is the one in which three punctures are piece-wise connected

(see figure 2). Next consider the case where the following triangular inequality is violated:

N2 +N3 −N1 < 0 . (3.43)

Note that all the remaining cases can be obtained from (3.43) by the permutation of three

indices 1, 2 and 3. These cases are called the asymmetric cases. In the case (3.43), the only

consistent way to connect three punctures is to arrange the curves so that all the curves

emanating from z2 and z3 end at z1 and some of the curves emanating from z1 go back to

z1 by going around z2 or z3 (see figure 2).

In this way, we can completely determine the configuration of the exact WKB curves

by the local data of the auxiliary linear problem. Below, we will see explicitly how the

configuration of the exact WKB curves can be used to determine zeros of the Wronskians.

3.3.3 Determination of zeros

To illustrate the outline of the discussion with an explicit example, let us consider the

factor,

sin

(
p1 + p2 + p3

2

)
, (3.44)

and determine which of the Wronskian become zero when (3.44) vanishes. From (3.7)–

(3.12), the products of the Wronskians which vanish are given by

〈1+ , 2+〉〈1− , 2−〉 , 〈2+ , 3+〉〈2− , 3−〉 , 〈3+ , 1+〉〈3− , 1−〉 . (3.45)

15bi must be nonzero at such points to ensure the normalization condition 〈si , bi〉 = 1.
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z2

z1

z3

(a) Symmetric case (Ni +Nj −Nk > 0)

z2

z1

z3

(b) Asymmetric case (N2 +N3 −N1 < 0)

Figure 2. Two types of configurations of the exact WKB curves. In the symmetric case, all the

punctures are connected to each other by exact WKB curves. In the asymmetric case, we have

non-contractible exact WKB curves which start and end at the same puncture. As the exact WKB

curves are non-intersecting, there exists a pair of punctures between which there are no connecting

curves in such a case.

An important feature of (3.45) is that, if we group the eigenvectors into {1+, 2+, 3+} and

{1−, 2−, 3−}, only the Wronskians within the same group appear in (3.45). This is in fact

quite a general feature and is true also for other situations.

Now, let us prove two theorems, which will be useful for determination of zeros. The

first theorem is the following one, which we have already proven:

Theorem 1. When two punctures zi and zj are connected by the exact WKB curve,

the Wronskian between two small eigenvectors 〈si , sj〉 is nonzero.

Before writing down the second theorem, let us prove the following useful lemma:

Lemma. In (3.45), only one of the two Wronskians in each product vanishes. The

other does not vanish.

To prove Lemma, first note that all the zeros of (3.44) are simple zeros. Note also that the

eigenvectors and their Wronskians are in general single-valued around the zeros of (3.44).

From these two facts, it follows that only one of the two Wronskians in the product vanishes

at the zeros of (3.44). If both of the Wronskians vanish, (3.44) must have a double zero

and contradicts the aforementioned property. Now, using these lemmas, we can derive the

following important theorem.

Theorem 2. There are only two distinct possibilities concerning zeros of the Wron-

skians in (3.45):

1. All the Wronskians among {1+, 2+, 3+} are zero and all the Wronskians among

{1−, 2−, 3−} are nonzero.

2. All the Wronskians among {1+, 2+, 3+} are nonzero and all the Wronskians among

{1−, 2−, 3−} are zero.
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This theorem can be proven in the following way. First, assume that two of the three

Wronskians in {1+, 2+, 3+} are zero. In such a case, all i+’s become proportional to each

other. Then, it follows that the remaining one Wronskian also vanishes. Using this line of

reasoning and the results of Lemma, we can easily show that there are only two distinct

possibilities, described in Theorem 2.

Using the theorems we just proved, we can determine zeros of the Wronskians at rel-

ative ease when the configuration of the exact WKB curve is symmetric. In such cases,

one of the groups, {1+, 2+, 3+} and {1−, 2−, 3−}, contains at least two small eigenvectors.

Then, applying Theorem 1 and Theorem 2, we can immediately conclude that the Wron-

skians from such a group are all nonzero whereas the Wronskians from the other group

are all zero. Let us next consider the asymmetric case. For simplicity, let us assume that

N1 > N2 +N3 is satisfied.16 In such a case, there exist exact WKB curves which start z1,

go around z2 (or z3) and return to z1. Therefore, to utilize the information on the exact

WKB curves, it is important to consider the Wronskians,

〈1+ ,Ω21+〉 , 〈1− ,Ω21−〉 . (3.46)

To compute these Wronskians, we first note 1± can be expressed in terms of 2± as follows:

1± = 〈1± , 2−〉2+ − 〈1± , 2+〉2− . (3.47)

Then, applying Ω2 to (3.47) and substituting them to (3.46), we can express (3.46) in terms

of the ordinary Wronskians as

〈1+ ,Ω21+〉 = 2i sin p2〈1+ , 2−〉〈1+ , 2+〉 , (3.48)

〈1− ,Ω21−〉 = 2i sin p2〈1− , 2−〉〈1− , 2+〉 . (3.49)

Since Ω21+ can be obtained by parallel-transporting 1+ along the exact WKB curve which

starts and ends at z1, Ω21+ behaves as the big solution around z1 when 1+ is the small

solution. Therefore, the Wronskian 〈1+ ,Ω21+〉 is nonzero in this case. Then, because of

the expression (3.48), 〈1+ , 2+〉 is also nonzero. Consequently, using Theorem 2, we can

show that the Wronskians among {1+, 2+, 3+} are nonzero and the Wronskians among

{1−, 2−, 3−} are zero. Similarly, we can show that the Wronskians among {1−, 2−, 3−} are

nonzero and the Wronskians among {1+, 2+, 3+} are zero when 1− is the small eigenvector.

Performing a similar analysis also for other zeros, we can derive the following general

rules:

1. Decomposition of the eigenvectors into two groups.

When a factor of the form sin (
∑

i εipi/2) vanishes, the Wronskians which vanish are

the ones among {1ε1 , 2ε2 , 3ε3} and the ones among {1−ε1 , 2−ε2 , 3−ε3}.

2. Symmetric case.

When the configuration of the exact WKB curves is symmetric, the Wronskians

from the group which contains two or more small solutions are nonzero whereas the

Wronskians from the other group are zero.

16Generalization to other cases is straightforward.
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3. Asymmetric case.

When the configuration of the exact WKB curves is asymmetric and Ni’s satisfy

Ni > Nj + Nk, the Wronskians from the group which contains the smaller solution

of i± are nonzero whereas the Wronskians from the other group are zero.

Let us now examine the above rules more in detail. For simplicity, let us focus on

〈1+ , 2+〉 and consider the zeros which arise when sin (
∑

i pi/2) vanishes. To apply the

general rules, we need to know 1) Which of i± is small and 2) The configuration of the

exact WKB curves. What is important in the following discussion is that both of these

are determined by the real part of ηi(ξ) − 1/2. In fact, the relative magnitude of i± is

determined as

Re

(
ηi(ξ)−

1

2

)
> 0 ⇒ i+ : small , i− : big ,

Re

(
ηi(ξ)−

1

2

)
< 0 ⇒ i+ : big , i− : small ,

(3.50)

and the numbers of the exact WKB curves Ni are given in terms of ηi(ξ) − 1/2 as shown

in (3.41). Below we will denote this important quantity by γi, γi ≡ Re (ηi(ξ)− 1/2). Let

us first consider the case where all γi’s are positive. In this case, 1+, 2+ and 3+ become all

small and 〈1+ , 2+〉 is nonzero irrespective of the configuration of the exact WKB curves.

Next consider the case where only γ3 is negative and 3+ is a big solution. In this case,

〈1+ , 2+〉 vanishes if and only if N3 > N1 + N2 is satisfied. This condition translates into

the following condition for γi: γ1 + γ2 + γ3 < 0. Similarly, in the case where only γ1 (or

γ2) is negative, 〈1+ , 2+〉 vanishes when N1 > N2 +N3 (or N2 > N3 +N1) is satisfied. This

condition also translates into the same condition, γ1 + γ2 + γ3 < 0. One can perform this

kind of analysis also for the cases where two or more γi’s are negative and, as a result,

we find that zeros of 〈1+ , 2+〉 associated with sin (
∑

i pi/2) = 0 are completely determined

by the sign of γ1 + γ2 + γ3. Re-expressing this condition in terms of pi’s, we obtain the

following rule

Re

(
p1 + p2 + p3

2

)
>

3π

2
⇒ 〈1+ , 2+〉 6= 0 ,

Re

(
p1 + p2 + p3

2

)
<

3π

2
⇒ 〈1+ , 2+〉 = 0 .

(3.51)

Applying this logic to other situations, we can get explicit rules to determine zeros of the

Wronskians.

Now, let us write down the final result combining the results for poles and the results

for zeros. For simplicity, here we just present the result for 〈1± , 2±〉, but the analyticity
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of other Wronskians can be easily obtained by the permutation of indices, 1, 2 and 3.

Analyticity of 〈1+ , 2+〉
Poles: at sin p1 = 0 if Re p1 < π, and at sin p2 = 0 if Re p2 < π ,

Zeros: at sin
p1 + p2 − p3

2
= 0 if Re

p1 + p2 − p3
2

<
π

2
, (3.52)

and at sin
p1 + p2 + p3

2
= 0 if Re

p1 + p2 + p3
2

<
3π

2
.

Analyticity of 〈1− , 2−〉
Poles: at sin p1 = 0 if Re p1 ≥ π, and at sin p2 = 0 if Re p2 ≥ π ,

Zeros: at sin
p1 + p2 − p3

2
= 0 if Re

p1 + p2 − p3
2

>
π

2
, (3.53)

and at sin
p1 + p2 + p3

2
= 0 if Re

p1 + p2 + p3
2

>
3π

2
.

Analyticity of 〈1+ , 2−〉
Poles: at sin p1 = 0 if Re p1 < π, and at sin p2 = 0 if Re p2 ≥ π ,

Zeros: at sin
−p1 + p2 + p3

2
= 0 if Re

−p1 + p2 + p3
2

>
π

2
, (3.54)

and at sin
p1 − p2 + p3

2
= 0 if Re

p1 − p2 + p3
2

<
π

2
.

Analyticity of 〈1− , 2+〉
Poles: at sin p1 = 0 if Re p1 ≥ π, and at sin p2 = 0 if Re p2 < π ,

Zeros: at sin
−p1 + p2 + p3

2
= 0 if Re

−p1 + p2 + p3
2

<
π

2
, (3.55)

and at sin
p1 − p2 + p3

2
= 0 if Re

p1 − p2 + p3
2

>
π

2
.

In the next subsection, we will utilize this information to explicitly compute the individual

Wronskians.

3.4 Calculation of Wronskians and three-point functions

Now let us evaluate Wronskians. To evaluate Wronskians, we need to decompose the right

hand sides of (3.7)–(3.12) based on the analyticity properties listed above. To carry this

out, we will make use of the following useful formula:

sin z =
π

Γ( zπ )Γ(1− z
π )
. (3.56)

Since the gamma function has poles only at n ∈ Z≤0, (3.56) decomposes the zeros of sin z

into two groups, those on the positive real axis and those on the negative real axis (see

figure 3). Then, from the analyticity conditions determined in the previous subsection, we
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z = π
2

Zeros of 1/Γ(1− z
π )Zeros of 1/Γ( zπ )

Figure 3. Decomposition of the zeros of sin z. 1/Γ(1− z
π ) contains zeros on the positive real axis

whereas 1/Γ( zπ ) contains zeros on the negative real axis.

obtain the following decompositions:

〈1+ , 2+〉 ∝
Γ(p1/π)Γ(p2/π)

Γ
(p1+p2−p3

2π

)
Γ
(p1+p2+p3

2π − 1
) , (3.57)

〈1− , 2−〉 ∝
Γ(1− p1/π)Γ(1− p2/π)

Γ
(
1− p1+p2−p3

2π

)
Γ
(
2− p1+p2+p3

2π

) , (3.58)

〈1+ , 2−〉 ∝
Γ(p1/π)Γ(1− p2/π)

Γ
(
1− −p1+p2+p32π

)
Γ
(p1−p2+p3

2π

) , (3.59)

〈1− , 2+〉 ∝
Γ(1− p1/π)Γ(p2/π)

Γ
(−p1+p2+p3

2π

)
Γ
(
1− p1−p2+p3

2π

) . (3.60)

Note that the constants of proportionality in the above equations cannot be determined

purely by the analyticity.

To determine the proportionality constants, we study the asymptotic behavior of Wron-

skians as ξ goes to infinity using the WKB expansion. As the relative magnitude of i±
depends on Arg ξ, we choose Arg ξ appropriately such that i+ is the small solution and i−
is the big solution in the limit ξ →∞. In such a case, i+ can be expressed in terms of P

(i)
ex

as (3.36). To determine the constant of proportionality in (3.36), we study the behavior

around zi and use the approximate form17 of P
(i)
ex in the vicinity of zi, (3.40). Then, the

constant of proportionality can be computed by comparing the definition of the right hand

side of (3.36) and the normalization of i+, given in (3.14). The result is given as follows:

i+ = lim
εi→0

ε
ηi(ξ)−1/2
i

√
1/2− ηi(ξ)
P

(i)
ex (z, ξ)

exp

(
−
∫ z

zi+εi

P (i)
ex (z′, ξ)dz′

)
. (3.61)

Then, approximating P
(i)
ex in (3.61) by the leading term of the WKB expansion, we obtain

the approximate expression for i+ at ξ → 0. However, to write down an explicit expression,

we first need to clarify the choice of branch of
√
−T (z) appearing in the expansion of P

(i)
ex .

In the case of the three-point functions,
√
−T (z) always has one branch cut and its position

depends on the relative magnitudes of ηi(1 − ηi). In what follows, we only consider the

case where η2(1− η2) is larger than η1(1− η1) and η3(1− η3) and the branch cut is located

between z1 and z3, as shown in figure 4. In such a case, the branch of
√
−T (z) on the first

17In this case, the minus sign must be chosen in (3.40) to reproduce the behavior of i+ near zi.
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z2

z1

z3

Figure 4. Branch cut of
√
−T (z). We choose ηi such that the branch cut is located between z1

and z2.

sheet can be chosen as follows:

√
−T (z) ∼

i
∣∣∣√ηi(1− ηi)∣∣∣

z − zi
as z → zi for i = 1, 3 , (3.62)

∼
−i
∣∣∣√ηi(1− ηi)∣∣∣
z − z2

as z → z2 . (3.63)

Although the discussion below is restricted to this particular case, the final result will turn

out to be completely symmetric under the permutation of z1, z2 and z3 and is applicable

also to other cases.

With this choice of the branch, we can write down approximate expressions for i+ as

1+ ∼ εη1(ξ)−1/21

√
1

2
− η1(ξ)

(
ξ2

−T

)1/4

exp

(
−1

ξ

∫ z

z1+ε1

√
−Tdz′

)
, (3.64)

2+ ∼ εη2(ξ)−1/22

√
1

2
− η2(ξ)

(
ξ2

−T

)1/4

exp

(
1

ξ

∫ z

z2+ε2

√
−Tdz′

)
, (3.65)

3+ ∼ εη3(ξ)−1/23

√
1

2
− η3(ξ)

(
ξ2

−T

)1/4

exp

(
−1

ξ

∫ z

z3+ε3

√
−Tdz′

)
. (3.66)

Then the Wronskians which only include i+ can be calculated as

〈1+ , 2+〉 ∼ lim
εi→0

ε
η1(ξ)−1/2
1 ε

η2(ξ)−1/2
2

√
(1− 2η1(ξ)) (1− 2η2(ξ)) exp

(
−1

ξ

∫ z2+ε2

z1+ε1

√
−Tdz′

)
,

(3.67)

〈2+ , 3+〉 ∼ lim
εi→0

ε
η2(ξ)−1/2
2 ε

η3(ξ)−1/2
3

√
(1− 2η2(ξ)) (1− 2η3(ξ)) exp

(
−1

ξ

∫ z2+ε3

z3+ε2

√
−Tdz′

)
,

(3.68)

〈3+ , 1+〉 ∼ lim
εi→0

ε
η3(ξ)−1/2
3 ε

η1(ξ)−1/2
1

√
(1− 2η3(ξ)) (1− 2η1(ξ)) exp

(
−1

ξ

∫ ẑ1+ε1

z3+ε3

√
−Tdz′

)
,

(3.69)
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where ẑ1 in the last line denotes the point on the lower sheet of y2 = −T (z) right below

z1. To evaluate the above formulae, we need to compute the contour integral
∫ zj
zi

√
−Tdz′.

The easiest way to compute them is to map z1, z2 and z3 to 0, 1 and ∞ by the SL(2,C)-

transformation and then evaluate the integral taking into account the effect of the trans-

formation. The transformation we use is

w ≡ −z23
z12

z − z1
z − z3

, (3.70)

where zij ≡ zi − zj . The stress-energy tensor in this coordinate is given by

T (w) =
η1(1− η1) + (η2(1− η2)− η1(1− η1)− η3(1− η3))w + η3(1− η3)w2

w2(w − 1)2
. (3.71)

Then, the Wronskians can be re-expressed as

〈1+ , 2+〉 ∼
(
z12z31
z23

)η1(ξ)−1/2(z12z23
z31

)η2(ξ)−1/2√
(1− 2η1(ξ)) (1− 2η2(ξ))

× lim
εi→0

ε
η1(ξ)−1/2
1 ε

η2(ξ)−1/2
2 exp

(
−1

ξ

∫ 1+ε2

ε1

√
−Tdw′

)
, (3.72)

〈2+ , 3+〉 ∼
(
z12z23
z31

)η2(ξ)−1/2(z23z31
z12

)η3(ξ)−1/2√
(1− 2η2(ξ)) (1− 2η3(ξ))

lim
εi→0

ε
η2(ξ)−1/2
2 ε

η3(ξ)−1/2
3 exp

(
−1

ξ

∫ 1+ε2

−ε−1
3

√
−Tdw′

)
, (3.73)

〈3+ , 1+〉 ∼
(
z23z31
z12

)η3(ξ)−1/2(z12z31
z23

)η1(ξ)−1/2√
(1− 2η3(ξ)) (1− 2η1(ξ))

lim
εi→0

ε
η3(ξ)−1/2
3 ε

η1(ξ)−1/2
1 exp

(
−1

ξ

∫ 0̂+ε1

−ε−1
3

√
−Tdw′

)
, (3.74)

where the regularization parameters εi’s in the above formulae are redefined as

εnew1 ≡ z23
z12z31

εold1 , εnew2 ≡ z31
z12z23

εold2 , εnew3 ≡ z12
z23z31

εold3 , (3.75)

and the prefactors depending on zij are results of such redefinition. Each contour integral∫ √
−Tdw is divergent in the limit εi → 0. However, combined with the prefactors ε∗,

they become completely finite and can be evaluated analytically. Then, by comparing18

the resultant asymptotic formula with the ξ → 0 limit of the left hand side of (3.57)

and (3.58), we can finally determine 〈1+ , 2+〉 and 〈1− , 2−〉 as

〈1+ , 2+〉 =

(
z12z31
z23

)p1/2π−1/2(z12z23
z31

)p2/2π−1/2 Γ(p1/π)Γ(p2/π)

Γ
(p1+p2−p3

2π

)
Γ
(p1+p2+p3

2π − 1
) , (3.76)

〈1− , 2−〉 =

(
z12z31
z23

)1/2−p1/2π (z12z23
z31

)1/2−p2/2π Γ(1− p1/π)Γ(1− p2/π)

Γ
(
1− p1+p2−p3

2π

)
Γ
(
2− p1+p2+p3

2π

) .
(3.77)

18To compare two expressions, we used the Stirling formula, log Γ(x) ∼ (x− 1/2) log x− x.
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Other 〈i+ , j+〉 and 〈i− , j−〉 are obtained from the permutation of indices. On the other

hand, the Wronskians of the type 〈i+ , j−〉 can be obtained by first specifying the explicit

form of the monodromy matrices Ωi using the result for 〈i+ , j+〉 and 〈i− , j−〉 and then

calculating the Wronskians explicitly. The result is

〈1+ , 2−〉 =

(
z12z31
z23

)p1/2π−1/2(z12z23
z31

)1/2−p2/2π Γ(p1/π)Γ(1− p2/π)

Γ
(
1− −p1+p2+p32π

)
Γ
(p1−p2+p3

2π

) , (3.78)

〈1− , 2+〉 =

(
z12z31
z23

)1/2−p1/2π (z12z23
z31

)p2/2π−1/2 Γ(1− p1/π)Γ(p2/π)

Γ
(−p1+p2+p3

2π

)
Γ
(
1− p1−p2+p3

2π

) . (3.79)

Using these formulae, we can explicitly calculate Ci using (2.33) as

C1 = −1

2
log λ− 1− 2η1

2
log
|z12|2|z31|2

|z23|2

− 1

2
log

γ(η1 + η2 − η3)γ(η3 + η1 − η2)γ(η1 + η2 + η3 − 1)

γ(2η1)2γ(η2 + η3 − η1)
, (3.80)

C2 = −1

2
log λ− 1− 2η2

2
log
|z12|2|z23|2

|z31|2

− 1

2
log

γ(η2 + η3 − η1)γ(η1 + η2 − η3)γ(η1 + η2 + η3 − 1)

γ(2η2)2γ(η3 + η1 − η2)
, (3.81)

C3 = −1

2
log λ− 1− 2η3

2
log
|z23|2|z31|2

|z12|2

− 1

2
log

γ(η3 + η1 − η2)γ(η2 + η3 − η1)γ(η1 + η2 + η3 − 1)

γ(2η3)2γ(η1 + η2 − η3)
, (3.82)

where γ(x) is defined by

γ(x) ≡ Γ(x)

Γ(1− x)
. (3.83)

This result is exactly the same as the one derived by the conventional method in [24–26].

Therefore, using the formula (2.14), we can exactly reproduce the classical limit of the

DOZZ three-point functions, first derived in [24]. Although the results themselves are

already obtained, our method, which does not necessitate the explicit solutions, is quite

different from the previous approaches. Accordingly, the exact match of the final results

provides strong evidence for the validity and the utility of the method.

4 Discussion and future direction

In this paper, we have solved the semiclassical three-point functions of the Liouville field

theory by utilizing the Riemann-Hilbert analysis. Instead of directly solving the classical

Liouville equation, we have evaluated the Wronskians, which are the bilinears of the solu-

tions to the auxiliary linear problem. From the monodromy relations around the punctures,

we have obtained certain products of the Wronskians. By applying the method of exact

WKB curves [32], we have determined the analyticity of the Wronskians and eventually
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the exact formula for the Wronskians. The success in computing the classical Liouville

three-point functions strongly supports the validity of this new method.

There are several future directions worth exploring. One is to generalize our method

to higher-point functions and conformal blocks. The method used in this paper is closely

related to the method used in the holographic calculation of correlation functions in

AdS/CFT [28–32] and in the wall-crossing phenomena of the N = 2 supersymmetric gauge

theories [34]. We expect that TBA-like equations, similar to those obtained in [31, 34], will

be useful to characterize those quantities. In particular, in the cases involving one irreg-

ular puncture [38, 39], we will be able to derive the famous Y-systems as in [37, 40, 41].

This will also be related to the so-called ODE/IM correspondence19 [42], a correspondence

between ordinary differential equations and the functional equations in the quantum in-

tegrable models such as T-systems and Y-systems.20 Another important problem is to

study the quantum three-point functions with our method. It would be particularly inter-

esting if we can integrate our method with a novel approach to the quantum three-point

functions [44], which is based on the non-commutative (quantum) spectral curve.

It is also of interest to explore the relation of our method to the four-dimensional

N = 2 supersymmetric gauge theories on the omega-deformed background. In the corre-

spondence proposed in [3], the parameter b in the Liouville field theory corresponds to one

of the parameters of the omega-deformation in the gauge theories. Then the semiclassical

limit of the Liouville field theory corresponds to a well-known limit in the gauge theory,

known as the Nekrasov-Shatashvili limit, where one of the omega-deformation parame-

ters goes to zero. In this limit, an intriguing relation between the gauge theories and the

quantum integrable models has been discovered [4–23]. This relation, together with the

AGT correspondence, implies the existence of the correspondence between the semiclas-

sical Liouville field theory and the quantum integrable models. Although one can derive

various nontrivial equalities exploiting such a correspondence [45, 46], the origin of the

correspondence is still unclear. It would be very interesting if we can get some clues for

this enigmatic correspondence by investigating the relation between the aforementioned

TBA-like equations and the quantum integrability in the Nekrasov-Shatashvili limit.

From a mathematical point of view, the Wronskians we have computed are connection

coefficients of the hypergeometric differential equations. It might be possible to apply our

method to more general differential equations and compute their connection coefficients.21

Such connection coefficients play an important role in the analysis of scattering on a black-

hole background [48, 49] and it would be interesting to apply our method to that context.

Finally, it would be important to clarify the relation of our method to the existing non-

perturbative methods for quantum mechanics, such as exact WKB analysis [50, 51] and

the theory of resurgence [52, 53].

19The generalization of the ODE/IM correspondence and its relation to the Liouville field theory is

discussed also in [43] in a slightly different manner. It would be interesting to clarify the relation between

two approaches.
20Such investigations are now in progress.
21For example, it would be interesting if the method of this paper can be applied to multivariate hy-

pergeometric functions such as the Gel’fand-Kapranov-Zelevinski systems, which often appear in Mirror

symmetry [47].
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