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Abstract
Purpose The objective of this research is to provide an
overview of emerging data collection technologies and their
impact on traffic management applications.
Methods Several existing and emerging surveillance tech-
nologies are being used for traffic data collection. Each of
these technologies has different technical characteristics
and operating principles, which determine the types of data
collected, accuracy of the measurements, levels of maturity,
feasibility and cost, and network coverage. This paper
reviews the different sources of traffic surveillance data
currently employed, and the types of traffic management
applications they may support.
Results Automated Vehicle Identification data have several
applications in traffic management and many more are
certain to emerge as these data become more widely
available, reliable, and accessible. Representative examples
in this field are presented. Furthermore, the fusion of
condition information with traffic data can result in better
and more responsive dynamic traffic management applica-
tions with a richer data background.

Conclusions The current state-of-the-art of traffic modeling
is discussed, in the context of using emerging data sources
for better planning, operations and dynamic management of
road networks.

Keywords Emerging data sources . Traffic surveillance .

Traffic management . Data fusion

1 Introduction

Growing traffic levels and their related externalities have
prompted research into methods to alleviate urban traffic
congestion. Intelligent transportation systems (ITS) are
being widely deployed to better manage and operate
existing transportation infrastructure. The broad objectives
of advanced traffic management systems (ATMS), advanced
traveler information systems (ATIS) and advanced public
transportation systems (APTS) are the use of sophisticated
technologies to improve the efficiency of current transporta-
tion modes, maximize capacity, minimize delays and improve
system reliability. Several software programs have been
developed to support these initiatives. Such systems simulate
road network performance at various levels of detail, optimize
signal cycles, estimate and predict real-time conditions
and generate consistent, anticipatory route guidance [19,
20, 42, 62].

The development of advanced traffic optimization
software has been motivated by the large-scale deployment
of traffic surveillance technologies. Towns and cities are
increasingly installing sophisticated sensor networks to
automatically and routinely collect and archive time-
varying traffic data. Such sensors vary widely in their
operating principles, resulting in a diverse array of potential
data. Each type of data possesses strengths that may be
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exploited by certain types of traffic management applications.
In this paper, we review current and emerging data collection
technologies, and classify them according to (a) the type(s) of
data they collect and (b) their primary applications. This
discussion is intended as a synthesis of the current state-of-
the-practice of traffic data collection, as well as the state-of-
the-art of traffic modeling and systems management. There-
fore, the emphasis is not on the technologies themselves, but
specifically on the use of the collected data for traffic
management purposes.

The remainder of the paper is organized as follows. The
following section provides a classification of traffic sensor
technologies based on their operating principles and the
traffic metrics they can potentially collect. The subsequent
section outlines the emerging dynamic traffic assignment
models, followed by a section highlighting the aspects of
these models that can benefit from richer data. The next
section details a number of opportunities provided in light
of the new traffic data collection technologies, while the
concluding section includes a summary of the current
state-of-the-art.

2 Traffic sensor technologies

Based on their functionality traffic sensors can be categorized
as point, point-to-point and area-wide.

2.1 Point sensors

Point sensors are the most widely used type of detector in
use today. (Inductive) loop detectors have been in use for
decades, while other technologies, including radar, infrared,
acoustic, and video sensors have also been developed. This
category includes:

& Inductive loop detectors: By far the most widely
deployed sensor technology, loop detectors are typically
low cost sensors but installation and maintenance are
disruptive to traffic, and there are potentially serious
reliability/accuracy issues. Due to their ubiquity,
researchers have developed ways to use them for
vehicle classification [50] and vehicle re-identification
[28, 48, 51]. Recently, devices that can perform similar
functions with higher accuracy and reliability, easier
installation, lower maintenance and longer life span
have been introduced (e.g. sensysnetworks.com).

& Radar/Infrared/Microwave/Acoustic/Ultrasonic sensors:
These non-intrusive roadside technologies cause mini-
mal disruption to normal traffic operations and do not
need to be installed in or on the pavement. They are
generally mounted overhead or to the side of the
pavement, often on pre-existing structures. Most of

these sensors are cost competitive with inductive loop
detectors, if not cheaper [49].

& Video image detection systems: Closed-circuit televi-
sion (CCTV) cameras record traffic images, which are
in turn analyzed by machine vision software to monitor
freeway conditions, collect data at intersections for
traffic control purposes, detect incidents and classify
vehicles. These systems may have high initial costs, but
require little maintenance (which minimizes traffic
disruptions). They also do not suffer from the reliability
issues associated with loop detectors [53]. However, the
performance of video image detection systems are
affected by adverse weather conditions (such as rain,
fog) and limited visibility (e.g. night) [46].

& Weigh-in-motion (WIM) systems: WIM systems allow
for the unobtrusive and continuous collection of vehicle
weight information [64].

2.2 Point-to-point sensors

These emerging technologies detect vehicles at multiple
locations as they traverse the network. This supports re-
identification and tracking, which may (under certain con-
ditions) provide point-to-point travel times, route choice
fractions, paths, and OD flows. Examples of technologies in
this category include:

& Automated Vehicle Identification (AVI) systems: The
underlying principle is based on the identification of
individual (probe) vehicles equipped with an appropri-
ate device, at various locations in the network [2, 3].
Hellinga and Fu [36] provide an assessment of the
expected accuracy of probe vehicle travel time reports,
including the various sources of bias that can affect
AVI-based travel time collection.

& Vehicle identification without driver “cooperation”: One
disadvantage of the AVI approach is that it requires that
the vehicles be equipped with special electronic tags
(e.g. those used for electronic tolling). Recently,
approaches that leverage the Bluetooth and Wi-Fi
radios on cell-phones carried by drivers in passing
vehicles have been developed [16, 35, 55]. The
advantage of these approaches is that they merely
“ping” the Bluetooth or Wi-Fi adapters for their
MAC hardware address, thus only relying that a
phone with an activated Bluetooth or Wi-Fi adapter
is within range. Since the vehicle-to-device corre-
spondence is not necessarily one-to-one (drivers
may not carry a Bluetooth-equipped device, or a
vehicle may contain more than one Bluetooth
device), such data collection methods are more
appropriate for measuring quantities such as speeds
and route choice fractions, but not counts.
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& License plate recognition: CCTV cameras record
license plates, which are recognized through special
Optical Character Recognition (OCR) software, and
transferred to a central system that matches subsequent
detections of particular vehicles [31]. These technolo-
gies are also limited by the susceptibility of cameras to
weather and lighting conditions [46].

2.3 Area-wide sensors

While the examples listed above are sensors mainly
dedicated to traffic applications a number of opportunistic
sensors are receiving attention for their potential to provide
traffic data for real time traffic monitoring, traffic informa-
tion, and traffic prediction. Cell phones, smart-phones, and
Global Positioning Systems (GPS) are typical examples of
such sensors. Furthermore, this category includes promising
technologies that are still under research and include
airborne sensors such as unmanned aircraft continuously
flying over and surveying a traffic network. The traffic
information (collected e.g. using photogrammetry, video-
recording, and Light Detection and Ranging (LIDAR)
techniques), is communicated to the TMC via wireless
communication networks [57].

GPS devices in the vehicle collect location informa-
tion, which is transmitted to a central facility for
processing. A downside to this technology is that a
wireless telecommunication connection (e.g. through a
cell phone) is required for the transfer of information
from the vehicle to the TMC [56].

Wireless service providers can automatically collect
geo-location data of wireless phones, which can be used to
extract flow and speed information. The concept is still at an
experimental stage, but applications are emerging, e.g. for the
measurement of traffic speeds and travel times [15] and the
identification of spatial and temporal congestion character-
istics [18]. The accuracy of the technology is limited by
several parameters (including the size and density of the
GSM cells) [38].

Technologies such as Automated Vehicle Location
(AVL) are in use in the transit industry. Modern AVL
systems are based on GPS or differential GPS, often
augmented by dead reckoning, for collection of data on
vehicle location, speed and other information [32, 33,
52].

The Mobile Century project aimed at a proof of concept
for using smartphones with GPS capabilities to collect
traffic data and use them for real time traffic estimation and
prediction. The field test involved 100 cars. It is to be
followed by Mobile Millennium, a large-scale freeway
experiment with the same objectives. The study will focus
on commuters in the San Francisco Bay Area [60].

2.4 Summary

Table 1 summarizes the data collection capabilities of the
main sensor technologies described above. Any given
traffic modeling application is likely to be supported by a
wide range of traffic data types. The accuracy of the model
may in fact be significantly enhanced by using more than
one type of data. It has been shown, for example, that the
calibration of DTA models benefits from the addition of
speed or density data to the link counts that are typically
used in practice (cf. Section 3). There may be specific
instances, however, when a particular data type can prove
invaluable. One such instance (from Table 1) is vehicle
classification data that can support the development of
traffic model inputs by vehicle type (cars, vans, trucks,
buses, etc.), thereby increasing the fidelity of the model and
its applications.

Emerging data collection technologies provide a multi-
tude of rich data from diverse data sources. This data
creates new opportunities in dynamic traffic management,
as well as other aspects of traffic simulation and prediction.
The relationship between data availability and applications
is bi-directional. Some technologies have been conceived
with specific applications in mind (e.g. license plate
recognition and transponder-based AVI), while others have
evolved as improvements of existing technologies. In any
case, their emergence has led to applications that were not
possible before, e.g. dynamic congestion pricing in urban
areas.

The additional data that are collected are useful not only
on their own merit, but also as used in applications to
improve the accuracy of the estimation and prediction of
OD flows. In this paper, several applications that can
benefit from such data are considered, and indicative results
are presented. The experiences are not only useful in
demonstrating the potential benefits of such emerging data
collection techniques, but can also be used to fine-tune and
improve their deployments. Network configuration as well
as the configuration of the sensor infrastructure can
considerably affect the performance of the data collection
effort and therefore the effectiveness of the supported
applications. For example, the configuration of the ETC
sensors forming an automatic vehicle identification network
may have considerable impact on system performance.
Chen et al. [26] formulate the problem of optimal location
of AVI sensors as a multi-objective integer-optimization
problem with the following objectives: minimize the
number of AVI readers, maximize the OD coverage and
maximize the number of trips covered by the system. The
authors apply a distance-based genetic algorithm to solve
the problem by explicitly generating the non-dominated
solutions. Mirchandani and He [47] formulate a 0–1
mathematical program to determine the routes on which to
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locate AVI sensors to minimize the variance of the
predicted distribution of network travel time.

Naturally, different data collection technologies have
widely varying cost and performance characteristics. While
these aspects are very interesting, they cannot all be
covered in a single manuscript. The interested reader can
refer to the relevant literature, including e.g. Middleton et
al. [44, 45] and Leduc [39].

3 Opportunities for dynamic traffic modeling

The use of emerging data collection technologies in
transport can lead to two broad categories of benefits:
(i) facilitating direct applications, such as congestion
pricing, automatic incident detection (AID), travel time/
speed measurements and (ii) enhancement of existing
modeling capabilities through improved support for
model development, calibration, and validation. While
the first type of impacts has been well discussed, e.g. the
new congestion pricing applications in London, Stockholm
and elsewhere, the main focus of this section is on the second
type of impact.

Applications exploiting AVI data are nowadays quite
common. For example, Ma and Koutsopoulos [41] use
data collected from a plate matching system (i.e. point-to-

point data) in Stockholm, Sweden for the on-line estima-
tion and prediction of travel times in urban areas. The
system is based on video cameras placed at various
intersections and software with image processing capabil-
ities to match the plate numbers of vehicles as they cross
equipped intersections. The data are collected in an urban
area, and hence exhibit very high noise. The proposed
approach emphasizes the need to properly identify outliers
(for example, cars temporarily parked on an urban street).
Similarly, Park et al. [54] use real-time AVI data for the
prediction of link travel times for one to five (5-min) time
periods ahead. The authors employed a spectra basis
artificial neural network that utilizes a sinusoidal transfor-
mation technique to increase the linear separability of the
input features.

While the use of single data sources alone provides
interesting applications, the biggest opportunity is the
fusing of all available resources under the Dynamic
Traffic Assignment (DTA) framework for off-line and
on-line calibration of DTA models [19, 20, 42]. The
integration of diverse sources of data, which can improve
the performance of the various algorithms, is a great
opportunity. For example, the calibration of new, emerg-
ing model systems, can benefit from data fusion from
diverse sources, as each measurement may be more
suitable to the calibration of some subset of parameters.

Table 1 Main types of data collected by each sensor type

Data collection technologies

Point sensors Point-to-point Area-wide

Loop
detectors

Radar/infrared/acoustic
sensors

CCTV
cameras

License
plate
recognition

GPS/cell-
phone
tracking

transponder-
based (1)

Airborne
sensors

AVL

Data collection
capabilities

(Point) flows √ √ √ √c

(Point) speeds √ √ √ (3)

Occupancies √ √
Subpath flows √a √ √a,c √ √b

Route choice
fractions

√a √ √a,c √

OD flows √a √ √a,c √
Travel times √a √ √a,c √ √b

Vehicle
classification

√ √ √ √ √

Paths (2) √ (2) √ √a

(1) This technology could be used to collect practically any type of information from the vehicle (including speed profiles, origin, destination, and
path). In this table, only the information that can be collected by "dumb" transponders, that simply report a unique vehicle signature, is reported

(2) Possible with a dense network of detectors

(3) When combined with GPS
a Data limited by network design
b Data limited by market penetration
c indirect; for the sample of equipped vehicles only
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Point-to-point travel times are valuable for assessing and
validating travel times (which is an important expected
output of the simulation model), but do not directly
provide information on traffic volumes. On the other
hand, point flow measurements may not provide particu-
larly rich point-to-point information, but may provide
accurate flow data.

In recent years a number of advanced model systems,
using simulation-based dynamic traffic assignment (DTA)
concepts, have emerged to support network state estimation
and prediction [19, 20, 42]. This capability, in turn, enables
a number of traffic management applications, such as traffic
information generation and dynamic congestion pricing.

DTA systems are typically designed to reside in TMCs and
support real-time applications such as the on-line evaluation
and implementation of guidance and control strategies,
incident management and control, and the support of
emergency response operations. DTA models can also be
used for short-term planning applications. A DTA system
integrates historical data and information frommultiple sensor
sources to perform two main functions [19, 20]:

& State estimation, during which real-time surveillance
information is combined with historical data and a
priori parameter values to capture current traffic con-
ditions, using detailed traffic information from instru-
mented portions of the network to infer the conditions
in the parts for which no real-time information is
available, and

& Prediction-based information generation, aimed at gen-
erating unbiased and consistent traffic information for
dissemination to travelers.

In order to provide the above functionality, DTA
systems are a synthesis of a number of models and
algorithms. DTA systems use detailed travel demand and
network supply simulators to synthesize multiple sources
of information and perform state estimation and predic-
tion. The demand simulator simulates network-wide
demand patterns through time-dependent origin–destina-
tion (OD) matrices, and captures the travel choices of
individual motorists (e.g. route choice). The supply
simulator is usually based on mesoscopic or macroscopic
models that represent traffic dynamics using speed-
density relationships and queuing theory. (e.g. [19, 20,
42]). Speed-density relationships depend on location-specific
parameters, such as type of facility, number of lanes, lane
width, slope, surroundings, as well as weather and time of day
factors, reflecting different driving behaviors (e.g. experi-
enced drivers during commute periods). In a DTA model, the
complex demand-supply interactions are represented by
detailed algorithms that estimate current network state, predict
future conditions, and generate anticipatory route guidance
and control strategies.

DTA systems combine individual models into a complex
system with many inputs and parameters. The proper
calibration of these models and inputs is essential to
improving their ability to accurately predict future conditions
and generate consistent route guidance. Calibration can take
place off-line and on-line, with the two modes being
synergetic and interacting, as shown in Fig. 1 (explained in
the subsections 3.1 and 3.2). An integrated framework for
calibration of dynamic traffic models is presented in more
detail in Antoniou et al. [5].

AVI data have several applications in traffic management
and many more are certain to emerge as these data become
more widely available, reliable, and accessible. Represen-
tative examples in this field are presented in the remainder
of this section.

3.1 Off-line calibration of dynamic traffic models

Off-line calibration involves the estimation of variables
such as time-varying OD flows, route choice model
parameters, other parameters used by the OD estimation
and prediction modules and, depending on the nature of the
supply simulator, segment capacities and speed-density
functions. The variables must be determined such that the
model's outputs match the ground reality reflected in
archived measurements such as time-varying traffic counts
observed across several days. The estimated model inputs
and parameters represent average or expected traffic
conditions, encapsulating the conditions encountered in
the archived data over several prior days. For this reason,
they may be viewed as a database of historical estimates.

Stratification of the historical database could allow the
off-line calibration of multiple sets of parameters, each
corresponding to different prevailing conditions observed in
the data. For example, a different set of model inputs and
parameters may be created for various combinations of
weather conditions, days of the week, seasons and special
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Fig. 1 The role of off-line and on-line calibration
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events. It is assumed that the archived traffic data contain at
least a few days of measurements for each combination of
factors that is deemed necessary for the modeling exercise.
Given a particular combination of factors, the parameters
from the closest matching category in the historical
database can be quickly selected to accurately assess
expected traffic patterns. The historical database has the
added advantage of conveniently and efficiently incorpo-
rating several days of prior data into the model. If the
conditions on a given day are found to deviate from these
historical estimates, on-line adjustments may be executed,
as explained in the following section.

Complex traffic simulation and assignment models have
been developed for various transportation planning and
traffic management applications. The state of the art of such
models includes simulation-based approaches such as
MITSIMLab [61, 62], TransModeler [63], DynaMIT [19,
20], DYNASMART [42], RENAISSANCE [59], DynusT
[27], Dynameq [43] and VISTA [25]. The importance and
complexity of model calibration has been recognized and
documented. However, existing approaches often rely on
simplifications and heuristics that limit the accuracy and
efficiency of calibration (e.g. sub-problems are solved
sequentially, the complex relationships between model
parameters and data are approximated, or the use of
approximations restricts the data that can be used.

Recent research [10–14] has developed calibration
methods that simultaneously estimate all model inputs and
parameters, while using the outputs of the model directly
(instead of approximating the linkage between the calibra-
tion variables and the data). Methodologies to incorporate
and efficiently exploit newer data sources are already being
developed. For example, state-of-the-art traffic simulation
models have been calibrated using speed data in addition to
loop detector counts [10, 13]. The resulting estimates are
shown to be more accurate in replicating the observed data
due to the use of additional speed information. The results
for a case study in Los Angeles, California using the
DynaMIT DTA model showed improvements of 45% in fit
to freeway speeds and 37% in fits to arterial speeds
when both count and speed data were used for the
calibration (over the base case where only counts were
used). It is noted that the improvement in the fit to
speed is of particular interest in applications of route
guidance and ATIS, since a greater accuracy in speed
estimation is expected to translate to better estimates of
travel times.

The discussion above has focused on improving the
quality of off-line calibration for a given day of traffic
measurements. Since traffic conditions can vary signifi-
cantly across days, the off-line calibration process can be
used to create a historical database. For example, param-
eter sets may be calibrated by day of the week, weather

conditions and season, or for specific special events such as
concerts, trade shows or sporting events. The process of
creating a historical database can benefit significantly from
the availability of more advanced sources of traffic
measurements. For example, point-to-point speeds or travel
times from AVL technology are better reflections of
congestion along a link than measurements at a single
location. Airborne sensors can also provide data on queue
lengths and traffic density, which can improve a dynamic
model’s ability to estimate and predict congestion. Similarly,
route choice model parameters may be fine-tuned using sub-
path flow data that contains valuable information about
drivers’ choices along an entire stretch of roadway. Classifi-
cation counts can be used to calibrate OD tables by vehicle
class (e.g. cars, trucks, buses) and vehicle type (e.g. single
occupancy, high occupancy), while weather data collected
simultaneously with traffic data can aid in stratifying the
historical database accordingly.

3.2 On-line calibration of dynamic traffic models

Originally, the scope of on-line calibration was limited to
OD estimation [1], using link counts as measurements, as
that problem could be formulated as a linear problem and
thus solved efficiently [6, 8]. More recently, Antoniou et al.
[4] have presented a methodology that extends this scope to
all model parameters and allows any available type of
surveillance information to be used as measurement.

On-line calibration exploits the continuous flow of surveil-
lance information to allow the real-time, dynamic adjustment
of model inputs and parameters for each time interval. Using
the off-line calibration as a starting point, on-line calibration
fine-tunes the model parameters so that they capture the
prevailing traffic conditions more accurately, and can there-
fore lead to better predictions.

The new data sources provide unique opportunities to
enhance models for decision support in Dynamic Traffic
Management, such as the emerging models presented in the
previous section. Richer information can enhance this
framework in multiple ways. First, the off-line calibration
algorithms will have richer data on which to build the
historical database. The supply simulator may use data-
driven traffic dynamics models to replicate the movement
of vehicles in the network, since more and richer data will
be available. The on-line calibration will also benefit from
the richer and more reliable surveillance data available over
the short horizon that it uses for refinement of a priori
parameter values.

A number of studies use AVI data in the context of OD
estimation and prediction. Ashok [7] introduced the notion
of direct measurements for the incorporation of probe
vehicle information for the solution of the OD estimation
and prediction problem. Van der Zijpp [67, 68] combined
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volume counts with trajectory information obtained from
automated license-plate surveys for the estimation of OD
flows. Dixon and Rilett [29] propose a method for using
sample link choice proportions and sample OD matrix
information derived from AVI data sampled from a portion
of vehicles to estimate population OD matrices with the
AVI data collection points acting as the origins and
destinations. Dixon and Rilett [30] extend this approach to
estimate ramp-to-ramp freeway OD volumes, and demon-
strate the approach using a large urban freeway network
equipped with an AVI system. Kwon and Varaiya [37]
develop a statistical OD estimation model using partially
observed vehicle trajectories obtained with vehicle re-
identification or automatic vehicle identification (AVI)
techniques such as electronic tags. Antoniou et al. [2]
present a methodology for the incorporation of AVI
information into the OD estimation and prediction frame-
work, which is generalized by Antoniou et al. [3] into a
flexible formulation that can incorporate a large range of
additional surveillance information. Zhou and Mahmassani
[66] propose a dynamic origin–destination (OD) estimation
method to extract valuable point-to-point split-fraction
information from automatic vehicle identification (AVI)
counts without estimating market-penetration rates and
identification rates of AVI tags.

The additional data are useful not only on their own
merit, but also as used in the above applications to improve
the accuracy of the estimation and prediction of OD flows.
For example, Antoniou et al. [3] report improvements in
terms of normalized root mean square error (RMSN) of
more than 40% for OD estimation and up to three-step
prediction (i.e. looking up to three time intervals ahead),
and 37% for four-step prediction, when AVI data are added
to count data (Table 2). Besides only relying on link point
counts for the OD estimation, in this case study it is
assumed that AVI detectors are located at three fixed
locations on the network. Subsequent detections of the
transponders of the equipped vehicles by these detectors
provide two subpath flow measurements. This information
is added to the formulation of the OD estimation and
prediction problem resulting in the improvements shown in
Table 2. For more details on the assumptions, the network
geometry and the formulation, the reader is referred to
Antoniou et al. [3].

4 Opportunities for advanced/new applications

The sensors described in the previous sections collect traffic
data that both improve models and enhance existing
applications, for example improved traffic prediction can
be used in many applications such as fleet monitoring and
richer travel planners. However it is important to also point
out that general sensor developments also provide the
opportunity to collect and use other types of data related to
infrastructure and the environment that could enhance
traffic management to support broader and multiple
objectives such as operation taking into consideration
impact to the environment and the infrastructure.

4.1 Examples of condition monitoring sensors

There is potential for significant benefits through the
integration of traffic data with other types of data. For
example, the sensor network can be enlarged to encompass
information about the condition of infrastructure that affects
traffic operations, such as roads, bridges and tunnels. This
type of technologies may include:

& Environmental monitoring: Environmental sensors and
weather stations could be used for the timely determi-
nation of adverse weather conditions (such as heavy
storms, extreme temperatures or low visibility due to
fog), icy or wet road surface or high emissions
concentrations. This information can be used to prevent
accidents, and can also be incorporated into traffic
management efforts. Sensors in this category include:

– Weather stations: Weather information is commonly

provided by TMC websites and other sources. The
strategic placement of weather stations near the
roadway network provides accurate monitoring of
prevailing conditions. Besides standard weather
information (temperature, barometric pressure, rain-
fall, wind direction and intensity), dedicated traffic
weather stations may provide additional information,
such as pavement condition (icy/wet) and visibility
(e.g. due to fog) [22].

– Air quality stations: Maps of traffic-related air
pollution can be combined in real-time with traffic
information to guide traffic management with

Table 2 OD flow estimation
and prediction improvement due
to AVI data

Estimation Prediction (RMSN)

One-step Two-step Three-step Four-step

Counts 0.250 0.254 0.261 0.268 0.279

Counts + AVI 0.133 0.139 0.146 0.159 0.176

% Improvement 47 45 44 41 37
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multiple objectives, such as minimization of travel
time and emissions. Briggs et al. [23] and Gulliver
and Briggs [34] present examples of the combination
of air pollution data with traffic data.

– Early flood warning systems: Flooding in rivers and
lakes can adversely impact nearby roadways. Early
warning systems could provide traffic management
operators with sufficient time to divert traffic in such
events [58].

& Infrastructure condition monitoring: Embedded sensors
and scanning techniques could monitor and diagnose
the condition of pavement, bridges, tunnels, highway
overpasses, retaining walls, etc. These data could be
used to predict and avert potential failures. Early
warnings could be used to schedule preventative
maintenance activities. Furthermore, early warning of
failures can be used to create diversion strategies that
direct traffic away from affected infrastructure, before
traffic conditions become adverse. This may also allow
emergency personnel to reach the affected area without
problems. Sensors in this category include:

– Strain meters and gauges, (piezoelectric, capacitive,

etc.) accelerometers: provide seismic and structural
monitoring of structures close to roadways [40].

– Fiber-optic sensors: versatile, flexible, and inexpen-
sive sensors that can accurately monitor structural
condition [24].

4.2 Applications of integrated traffic and condition
monitoring sensors

The fusion of condition information with traffic data can result
in better and more responsive dynamic traffic management
applications with a richer data background. Barnett and
Benekohal [17] investigate the accident reduction benefits
of combining weigh-in-motion and AVI technologies in order
to allow equipped trucks to by-pass weigh stations. The
authors developed a model that can predict potential accident
reductions around weight stations at varying levels of WIM
and AVI usage. Benekohal et al. [21] present the truck travel
time savings that can be obtained from a preclearance system
that combines AVI and WIM technologies.

Advanced measuring technologies can greatly benefit the
management of transportation networks during emergency
evacuations. Such situations usually consist of various
components discussed earlier in this section. For example,
condition-monitoring sensors can provide information about
the operational status of key transportation infrastructure such
as bridges and tunnels, so that first responders and managers
can route traffic onto safe routes. Environmental sensors may
provide feedback about the propagation of chemical spills and

plumes. Similarly, early flood warning systems could provide
traffic management operators with sufficient time to divert
traffic in such events [58].

People are generally expected to react differently when
faced with uncertain and potentially life-threatening situa-
tions. In the context of transportation network management,
this may translate into choices of evacuation mode, routes and
destinations. Technology can play a key role in measuring the
collective effect of these individual decisions in real-time.
Traffic detectors can fill in the crucial links about the
development of bottlenecks and the spatial and temporal
availability of spare capacity so that the evacuation demand
can be handled in the most efficient manner.

As data collection technologies becomemore commonplace
and accessible, further applications are expected to emerge. For
example, recent research investigates the applicability of AVI
technologies for measuring border delay and crossing times at
the U.S./Mexico border [69] and for congestion pricing at
border crossings [9]. Distance-based user charging [65] and
pay-as-you-go insurance are other applications that rely on
the proliferation of innovative data collection methods.

5 Conclusion

The objective of this paper is to provide an overview of
emerging data collection technologies and their impact on
traffic management applications. Several existing and emerg-
ing surveillance technologies are being used for traffic data
collection. Each of these technologies has different technical
characteristics and operating principles, which determine the
types of data collected, accuracy of the measurements, levels
of maturity, feasibility and cost, and network coverage. This
paper reviews the different sources of traffic surveillance data
currently employed, and the types of traffic management
applications they may support. Traffic sensor technologies are
classified based on their functionality into three broad
categories as point, point-to-point and area-wide.

Clearly, the applications of advanced information for
traffic management applications are numerous, and more
than can be included in a single paper. While considerable
advances have taken place in methodological aspects of
transportation management applications, data surveillance
and collection was until recently revolving around conven-
tional loop detectors. From the review presented in this
paper, it becomes apparent that numerous emerging
technologies are becoming increasingly available. These
technologies provide additional types of data that were
previously impossible, or too difficult, to collect, with
practical advantages over conventional data collection mech-
anisms (e.g. lower cost, higher reliability and accuracy).

Opportunities offered by emerging traffic data collection
technologies in the context of dynamic traffic data
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modeling are presented, focusing on their role in the
development and application of more effective (off-line
and on-line) calibration methodologies in simulation-based
traffic management systems. Advanced applications, such
as those that could be obtained from the integration of
traffic and condition monitoring sensors are also discussed.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution and reproduction in any medium, provided the original
author(s) and source are credited.
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