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Human Monitoring and Authentication using Biodynamic Indicators and Behavioural Analysis (HUMABIO) (2007) is an EU
Specific Targeted Research Project (STREP) where new types of biometrics are combined with state-of-the-art sensorial technolo-
gies in order to enhance security in a wide spectrum of applications. The project aims to develop a modular, robust, multimodal
biometrics security authentication and monitoring system which utilizes a biodynamic physiological profile, unique for each in-
dividual, and advancements of the state of the art in behavioural and other biometrics, such as face, speech, gait recognition,
and seat-based anthropometrics. Several shortcomings in biometric authentication will be addressed in the course of HUMABIO
which will provide the basis for improving existing sensors, develop new algorithms, and design applications, towards creating
new, unobtrusive biometric authentication procedures in security sensitive, controlled environments. This paper presents the con-
cept of this project, describes its unobtrusive authentication demonstrator, and reports some preliminary results.
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1. INTRODUCTION

Biometrics measure unique physical or behavioural charac-
teristics of individuals as a means to recognize or authenti-
cate their identity. Common physical biometrics include fin-
gerprints, hand or palm geometry, and retina, iris, or facial
characteristics. Behavioural characteristics include signature,
voice (which also has a physical component), keystroke pat-
tern, and gait. Although some technologies have gained more
acceptance than others, it is beyond doubt that the field of
access control and biometrics as a whole shows great poten-
tial for use in end user segments, such as airports, stadiums,
defense installations, and the industry and corporate work-
places where security and privacy are required.

A shortcoming of biometric security systems is the dis-
crimination of groups of people whose biometrics cannot be
recorded well for the creation of the reference database, for
example, people whose fingerprints do not print well or they
even miss the required feature. These people are de facto ex-
cluded by the system. In that respect, the research on new
biometrics that exploit physiological features that exist in ev-
ery human (such as electroencephalogram (EEG) and elec-

trocardiogram (ECG) features), thus rendering them to be
applicable to the greatest possible percentage of the popula-
tion, becomes very important.

Since authentication takes place usually only once, iden-
tity fraud is possible. An attacker may bypass the biometrics
authentication system and continue undisturbed. A cracked
or stolen biometric system presents a difficult problem. Un-
like passwords or smart cards, that can be changed or reis-
sued, absent serious medical intervention, a fingerprint or
an iris is forever. Once an attacker has successfully forged
those characteristics, the end user must be excluded from
the system entirely, raising the possibility of enormous se-
curity risks and reimplementation costs. Static physical char-
acteristics can be digitally duplicated, for example, the face
could be copied using a photograph, a voice print using a
voice recording, and the fingerprint using various forging
methods. In addition, static biometrics could be intolerant
of changes in physiology such as daily voice changes or ap-
pearance changes. Physiological dynamic indicators could
address these issues and enhance the reliability and robust-
ness of biometric authentication systems when used in con-
junction with the usual biometric techniques. The nature of
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these physiological features allows the continuous authenti-
cation of a person (in the controlled environment), thus pre-
senting a greater challenge to the potential attacker.

Another problem that current biometric authentication
solutions face is the verification of the subject’s aliveness.
Spoofing attacks to biometric systems usually utilize artifi-
cially made features such as fingerprints, photographs, and
others, depending on the feature the system uses for authen-
tication [1, 2]. In order to cope with this situation, extensive
research takes place in order to create aliveness checks custom
tailored to each biometric parameter. Some of these solutions
work better than the others; however aliveness check remains
a difficult task. Due to the nature of biodynamic indicators
that describe a person’s internal physiology, an authentica-
tion system that utilizes them performs a de facto and reliably
an aliveness check of that person.

The identity theft scenario is especially true for biometric
systems that are based solely on a single biometric feature,
namely, unimodal biometrics. This kind of biometric sys-
tems may not always meet performance requirements; they
may exclude large numbers of people and are vulnerable to
everyday changes and lesions of the biometric feature. Be-
cause of this, the development of systems that integrate two
or more biometrics is emerging as a trend. Experimental re-
sults have demonstrated that the identities established by sys-
tems that use more than one biometric could be more reli-
able and applicable to large population sectors, and improve
response time [3, 4].

Finally, a major shortcoming of all biometrics is the ob-
trusive process for obtaining the biometric feature. The sub-
ject has to stop, go through a specific measurement proce-
dure, which depends on the biometric that can be very obtru-
sive, wait for a period of time, and get clearance after authen-
tication is positive. Emerging biometrics such as gait recog-
nition and technologies such as automated person/face de-
tection can potentially allow the nonstop (on-the-move) au-
thentication or even identification which is unobtrusive and
transparent to the subject and become part of an ambient in-
telligence environment. These biometrics and technologies
however are still in research phase and even though the re-
sults are promising, they have not yet led to products or their
market share is minimal.

2. HUMABIO CONCEPT

HUMABIO is a research and development project that aims
to enhance security at supervised and controlled environ-
ments. The project research revolves around two main axes.

2.1. The biometric authentication enhancement via
the use of new types of biometrics that describe
the internal physiology of the subject, their
cooperationwith existing behavioural biometrics,
and the improvement of widely used system
solutions

2.1.1. Internal physiology biometrics

HUMABIO explores the use of physiological modalities that,
contrary to commonly used biometrics, describe the internal

physiology of a person and they either have never been used
in the past or are still in research phase that has not led to
conclusive or exploitable results due to the limited number
of subjects participating in the research or the technical and
user acceptance restrictions imposed by the existing measur-
ing means, respectively [5–9].

By investigating the authenticating capacity of biody-
namic indicators such as event related potentials (ERP) [8,
9], EEG baseline [6, 7] and heart dynamics [5] and imple-
menting the ones that show strong potential into the final
system, HUMABIO aims to overcome several of the short-
comings of the current biometric solutions.

Specifically,

(1) it can be applied to the totality of the population since
these features exist in everyone;

(2) biodynamic indicators ensure the aliveness of the in-
dividual, and the measurements take place in a nonin-
trusive way, for example, in contrast to DNA biomet-
rics;

(3) spoofing is minimized in two ways: the aliveness check
which is inherited in the biodynamic indicators and
the synchronous use of multiple biometrics;

(4) finally, HUMABIO biometric features allow the con-
tinuous authentication and monitoring of the individ-
ual in a controlled environment, decreasing further the
possibility of spoofing.

The use of these novel biometrics will also enable HUM-
ABIO system to act as a monitoring system [10, 11] that val-
idates the normal emotional and physiological state of em-
ployees and operators and guarantees the proper execution
of critical and sensitive tasks that involve risks to the envi-
ronment and the people.

2.1.2. External physiology and behavioural biometrics

In order to increase the reliability and the applicability of
the HUMABIO system, external physiology and behavioural
biometrics are also utilized. Based on criteria such as unob-
trusiveness level, maturity of the technology, and biometric
capacity, face, voice, and gait recognition biometrics were se-
lected to be included in the HUMABIO system and comple-
ment the biometrics that describe the person’s internal phys-
iology. In addition, a new biometric is introduced: authenti-
cation via the extraction of the anthropometric profile using
a sensing seat.

2.2. The improvement of security and safety through
theminimization of human operator related
accidents in critical operations

This is accomplished through research on algorithms and
systems that guarantee the capacity of the individual to per-
form his or her task before and during the execution of the
task. In that way, the system proposes three main operation
phases that are indicated in Table 1.

The authentication phase is characterized by three states
according to the application scenario. The initial authenti-
cation takes place when the subject logs into the protected
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Figure 1: HUMABIO architecture concept.

system. This is typically the same process that is being used
in all security systems: the subjects declare their identity us-
ing a login or a token in order to gain access to a resource
and then a password is used to authenticate his/her identity.
In the context of HUMABIO, the initial authentication pro-
cess will be enhanced and will also include face recognition,
text dependent voice analysis, and innovatory EEG authen-
tication based on the analysis of event related potentials that
are registered on the scalp.

The continuous authentication state is an innovation of
HUMABIO that enhances the security of fixed place worksta-
tions by reducing the possibility of system spoofing. The sub-
ject’s EEG, ECG, and other physiological features that show
intrapersonal stability and can act as biological signatures are
continuously monitored in order to guarantee the identity of
the operator throughout the whole process. Face and speaker
authentication will be utilized in parallel to improve the reli-
ability of the system.

Nonobtrusive authentication will be implemented in the
context of HUMABIO in order to widen the applicability of
the system. It involves automatic authentication of autho-
rized personnel that can move freely in restricted areas. The
authentication of an individual that carries an ID in the form
of radio frequency identification (RFID) card will take place,
using face and gait recognition techniques in order to mini-
mize the obtrusiveness and maximize the convenience from
the subject’s point of view. EEG and other physiological fea-

tures could be used in this scenario depending on the user’s
requirements and the obtrusiveness level of the sensors that
will collect the physiological data.

The validation phase of the subjects’ initial “nominal”
state will guarantee that the subjects have the capacity to per-
form their tasks. This process will be rather obtrusive since
it will use ERP and body sway methods and will last sev-
eral minutes. The aim is to detect possible deficiencies (deriv-
ing from drug consumption, sleep deprivation, etc.) through
measurements of features that can describe the person’s state.
This phase will be applied to critical operation scenarios that
require the operator’s full attention and readiness such as
professional driving or air traffic controlling.

The monitoring phase is the generalization of the initial
state validation phase. It will be applied for the whole dura-
tion of the operation and monitor the subjects’ capacity to
perform their tasks. It will classify their emotional state and
will be able to predict dangerous situations and warn the sys-
tem’s administrator in order to prevent accidents. Changes
in physiological features, such as EEG and ECG indicators
will be used to classify the subject’s emotional state and de-
tect abnormal patterns corresponding to lack of attention,
panic, and other basic emotional states that can potentially
hinder optimal performance. It is important to note that
this mode will only be applied on critical operation scenar-
ios and the subject will always be aware of the monitoring
via visual interfaces (e.g., a warning light and a notification).
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Table 1: HUMABIO operating modes, corresponding biometric modalities, and identification techniques.

Phase State Methods Application

Authentication Initial

Password
RFID token
Face recognition
Text dependent voice verifi-
cation
Event related potentials

When the subject logs into
the protected system
Before validation phase

Continuous

EEG baseline
ECG features
Face authentication
Speaker verification (free
speech analysis)

Continuously while the
subject performs his/her
tasks or accesses a protected
resource

Nonobtrusive

RFID token
Face authentication
Gait authentication
ECG features

When the subject accesses a
protected area and is able to
move freely

Validation of initial
“nominal” state

Event related potentials
ECG analysis
Voice analysis
Equilibrium analysis

Before the subject
commences his/her tasks

Monitoring

EEG features
ECG features
Speaker verification (free
speech analysis)

Continuously, while the
subject performs his/her
tasks

The abnormal states that will be monitored in HUMABIO
are the effects of drug and alcohol consumption and sleep
deprivation. These conditions were selected because they
are some of the major factors that cause operator-related
accidents.

3. ARCHITECTURE

Modular, open and efficient system architecture has been de-
signed, in order to address the different applications and sys-
tems of HUMABIO (see Figure 1).

The design and development of every architectural mod-
ule takes into account all relevant and important elements,
like system requirements, security requirements, risk factors,
software issues, communication elements, safety issues (elec-
tromagnetic interference and compatibility (EMI/EMC) in-
cluded), hardware requirements (dimensions, power con-
sumption, etc.), and specific application requirements (e.g.,
vehicle integration requirements for a transport application).
Also issues like the geographical distribution of the sys-
tem components, data access, data security mechanisms, and
compliance with international standards [12] are taken into
account.

In order to evaluate the effectiveness of the prototype that
integrates all the software and hardware modules and show
its modularity and adaptation in versatile scenarios, a series
of pilots will be designed and realized.

4. HUMABIO PILOTS

4.1. Pilot plans

Three applications are considered in order to highlight the
modularity of HUMABIO and its adaptability to different
application scenarios. In these applications, the physiological
and behavioural profiles work either complementary in case
one of the two cannot be utilized, acquired, or in parallel,
thus strengthening the reliability of the system. Specifically,
the applications include the integration of HUMABIO in

(1) a truck, representing in general the transport means
environment,

(2) an office environment, for resources protection from
unauthorized access and for the evaluation of the sys-
tem as an emotional state classifier,

(3) an airport, for nonstop and unobtrusive authentica-
tion of employees in the controlled area.

Aiming at user’s convenience, synergies with undergo-
ing Ambient Intelligence Projects will be pursued. Specifi-
cally, the experience from the ASK-IT EU Integrated Project
[13] is expected to be transferred to the restricted area pi-
lot, while the possibility of HUMABIO integration in a larger
scale AmI environment such as Philips HomeLab Project will
be studied in the frame of the office pilot.

Table 2: It correlates the applications to the HUMABIO
platform configurations, in order to show the multimodality
of the system.
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Table 2: HUMABIO operating modes and exploited biometric modalities for each of the pilot scenarios.

(a)

Mobility Physiological biometrics Behavioural and other biometrics Operation mode

FS M EEG ECG BL F S Vo G V A M

ERP Base D Fr C W

Operation mode

Validation × × × × ? ×
Authentication × × × × ? × × × × ?

Monitoring × × × ?

Enviroment

Truck × ? × × × × × × ? × ×
Office × ? × × × × × × × ? × ×
Airport × ? × × × ? ×

(b)

FS Fixed seat

M Moving freely

BL Blood pressure related parameters

F Face biometrics

S Voice biometrics

Vo Voice biometrics

G Gait biometrics

V Validation

(c)

A Authentication

M Monitoring

Base Baseline

D Dicated-text dependent

Fr Free speech

C Camera based

W Using wearable sensors

?

Not certain applicability,
depending on the
scenario, the acceptable
obtrusiveness level and
other parameters
deriving from user and
system requirements.

In this paper, the restricted area pilot, which demon-
strates the unobtrusiveness of the system, is presented along
with some preliminary results for the relevant biometric
modalities.

4.2. Description of restricted area pilot

The system will be installed in a controlled area in Euroair-
port in Basel, Switzerland. The aim is to authenticate the
identity of authorized employees that can move freely in the
area. Depending on the acceptable obtrusiveness level, the
appropriate sensor setup will be utilized. Two possible obtru-
siveness scenarios are considered depending on the required
security level:

(1) the totally unobtrusive scenario, which dictates that
the employees will not carry any sensor on them,
which in turn means that the physiological profile of
the subject will not be available and

(2) the partially obtrusive scenario in which wireless wear-
able sensors and the utilization of the physiological in-
dicators will be included.

The operational setup is depicted in Figure 2.

Controlled area denoted with gray color

Airp
or

t co
rr

id
or

C

Finish

Start

Direction of gait
(front-parallel)

4–
6

m

5–7 m

Figure 2: Unobtrusive authentication concept for the HUMABIO
airport pilot.

Pilot protocol

The subject will walk along a narrow corridor such as the
ones that are usually found in airports. When the subject en-
ters the corridor his (claimed) identity is transmitted wire-
lessly to the system via an RFID tag. The aim of HUMABIO
is to authenticate the claimed identity by the time the subject
reaches the end of the corridor.

The corridor’s length should be 6 to 7 meters to allow
the capturing of sufficient gait information. As the subject
walks in the corridor, his gait features are captured by a
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stereoscopic camera and in addition the subject’s height is
estimated. Height estimation with this method is quite accu-
rate and deviates from the real height by 1 cm maximum.

Height information is used to calibrate the position of the
face recognition camera as shown in Figure 3. Face recogni-
tion takes place at the end of the corridor. By the time the
subject reaches the camera, its position is already calibrated
allowing the unobtrusive face recognition without the need
of specific procedures for the collection of the biometric data
as it is usually the case with current biometric solutions.

Depending on the required security level more modali-
ties may be utilized to decrease false acceptance ratio (FAR).

The HUMABIO voice recognition module can function
in parallel with face recognition. The microphone will be in-
stalled at the end of the corridor where face recognition cam-
era is located. The subject will have to pronounce a specific
sentence or even talk freely for some seconds, since HUM-
ABIO voice recognition modules are able to handle both dic-
tated and free speech.

Physiological signals, namely, EEG and ECG will also be
studied for their application potential in this pilot. Prelimi-
nary results show that even though EEG using just two elec-
trodes (plus one reference electrode) may yield good authen-
tication rates, this is possible only when a specific procedure
is followed so as to avoid the occurrence of artefacts that pol-
lute the necessary for authentication features. These artefacts
are caused by muscle activity such as eyelid and eye move-

(a) (b)

Figure 5: Extracted silhouettes: (a) binary silhouette, (b) geodesic
silhouette.

ments, walking, head movement, and so forth. Due to these
restrictions EEG is not expected to be applicable in the air-
port pilot scenario since the person will be mobile and the
artefacts from eye activity are inevitable. On the other hand,
ECG shows robustness to artefacts and can be acquired by us-
ing only one electrode (plus one reference electrode which is
common for EEG). ECG’s authentication accuracy is compa-
rable to EEG’s and more robust due to less interference from
muscle activity due to the location of the electrode on the
wrist.

Sensors

The sensors that will be used in the first scenario are RFID
tags, a stereoscopic camera for gait recognition and height
estimation, a simple camera for face recognition, and possi-
bly a microphone. Since there will be no sensors attached to
the subject, the whole process will be transparent and totally
unobtrusive.

The sensors that will be used in the second scenario
are the ones in the previous scenario with the addition
of minimally obtrusive wearable sensors and the personal
data processing unit (PDPU). The wearable sensors are elec-
trodes based on the ENOBIO technology [21] that was de-
veloped within the SENSATION IP [14]. These electrodes
use nanocarbon substrate to stick to the skin without the
need of conductive gel. The ECG signal is then transmit-
ted wirelessly to the PDPU for processing and features ex-
traction (see Figure 4). The features are then transmitted to
the HUMABIO system for matching with the corresponding
templates. The availability of physiological measurements
could potentially be used also for the assessment of the sub-
jects’ capacity to perform their task.

HUMABIO gait recognitionmodule

Gait recognition algorithm development uses a novel ap-
proach in HUMABIO [20] which involves several stages.

4.2.1. Binary silhouette extraction

The walking subject silhouette is extracted from the input
image sequence. Initially, the background is estimated using
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a temporal median filter on the image sequence, assuming
static background and moving foreground. Next, the silhou-
ettes are extracted by comparing each frame of the sequence
with the background. The areas where the difference of their
intensity from the background image is larger than a prede-
fined threshold are considered as silhouette areas. Morpho-
logical filtering, based on antiextensive connected operators
[23], is applied so as to denoise the silhouette sequences. Fi-
nally, shadows are removed by analyzing the sequence in the
HSV color space [24].

4.2.2. Generating 3D geodesic silhouettes

Using the aforementioned techniques, a binary silhouette se-
quence ˜BSil is generated as illustrated in Figure 5(a). In the
proposed framework, 2.5D information is available since the
gait sequence is captured by a stereoscopic camera. Using De-
launay triangulation on the 2.5D data, a 3D triangulated hull
of the silhouette is generated that is further processed using
the proposed 3D Protrusion Transform.

Initially, the triangulated version of the 3D silhouette is
generated. Adjacent pixels of the silhouette are grouped into
triangles. Next, the dual graph G = (V ,E) of the given mesh
is generated [25], where V and E are the dual vertices and
edges. A dual vertex is the center of the mass of a triangle
and a dual edge links two adjacent triangles. The degree of
protrusion for each dual vertex results from

p(u) =
N
∑

i=1

g
(

u, vi
) · area

(

vi
)

, (1)

where p(u) is the protrusion degree of dual vertex u, g(u, vi)
is the geodesic distance of u from dual vertex v i, and area (v
i) is the area of triangle that corresponds to the dual vertex v
i.

Let us define G′Sil
k (u), a function that refers to the dual

vertices, to be given by

G′Sil
k (u) = p(u) · ˜BSil

k (u). (2)

The 3D PT for the silhouette image, denoted as GSil
k (x, y),

is simply a weighted average of the dual vertices that are ad-
jacent to the corresponding pixel (x, y), that is,

GSil
k (x, y) =

8
∑

i=1

G′Sil
k (u) ·w(x, y,u),

̂GSil
k (x, y) = m + GSil

k (x, y) · (255−m),

(3)

where i = 1, . . . , 8 denotes the number of adjacent pix-
els (x, y) to be weighted, w(x, y,u) is the weighting func-
tion, and ̂GSil

k (x, y) represents the geodesic silhouette image
at frame k, as illustrated in Figure 5(b), which takes values in
the interval of [m,255]. The higher the intensity value of a
pixel in Figure 5(b), the higher its protrusion degree. In the
proposed approach, m was selected to be equal to 60.

4.2.3. Gait sequence feature extraction

In the present work, the use of descriptors based on the
weighted Krawtchouk moments is proposed. In all cases, the

input to the feature extraction system is assumed to be either
the binary silhouettes (˜BSil

k ) or the 3D-distributed silhouettes

(
�
G

Sil

k ) when the 3D PT is used.
For almost all recent approaches on gait analysis, after

feature extraction, the original gait sequence cannot be re-
constructed. In the suggested approach, the use of a new
set of orthogonal moments is proposed based on the dis-
crete classical weighted Krawtchouk polynomials [26]. The
orthogonality of the proposed moments assures minimal in-
formation redundancy. In most cases, Krawtchouk trans-
form is used to extract local features of images [26]. The
Krawtchouk moments Q nm of order (n + m) are computed
using the weighted Krawtchouk polynomials for a silhou-
ette image (binary or 3D) with intensity function Sil (x, y)
by [26]

Qnm =
N−1
∑

x=0

M−1
∑

y=0

Kn(x; p1,N − 1)

∗Km(y; p2,M − 1) · Sil(x, y),

Kn(x; p,N) = Kn(x; p,N)

√

w(x; p,N)
ρ(n; p,N)

,

(4)

where Kn, Km are the weighted Krawtchouk polynomials,
and (N − 1)× (M− 1) represents the pixel size of the silhou-
ette image Sil (x, y). A more detailed analysis of Krawtchouk
moments and their computational complexity is presented in
[26].

Krawtchouk moments can be used to extract local infor-
mation of the images by varying the parameters N and M.
Parameter N can be used to increase the extraction of sil-
houette image in the horizontal axis. Larger N provides more
information on the silhouette image in the horizontal axis,
whereas the parameter M extracts local informaton of the sil-
houette image in the vertical axis. For the experiments, values
for N = R/15 and M = C/3 were used, where R and C denote
the number of rows and columns of the silhouette image, re-
spectively.

Krawtchouk transform is proposed for feature extrac-
tion, due to its very high discriminative power. Krawtchouk
transformation is scale and rotation dependent. However, sil-
houette sequences are prescaled and aligned to the center,
thus the Krawtchouk transform is unaffected by scaling. Fur-
thermore, the input gait sequences are captured in a near
fronto-parallel view and thus rotation does not affect the re-
sults of the Krawtchouk transform.

4.2.4. Signaturematching

The following notations are used in this section: the term
gallery is used to refer to the set of reference sequences,
whereas the test or unknown sequences to be verified or iden-
tified are termed probe sequence. In this study, the gait cycle
is detected using a similar approach to [27], using autocorre-
lation of the input periodic signal. Instead of measuring only
the sum of the foreground pixels in a temporal manner, the
time series of the width of the silhouette sequence was also
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calculated. Then, the mean value of these signals formed the
final gait period of the current gait sequence.

Each probe sequence is initially partitioned into sev-
eral full gait cycle segments and the distance between each
segment and the gallery sequence is computed separately.
This approach can be considered as a brute-force attempt to
match a pattern of segmented feature vectors (segmentation
using gait cycle) by shifting them over a gallery sequence vec-
tor. The main purpose of this shifting is to find the minimum
distance (or maximum similarity) between the probe and the
gallery sequence.

Let FP,T , FG,T represent the feature vectors of the probe
with NP frames and the gallery sequence with NG frames, re-
spectively, and let T denote the Krawtchouk transform. The
probe sequence is partitioned into consecutive subsequences
of TP adjacent frames, where TP is the estimated period of
the probe sequence. Also, let the kth probe subsequence be

denoted as Fk(P,T) = {FkTP
P,T , . . . ,F(k+1)TP

P,T } and let the gallery se-

quence of NG frames be denoted as FG,T = {F1
G,T , . . . ,FNG

G,T}.
Then, the distance metric between the kth subsequence and
the gallery sequence is

DistT(k) = min
l

TP−1
∑

i=0

√

∑S−1

x=0

(

Fi+k·TP
P,T (x)− Fi+lG,T(x)

)2
,

k = 0, . . . ,m− 1,

(5)

where l = 0, . . . ,NG − 1, S denotes the size of a probe/gallery
feature vector F, and m = NP/TP represents the number of
probe subsequences.

Equation (5) indirectly supposes that the probe and
gallery sequences are aligned in phase. After computing all
distances between probe segments and gallery sequences of
feature vectors, the median, [30] of the distances is taken as
the final distance DT (Probe, Gallery) between the probe and
the gallery sequence,

DT = Median
(

DistT(1), . . . , DistT(m)
)

, m = NP

TP
, (6)

where m denotes the number of distances calculated between
the probe subsequences and the whole gallery sequence. In
(6), smaller distance means a closer match between the probe
and the gallery sequence.

4.2.5. Experimental results

The proposed method was evaluated on the publicly available
HumanID “Gait Challenge” dataset.

Since the HumanID “Gait Challenge” dataset includes
only monoscopic image sequences, it cannot be used to eval-
uate the proposed scheme using the 3D PT. However, the
Krawtchouk descriptor efficiency on binary silhouettes was
evaluated using this database, so as to generate comparative
results with state-of-the-art approaches. In an identification
scenario, a score vector for a given probe gait sequence is
calculated, that contains the distance of the probe sequence
from all the gallery sequences that exist in a database. The
gallery sequence that exhibits the minimum distance from
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Figure 6: Identification rate of the 3D PT method, (3D PT) for
two experiments (A, B), compared to the algorithm that uses the
Krawtchouk descriptors on binary silhouettes (KW).

the probe sequence is identified as the correspondent se-
quence to the probe sequence.

In the USF’s Gait Challenge Database, the gallery se-
quences were used as the systems knowledge base and the
probe sequences as the ones that should be recognized by
comparing their descriptors to the gallery set. The available
gallery sequences include (C, G) cement or grass surface, (A,
B) shoe type A or B, and (L, R) two different view points.
In the performed experiments, we used the set GAR as the
gallery. The probe set is defined using seven experiments A–G
of increasing difficulty. Experiment A differs from the gallery
only in terms of the view, B of shoe type, C of both shoe
type and view, D of surface, E surface and shoe type, F of
surface and viewpoint, and G of all surface, shoe type, and
viewpoints.

For evaluation of the proposed approach, cumulative
match scores (CMS) are reported at ranks 1 and 5. Rank 1
performance illustrates the probability of correctly identify-
ing subjects in the first place of the ranking score list and the
rank 5 illustrates the percentage of correctly identifying sub-
jects in one of the first five places.

Table 3 illustrates rank 1 and 5 results of the proposed
approach on binary silhouettes (KR) compared to the CMU
[28], LTN-A [29], and BASE approaches [30]. It is obvious
that the proposed approach based on Krawtchouk moments
performs better in almost all experiments.

3D PT was tested using HUMABIO proprietary gait
database consisting of stereoscopic gait sequence recordings
from 75 subjects under various conditions. The sequences in-
clude (C) normal surface, (CL, PA) shoe type classic or slip-
per, (BF, NB) carrying a briefcase or not, and (H) when the
subject wears a hat. In this paper, two experiments on this
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Table 3: Comparative results for the Krawtchouk transform on binary silhouettes (the number of subjects in each set is reported in squared
brackets).

Probe set Rank 1 Ranks 1–5

Gallery: GAR KR CMU LTN-A BASE KR CMU LTN-A BASE

A (GAL) [71] 96 87 89 79 100 100 99 96

B (GBR) [41] 85 81 71 66 93 90 81 81

C (GBL) [41] 76 66 56 56 89 83 78 76

D (CAR) [70] 30 21 21 29 63 59 50 61

E (CBR) [44] 27 19 26 24 66 50 57 55

F (CAL) [70] 20 27 15 30 49 53 35 46

G (CBL) [44] 21 23 10 10 48 43 33 33

Table 4: Preliminary performance results for the different modali-
ties that will be utilized in the restricted area pilot.

Biometric
modality

Authentication accuracy
range depending on the
experiments (equal error
rate (%))

Databases used

Face [16] 8–18
ATT and proprietary
databases

Voice [17] 0,66–2,29
YOHO, KING, and
proprietary databases

ECG [18] ∼3,2 Proprietary

database are demonstrated. The experiment A refers to the
difference between hat and normal, and the experiment B
refers to the difference between carrying briefcase and nor-
mal.

Figure 6 illustrates detailed results on the identification
rate of the 3D PT when compared to the algorithm that uses
the Krawtchouk descriptors on binary silhouettes. As illus-
trated, an increased identification rate can be expected when
using the 3D PT.

Preliminary authentication results for the rest of the
modalities that will be used in the airport scenario

In Table 3, indicative preliminary results for the modalities
that will be used in the airport pilot are presented.

Even though the presented rates are not comparable to
the ones found in literature for conventional biometrics such
as fingerprint or iris recognition, one must take into account
that the approach followed in HUMABIO aims at user con-
venience and unobtrusiveness. For the achievement of cur-
rent biometrics’ claimed performance, strict protocols are
required and also performance during operation in normal
conditions deteriorates significantly [22].

Below, the test conditions for the reported results are de-
scribed for each modality.

Face [16]

The developers follow the SOA approach that was introduced
in [32]. Specifically, three statistical methods are applied
to normalized and preprocessed face images represented as

high-dimensional pixel arrays to perform classification in
lower-dimensional (often) linear subspaces:

(1) the Eigenfaces approach [33], which uses principal
component analysis (PCA), a dimensionality reduc-
tion method, to extract a number of principal compo-
nents (the directions of largest variations) from a high
dimensional dataset;

(2) the Fisherfaces algorithm [34], based on linear dis-
criminant analysis (LDA) to find the directions in a
dataset in which the different classes/individuals are
best linearly separable;

(3) the Bayesian face recognition method [35] which com-
putes two linear subspaces: one for intrapersonal vari-
ations (or intraclass variance) and another extraper-
sonal variations (or interclass variance). Classification
is performed using maximum a posteriori (MAP) or
maximum likelihood (ML) based similarity measure.

Even though the performance of the algorithms devel-
oped is comparable to SOA for benchmarking databases,
Siemens’s research within HUMABIO goes beyond SOA by
testing the algorithm in various external light conditions
(night, day), subject appearance changes (facial expression,
glasses, beard, hairstyle), face pose, facial expression (smile
or talk), face appearance changes after a certain time (>1
month), various face poses (<15◦ in the YES angle, <10◦ in
the NO angle), and presence of glasses aiming to develop a
really unobtrusive face recognition system that requires no
special cooperation from the subject, and making it also suit-
able for commercial in-vehicle applications.

Voice [17]

Mel frequency cepstral coefficients (MFCCs) were compared
against perceptual linear predictive (PLP) coefficients [31],
using a standard GMM configuration. The use of 13 cepstral
coefficients against 16 cepstral coefficients was also evalu-
ated and the results revealed that MFCC-13 acoustic features
performed better than the rest on both YOHO and KING
databases for dictated and free speech correspondingly. The
focus of the module development has been put on practical
side issues such as the robustness to environment noise, the
rejection of unreliable speech samples, the limited amount
of enrolment data, and so forth. Several noise models were
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added to examine the robustness of the system in condi-
tions that simulate real application environments. Currently
speech recordings that were made within HUMABIO under
different conditions (alcohol consumption, drug consump-
tion, or sleep deprivation) are being tested for their impact
on the authentication rates.

ECG [18]

ECG measurement is performed using one electrode located
at the wrist for minimal unobtrusiveness (plus one refer-
ence electrode). Preliminary results show ECG’s authentica-
tion potential but studies with more subjects (currently 45
subjects) are being performed to validate the results. From
a large set of different features that were studied (HRV re-
lated features, geometric features, entropy, fractal dimension,
and energy), only the heart beat shape is selected, since it
is the feature with the highest discriminative power among
subjects. ECG is not robust to motion artefacts; however, its
use will be examined in the airport pilot because of the fol-
lowing reasons. The small number of required electrodes and
the wrist location, combined with the airport pilot protocol
(the subject walks through a corridor for some seconds, so
wrist activity is expected to be low) may allow ECG utiliza-
tion along with the other biometrics. The use of wireless elec-
trodes is expected to reduce motion and interference arte-
facts as well. Depending on the data analysis after the test-
ing phase and the performance achieved, the final decision
regarding the inclusion of ECG in the final HUMABIO pro-
totype for the airport pilot will be taken.

Unimodal biometrics will be fused in order to achieve
high authentication rates. In order to develop the fusion al-
gorithms, virtual subjects will be created. Each of these vir-
tual subjects will be the owner of the available modalities. A
limitation with this approach is that the maximum number
of virtual subjects is equal to the minimum number of sub-
jects recorded for each modality. To overcome this issue, dif-
ferent groups of virtual subjects will be created (using differ-
ent combinations of subject recordings, or different sessions)
and used for testing.

Preliminary support vector machine (SVM) fusion tests
with 20 virtual subjects show that 100% identification accu-
racy is feasible; however, further testing using larger test pop-
ulations is necessary and planned for the remaining part of
the project.

5. CONCLUSION

In this paper, a novel biometrics authentication system is
presented. HUMABIO will utilize micro- and nanosensors
that are currently under development in the SENSATION IP,
aiming primarily at user’s convenience and unobtrusiveness.
Novel biometric modalities are being studied and used in or-
der to overcome several shortcomings of the current biomet-
rics solutions, mainly, the strict protocols required to be fol-
lowed by the subjects. HUMABIO among other innovations
will support authentication of the individuals in a contin-
uous way and also allow the monitoring of the physiologi-
cal parameters to ensure the normal state of critical process

operators. Its three pilots are designed in such a way as to
demonstrate the versatility and extensive modularity of the
system and also provide performance evaluation in realistic
application scenarios.
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