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1 Introduction

The study of supersymmetric conformal field theories (CFT) in four dimensions using

holography is by now a venerable subject. Their holographic duals are AdS5 solutions in

either IIB supergravity or M-theory. A comprehensive analysis of supersymmetric AdS5

solutions of IIB supergravity was carried out in [1]; these include the Freund-Rubin com-

pactifications and the Pilch-Warner solution [2]. Analogous studies were performed for

N = 1 [3] and N = 2 [4] supersymmetric AdS5 backgrounds of M-theory, where new

analytic solutions were found. AdS5 solutions arising in M-theory usually have a higher-

dimensional origin: they are compactifications (“twisted” in a certain way) of CFT’s in six

dimensions. Actually this latter CFT is essentially always the (2, 0) theory living on the

world-volume of M5-branes, as in [5] (and in the more recent examples [6, 7]).

Recently, AdS7 solutions in type II supergravity were classified [8]. A new infinite

class of solutions was found in massive IIA: the internal space M3 is always topologically

an S3, but its shape is not round — rather, it is a fibration of a round S2 over an interval.1

Both D6’s and D8’s can be present (and, a bit more exotically, O6’s and O8’s). The CFT

duals of these solutions are (1, 0)-supersymmetric theories, which were argued in [13] to be

the ones obtained in [14, 15] from NS5-D6-D8 configurations (see also [16, 17] for earlier

related theories). A similar class of (1, 0) theories can be found in F-theory [18, 19].

This prompts the question of whether these (1, 0) theories, when compactified on a

Riemann surface, can also give rise to CFTs in four dimensions. If so, their duals should

be AdS5 solutions in massive IIA.

In this paper we classify AdS5 solutions of massive IIA, and we find many analytic

examples. The new (and physically sensible) ones are in bijective correspondence with the

AdS7 solutions; this strongly suggests that their dual CFT4 are indeed twisted compacti-

fications of the (1, 0) CFT6. The correspondence is via a simple universal map, which was

directly inspired by the map in [20] from AdS4 to AdS7 solutions. At the level of the metric

it reads

e2A(ds2
AdS5

+ ds2
Σg) + dr2 + e2Av2ds2

S2 →√
4

3

(
4

3
e2Ads2

AdS7
+ dr2 +

v2

1 + 3v2
e2Ads2

S2

)
,

(1.1)

where A, v are functions of r and Σg is a Riemann surface of genus g ≥ 2. This map is

so simple that it also allows us to find analytic expressions for the AdS7 solutions. For

1This Ansatz was also considered in [9–12], also in a non-supersymmetric setting.
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example, the simplest massive AdS5 solution has metric

ds2 =

√
3

4

n2

F0

(√
ỹ + 2 (ds2

AdS5
+ ds2

Σg) +
dỹ2

4(1− ỹ)
√
ỹ+2

+
1

9

(1−ỹ)(ỹ+2)3/2

2−ỹ
ds2
S2

)
(1.2)

with ỹ ∈ [−2, 1]. Its AdS7 “mother”, obtained via the map (1.1), reads on the other hand

ds2 =
n2

F0

(
4

3

√
ỹ + 2 ds2

AdS7
+

dỹ2

4(1− ỹ)
√
ỹ + 2

+
1

3

(1− ỹ)(ỹ + 2)3/2

8− 4ỹ − ỹ2
ds2
S2

)
. (1.3)

Both these solutions have a stack of n2 D6-branes at ỹ = 2, and are regular elsewhere. The

D6’s can also partially or totally be replaced by several D8-branes, much like in a Myers

effect [21]. (In a way, these solutions realize the vision of [22].) Such more complicated

solutions are obtained by gluing together copies of (1.3), or sometimes also of a more

complicated metric that we will see later on.

We start our analysis in complete generality. We use the time-honored trick of reducing

the study of AdS5 solutions to that of Minkowski4 solutions whose internal space M6 has a

conical isometry. One can then use the general classification of [23], which uses generalized

complex geometry on M6. Due to the conical structure of M6, the “pure spinor equations”

of [23] become a certain new set of equations on M5. (The idea of applying the pure spinor

equations to AdS5 solutions in this way goes back to [24], where it was applied to IIB

solutions.) It is immediately seen that the only possibility that leads to solutions is that

of an SU(2) structure on M6 (where the pure spinors are of so-called type 1 and type 2),

which means in turn that there is an identity structure on M5.

The practical consequence of this is that we can determine the metric on M5 in full

generality. It is a fibration of a three-dimensional fiber M3 over a two-dimensional space C.
The three-dimensional fiber also has a Killing vector, which is holographically dual to R-

symmetry on the field theory side. The fluxes are also fully determined. The independent

functions (one function a2 in the metric, the warping A, and the dilaton φ) have to satisfy

a total of six PDEs.

The problem simplifies dramatically once we impose what we will call the “compacti-

fication Ansatz”. This consists in imposing that: 1) The metric of C is conformally related

to that of a surface Σ, which does not depend on the coordinates of the three-dimensional

space orthogonal to C inside M5. The conformal factor is equal to the warping function e2A

in front of the AdS5 metric; 2) neither A, nor the dilaton φ, nor the function a2 entering

the metric and fluxes, depend on the coordinates of Σ. Under this Ansatz, Σ has constant

curvature2 (and we can compactify it to produce a compact Riemann surface Σg); the

PDEs reduce to only three. Moreover, these PDEs are all polynomial in one of the local

coordinates on M3. Thus they can be in fact reduced to a set of ODEs. At this point the

analysis branches out in several possibilities; for each of those, only one ODE survives. In

the massless case, there is a “generic case”, which is the reduction to IIA of the BBBW

solution [7, 26], and two special cases being the reduction of the N = 1 Maldacena-Núñez

solution [5] and the INST solution [27]. In the massive case, we get new solutions. Again

there is a generic case and two special cases. In the generic case, we solve the ODE ex-

plicitly, but the solution appears not to be physically sensible: it has singularities which

2For compactifications of (2, 0) theories, the fact that Σ has constant curvature was explained in [25].
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we cannot interpret. The first special case, with positive curvature on Σg, again has singu-

larities. The second, with constant negative curvature3 on Σg, leads to physically sensible

solutions. These latter ones are the main result of this paper.

Solving the ODE produces several solutions, of which (1.2) is the simplest. Without

D8’s, the most general solution has either two D6 stacks (unlike (1.2), which has one),

or one D6 stack and one O6. As we already mentioned, there is also the possibility of

introducing D8’s, which can be done by gluing together copies of (1.2), of the Maldacena-

Núñez solution, and possibly also of the more complicated solution we just mentioned. As

we also anticipated, the map (1.1) can then be used to produce analytical expressions for

all the AdS7 solutions in [8, 13].

All these new explicit solutions are begging further investigation, particularly regarding

their field theory interpretation. This might be the beginning of a correspondence between

CFT6 and CFT4 similar to the celebrated class S theories [30] (although notice that we do

not discuss Riemann surfaces with punctures here, as was done in [6]). A feature that those

theories also had is that (at the supergravity level) the ratio of the number of degrees of

freedom in four and six dimensions is proportional to g−1, just like for [6] (and for [7]); this

is a simple consequence of the map (1.1). We compute the central charges for the CFT6

in a couple of simple cases; for example, for a symmetric solution with two D8’s. Along

with the NSNS flux integer N , there is also another flux integer µ, which is basically the

D6 charge of the D8’s; the number of degrees of freedom is a simple cubic polynomial in N

and µ, and agrees with an earlier approximate computation in [13]. It would be interesting

to also compute contributions from stringy corrections, which we have not done here.

This paper is organized as follows. In section 2, we write the system of pure spinor

equations relevant for supersymmetry. In section 3, we analyze the system: we determine

the metric and fluxes in terms of a few functions, subject to a set of PDEs, which we

summarize in subsection 3.4. In section 4 we introduce the compactification Ansatz, for

which we are able to give a complete list of cases. One of these classes (apparently the

only physically sensible one which was not already known) is then analyzed in 5 in more

detail. The highlights of that analysis are the correspondence to AdS7 in section 5.2, the

explicit solutions in sections 5.5, 5.6, 5.7, and the preliminary field theory considerations in

section 5.8. In appendix A we provide the proof of the existence of a Killing vector on M5.

In appendix B we consider an Ansatz simpler than the one in section 4; it reproduces a

certain solution of [3]. Finally, in appendix C, we summarize the already known solutions

which we recovered in our analysis.

2 The conditions for supersymmetry

In this section, we will derive a system of differential equations on forms in five dimensions

that is equivalent to preserved supersymmetry for solutions of the type AdS5 ×M5. We

will derive it by considering AdS5 as a warped product of Mink4 and R. We will begin

in section 2.1 by reviewing a system equivalent to supersymmetry for Mink4 × M6. In

section 2.2 we will then translate it to a system for AdS5 ×M5.

3Compactifying on T 2 the NS5–D6–D8 configurations of [14, 15] and T-dualizing twice should lead to

the NS5–D4–D6 system of [28]; the holographic dual to those solutions was found in [29].
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2.1 Mink4 ×M6

Preserved supersymmetry for Mink4×M6 was found [23] to be equivalent to the existence

on M6 of an SU(3)× SU(3) structure satisfying a set of differential equations. The system

is described by a pair of pure spinors

φ− ≡ e−A6χ+
1 ⊗ χ

−†
2 , φ+ ≡ e−A6χ+

1 ⊗ χ
+ †
2 , (2.1)

where the warping function A6 is defined by

ds2
10 = e2A6ds2

Mink4
+ ds2

M6
, (2.2)

and the ± superscripts indicate the chirality of χ1 and χ2. The pure spinors φ− and φ+

can be expressed as a sum of odd and even forms respectively, via application of the Fierz

expansion and the Clifford map

dxm1 ∧ · · · ∧ dxmk → γm1...mk . (2.3)

The system of differential equations equivalent to supersymmetry for type IIA super-

gravity reads:

dH
(
e2A6−φReφ−

)
= −c−

16
F , (2.4a)

dH
(
e3A6−φφ+

)
= 0 , (2.4b)

dH
(
e4A6−φImφ−

)
= −c+e

4A6

16
∗6 λF . (2.4c)

Here, φ is the dilaton, dH = d−H∧ is the twisted exterior derivative and c± are constants

such that

‖χ1‖2 ± ‖χ2‖2 = c±e
±A6 . (2.5)

F is the internal Ramond-Ramond flux which determines the external flux via self-duality:

F(10) ≡ F + e6A6vol4 ∧ ∗6λF . (2.6)

λ is an operator acting on a p-form Fp as λFp = (−1)[
p
2 ]Fp, where square brackets denote

the integer part.

2.2 AdS5 ×M5

As we anticipated, we will now use the fact that anti-de Sitter space can be treated as a

warped product of Minkowski space with a line. We would like to classify solutions of the

type AdS5 ×M5. These in general will have a metric4

ds2
10 = e2Ads2

AdS5
+ ds2

M5
. (2.7)

Since

ds2
AdS5

=
dρ2

ρ2
+ ρ2ds2

Mink4
, (2.8)

4Here ds2AdS5
is the unit radius metric on AdS5.
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ds2
10 in equation (2.7) can be put in the form of equation (2.2) if we take

eA6 = ρeA , ds2
M6

=
e2A

ρ2
dρ2 + ds2

M5
. (2.9)

In order to preserve the SO(4, 2) invariance of AdS5, A should be a function of M5. In

addition, the fluxes F and H, which in subsection 2.1 were arbitrary forms on M6, should

now be forms on M5. For IIA, F = F0 + F2 + F4 + F6; in order not to break SO(4, 2), we

impose F6 = 0.

Following the decomposition of the geometry of M6 we wish to decompose the system

of equations (2.4) so as to obtain the system equivalent to preserved supersymmetry for

AdS5 ×M5. We start by decomposing the generators of Cliff(6) as

γ(6)
ρ =

eA

ρ
1⊗ σ1 , γ(6)

m = γm ⊗ σ2 , m = 1, . . . , 5 (2.10)

where σ1, σ2 are the Pauli matrices and γm generate Cliff(5). Accordingly, the chirality

matrix γ
(6)
7 = 1 ⊗ σ3 and the chiral spinors χ+

1 , χ−2 are decomposed in terms of Spin(5)

spinors η1, η2 as

χ+
1 =

√
ρ

2
η1 ⊗

(
1

0

)
, χ−2 =

√
ρ

2
η2 ⊗

(
0

1

)
. (2.11)

φ− and φ+ now read

φ− =
1

2

(
eA

ρ
dρ ∧ ψ1

+ + iψ1
−

)
, φ+ =

1

2

(
−ie

A

ρ
dρ ∧ ψ2

− + ψ2
+

)
, (2.12)

where

ψ1 ≡ e−Aη1 ⊗ η†2 , ψ2 ≡ e−Aη1 ⊗ η2 . (2.13)

The bar is defined as η ≡ (ηc)† ≡ (Bη∗)† = −ηtB, where B is a conjugation matrix that

in five Euclidean dimensions can be taken to satisfy B∗ = B, Bt = −B, B2 = BB∗ = −1.

The subscripts plus and minus on ψ1, ψ2 refer to taking the even and odd form part

respectively, in their expansion as forms. One should keep in mind here a comment about

odd dimensions: the Clifford map (2.3) is not injective. Rather, a form ω and its cousin

∗λω are mapped to the same bispinor (recall the definition of λ right after (2.6)). Thus a

bispinor can always be expressed both as an even and as an odd form, and in particular

we have

ψ1,2
− = ∗λψ1,2

+ . (2.14)

Applying the decomposition (2.12) to equations (2.4) we obtain a necessary and suffi-

cient system of equations for supersymmetric AdS5 ×M5 solutions:

dH
(
e3A−φReψ1

+

)
+ 2e2A−φImψ1

− = 0 , (2.15a)

dH
(
e4A−φψ2

−
)
− 3ie3A−φψ2

+ = 0 , (2.15b)

dH
(
e4A−φReψ1

−
)

= 0 , (2.15c)

dH
(
e5A−φImψ1

+

)
− 4e4A−φReψ1

− =
c+

8
e5A ∗ λF . (2.15d)

– 5 –
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We also obtain the condition c− = 0; it follows that the relation ‖χ1‖2 ± ‖χ2‖2 = c±e
±A6

becomes

‖η1‖2 = ‖η2‖2 =
1

2
c+e

A . (2.16)

Henceforth, without loss of generality, we set c+ = 2.

The stabilizer group G ∈ Spin(5) of η1 and η2 can be either SU(2) or the identity

group. In the next section we parametrize ψ1, ψ2 in terms of these structures. We will

see however that only the identity case leads to supersymmetric solutions. An identity

structure is actually a choice of vielbein; so we will end up parameterizing the ψ1 and ψ2

in terms of a vielbein.

2.3 Parametrization of ψ1, ψ2 and the identity structure

We first consider the case where there is only one spinor, η1 = η2 of norm e
A
2 . In five

dimensions it defines an SU(2) structure. This can be read off from the Fierz expansions of

η1⊗η†1 and η1⊗η1, which as remarked in (2.14) can be written both as even and as odd forms:

ψ1
+ =

1

4
e−ij , ψ2

+ =
1

4
ω ,

ψ1
− =

1

4
v ∧ e−ij , ψ2

− = v ∧ ω .
(2.17)

Application of Fierz identities yields

vη1 = η1 (2.18)

and the following set of algebraic constraints on the 1-form v and 2-forms j and ω:

ιvv = 1 , ιvj = ιvω = 0

j ∧ ω = 0 , ω ∧ ω = 0 , ω ∧ ω = 2j ∧ j = vol4, (2.19)

where vol4 is the volume form on the four-dimensional subspace orthogonal to v. This set

of forms and constraints define precisely an SU(2) structure in five dimensions.

In this case, however, the two-form part of (2.15b) tells us ψ2 = 0, which is only

possible for η1 = 0. Hence, there are no supersymmetric AdS5 ×M5 solutions in type IIA

supergravity with an SU(2) structure on M5.

Let us then consider the case of two spinors η1 and η2, which as mentioned earlier

define an identity structure. We can expand η2 in terms of η1 as

η2 = aη1 + a0η
c
1 +

1

2
bw η1 , (2.20)

where a, a0 ∈ C, b ∈ R and w is a complex vector that we normalize such that w · w = 2

(so that Rew and Imw are orthogonal and have norm 1). Also, by redefining if necessary

a→ a+ b
2w · v, w → w− (w · v)v (which leaves (2.20) invariant, upon using (2.18)), we can

assume

w · v = 0 . (2.21)

– 6 –
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Now (2.16) implies

|a|2 + |a0|2 + b2 = 1 . (2.22)

The identity structure is then spanned by v, w and

u ≡ 1

2
ιw ω , (2.23)

in terms of which

ω = w ∧ u , −ij =
1

2
(w ∧ w + u ∧ u) . (2.24)

From (2.19) we now see that u is also orthogonal to v, as well as to w and w; moreover, it

satisfies u · u = 2. In other words,

{v,Rew, Imw,Reu, Imu} (2.25)

are a vielbein.

We can now expand ψ1 and ψ2 in terms of this vielbein. We separate out their even

and odd parts:

ψ1
+ =

1

4
a exp

[
−ij +

b

a
v ∧ w

]
, ψ2

+ = −a0

4
exp

[
−ij +

u

a0
∧ (a+w − bv)

]
, (2.26)

ψ1
− =

1

4
(av + bw) ∧ e−ij , ψ2

− = −1

4
(a0v + bu) ∧ exp

[
−ij +

u

a0
∧ (a+w − bv)

]
.

3 Analysis of the conditions for supersymmetry

Having obtained the expansions (2.26) of ψ1, ψ2 in terms of the identity structure on M5,

we can proceed with the study of the system (2.15). In section 3.1 we study the constraints

imposed on the geometry of M5 while in section 3.2 we obtain the expressions of the fluxes

in terms of the geometry. The analysis in 3.1 is local.

3.1 Geometry

The equations of the system (2.15) which constrain the geometry of M5 are (2.15a), (2.15b)

and (2.15c) with the exception of the three-form part of (2.15a) which determines H. In

the following study of these constraints, it is convenient to introduce the notation

a ≡ a1 + ia2 , k1 ≡ av + bw , k2 ≡ −bv + aw . (3.1)

The zero form part of (2.15b), the one-form part of (2.15a), the two-form part of (2.15c)

and the two-form part (2.15b) yield the following set of equations:

a0 = 0 , (3.2a)

d
(
e3A−φa1

)
+ 2e2A−φImk1 = 0 , (3.2b)

d
(
e4A−φRek1

)
= 0 , (3.2c)

d
(
e4A−φbu

)
− 3ie3A−φu ∧ k2 = 0 . (3.2d)

– 7 –
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It can then be shown that the higher-form parts of (2.15a), (2.15b) and (2.15c) follow from

the above equations.

(3.2a) simplifies quite a bit (2.26), which now becomes

ψ1
+ =

1

4
a exp

[
−ij +

b

a
v ∧ w

]
, ψ2

+ =
1

4
(aw − bv) ∧ u ∧ e−ij ,

ψ1
− =

1

4
(av + bw) ∧ e−ij , ψ2

− = −1

4
bu ∧ exp

[
−ij − a

b
v ∧ w

]
.

(3.3)

It is also interesting to see what the pure spinors φ± on M6 look like:

φ+ =
1

4
E1 ∧ E2 ∧ exp

[
1

2
E3 ∧ E3

]
, φ− = E3 ∧ exp

[
1

2
(E1 ∧ E1 + E2 ∧ E2)

]
, (3.4)

where

E1 ≡ ieAb
dρ

ρ
+ aw − bv , E2 ≡ u , E3 ≡ eAa

dρ

ρ
+ i(av + bw) . (3.5)

(3.4) are the canonical forms of a type 1 — type 2 pure spinor pair (where the “type”

of a pure spinor is the lowest form appearing in it); or, in other words, of a pure spinor

pair associated with an SU(2) structure on M6 (although remember that the structure on

M5 is the identity). It would be interesting to push this further, and to start an analysis

similar to the one in [24]: in that paper, the language of generalized complex geometry

is used to set up a generalized reduction procedure, which eventually leads to a set of

four-dimensional equations.

Let us now go back to (3.2). Given (3.2a), equation (2.22) becomes

a2
1 + a2

2 + b2 = 1 . (3.6)

Equations (3.2b) and (3.2c) can be integrated by introducing local coordinates y,

y = −1

2
e3A−φa1 , (3.7)

and x such that

Imk1 = e−2A+φdy , Rek1 = e−4A+φdx . (3.8)

M5 possesses an abelian isometry generated by the Killing vector

ξ ≡ 1

2

(
η†1γ

mη2 − η†2γ
mη2

)
∂m = −eAb(Rek2)] (3.9)

where m = 1, . . . , 5 and the ] superscript denotes the vector dual to the one-form it acts

on. A straightforward way to show that ξ is a Killing vector is to work directly with the

supersymmetry variations (see appendix A) which yield ∇(m ξν) = 0 and Lξφ = LξA = 0,

where ∇ is the Levi-Civita connection and Lξ is the Lie derivative with respect to ξ.

It would be interesting to show this directly using the language of generalized complex

geometry, and to make contact with the analysis in [24].
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Expressing w, v in terms of Rek2, Rek1, and Imk1 we can write the metric on M5 as

ds2
M5

= ds2
C+(Rek2)2+

e−4A+2φ

b2
[
(b2+a2

2)e−4Adx2+(b2+a2
1)dy2+2a1a2e

−2Adxdy
]
, (3.10)

where ds2
C = uu, and C denotes the two-dimensional subspace spanned by u.

Let us introduce local coordinates xI , I = 1, 2, 3 such that

ds2
C + (Rek2)2 = gIJ(xI , x, y)dxIdxJ . (3.11)

φ, A and a2 are in principle functions of xI , x and y. Given the fact that LξRek1 =

LξImk1 = 0,5 we can further introduce a coordinate x3 ≡ ψ adapted to the the Killing

vector

ξ = 3∂ψ , (3.12)

in terms of which

Rek2 = −1

3
eAbDψ , Dψ ≡ dψ + ρ , ρ = ρi(x

i, x, y)dxi , (3.13)

where xi, i = 1, 2 are local coordinates on C. Thus

gIJ(xI , x, y)dxIdxJ = (gC)ij(x
i, x, y)dxidxj +

1

9
e2Ab2Dψ2. (3.14)

In addition, since ξ is a Killing vector and Lξφ = LξA = 0, A, φ and a2 are independent of ψ.

The exterior derivative on M5 can be decomposed as

d = d2 + dψ ∧ ∂ψ + dx ∧ ∂x + dy ∧ ∂y , (3.15)

where d2 is the exterior derivative on C. We can thus further refine equation (3.2d) as

follows:

d2u = iρ0 ∧ u , (3.16a)

∂ψu = iu , (3.16b)

∂xu = f1u , (3.16c)

∂yu = f2u , (3.16d)

where

ρ0 ≡ ρ+ ∗2d2 log
(
be4A−φ) , (3.17a)

f1(xi, x, y) ≡ −∂x log
(
e4A−φb

)
+

3e−5A+φa2

b2
, (3.17b)

f2(xi, x, y) ≡ −∂y log
(
e4A−φb

)
+

3e−3A+φa1

b2
. (3.17c)

∗2 is the Hodge star defined by gC , such that ∗2u = −iu. Integrability of equations (3.16)

yields the constraints

∂yf1 = ∂xf2 (3.18)

5Deduced from ιξRek1 = ιξImk1 = 0 and equation (3.8).
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and

∂xρ0 = − ∗2 d2f1 , (3.19a)

∂yρ0 = − ∗2 d2f2 . (3.19b)

We can write ds2
C as

ds2
C = e2ϕ(xi,x,y)

(
dx2

1 + dx2
2

)
. (3.20)

The Gaussian curvature or one-half the scalar curvature of C, `(xi, x, y), is

`(xi, x, y) = −e−2ϕ
(
∂2
x1 + ∂2

x2

)
ϕ . (3.21)

Equations (3.16b) and (3.16c), (3.16d) are solved by

u = eϕ+iψ(dx1 + idx2) , ∂xϕ = f1 , ∂yϕ = f2 . (3.22)

Equation (3.16a) then yields

ρ0 = ∂x2ϕdx1 − ∂x1ϕdx2 , (3.23)

and thus

d2ρ0 = `(xi, x, y)volC . (3.24)

Compatibility of (3.24) with (3.19a), (3.19b) requires that ` obey the equations

∂x`+ 2f1` = ∆2f1 , (3.25a)

∂y`+ 2f2` = ∆2f2 , (3.25b)

where ∆2 ≡ d2
†d2 + d2d2

†. The last two equations also follow from (3.21), bearing in mind

that ∆2ϕ = −e−2ϕ(∂2
x1 + ∂2

x2)ϕ.

3.2 Fluxes

In this section we give the expressions for the fluxes in terms of the geometry of M5. In

the following expressions we employ the notation

ζ1 ≡ Re(ak1)] = −2yeA∂x − a2e
2A−φ∂y ,

ζ2 ≡
1

b2
Im(ak1)] = a2e

4A−φ∂x − 2ye−A∂y .
(3.26)

The NSNS three-form flux H is given by the three-form part of equation (2.15a):

H = d

(
1

6y
dx ∧Dψ +

1

3
eARe(ak1) ∧Dψ +

e3A−φa2

2y
volC

)
− 1

6y2
dx ∧ dy ∧Dψ +

e−2A

y
dx ∧ volC +

e3A−φa2

2y2
dy ∧ volC ,

(3.27a)

where Re(ak1) = −2ye−7A+2φdx− a2e
−2A+φdy.
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The RR fluxes can be computed from equation (2.15d):

F0 = −4e2A−2φb2∂yA− e−Aιζ1d
(
eA−φa2

)
, (3.28a)

F2 =
[
−4e−A−φa2 + 4e4A−2φ∂xA− e−5Aιζ2d

(
e5A−φa2

)]
volC

+
1

3
d
(
eA−φa2

)
∧Dψ + F0

1

3
eARe(ak1) ∧Dψ (3.28b)

− e−A

b2
∗2 d2

(
eA−φa2

)
∧ Im(ak1) + 4e−4A ∗2 d2A ∧ dx ,

F4 =
1

3

[
e−6A∂y

(
e5A−φa2

)
dx− e−2A∂x

(
e5A−φa2

)
dy − 4e−2Ady

]
∧ dψ ∧ volC

− 1

3

[
4e−φa2 + e−4Aιζ2d

(
e5A−φa2

)]
Re(ak1) ∧ dψ ∧ volC (3.28c)

− 1

3
e−10A+2φ ∗2

[
d2

(
e5A−φa2

)]
∧ dx ∧ dy ∧Dψ ,

where Im(ak1) = a2e
−4A+φdx− 2ye−5A+2φdy.

The fluxes can also be computed from the expression

F = J+ · dH(e−φImφ−) (3.29)

on M6 [31]. The operator J+· is associated with the pure spinor φ+, which can be

found in (3.4):

J+· =
i

2

2∑
i=1

(Ei ∧ Eix−Ei ∧ Eix) +
i

2
(E3xE3x+E3 ∧ E3∧) . (3.30)

The degree of difficulty of computing the fluxes from (3.29) is proportional to the degree

of the flux. The opposite is true for computing the fluxes from (2.15d).

3.3 Bianchi identities

In order to have a complete supersymmetric AdS5×M5 solution, apart from the conditions

for supersymmetry (which imply the equations of motion [32]) the Bianchi identities of the

fluxes need to be imposed. In this section we study the latter and the extra constraints

that follow from their application.

We start with the Bianchi identity of H i.e. dH = 0. We find that it determines

d2ρ = e−2A
[
6 + 12y(∂yA− f2)− 6e5A−φa2(∂xA− f1) + 3∂x

(
e5A−φa2

)]
volC . (3.31)

Next, we turn to the Bianchi identities of the RR fluxes. The Bianchi identity of F0

just says that it is a constant. The Bianchi identity of F2 is

dF2 − F0H = 0 . (3.32)
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The non-zero components on the left-hand side are the dx∧volC and dy∧volC components

and imposing that they vanish yields the equations:

∂xQ+ 2f1Q−
[

1

3
∂x
(
eA−φa2

)
− F0

6y

]
∗2 d2ρ− F0

e−2A

y
(3.33a)

+∆2

(
eA−φa2

)e−5A+φa2

b2
−∆2(e−4A)− d2

(
eA−φa2

)
· d2

(
2e−5A+φa2

b2

)
= 0 ,

∂yQ+ 2f2Q−
1

3
∂y
(
eA−φa2

)
∗2 d2ρ− F0

e3A−φa2

2y2
(3.33b)

−∆2

(
eA−φa2

)2e−6A+2φy

b2
+ d2

(
eA−φa2

)
· d2

(
4e−6A+2φy

b2

)
= 0 ,

where

Q(xi, x, y) ≡ −4e−A−φa2 + 4e4A−2φ∂xA− e−5Aιζ2d
(
e5A−φa2

)
− F0

e3A−φa2

2y
. (3.34)

Finally, the Bianchi identity of F4

dF4 −H ∧ F2 = 0 , (3.35)

is automatically satisfied.

3.4 Summary so far

So far, we have analyzed the constraints imposed by supersymmetry and the Bianchi

identities without any Ansatz; let us summarize what we have obtained.

First of all, we have already determined the local form of the metric: (3.10), (3.13).

Most notably, we see the emergence of a Killing vector ξ generating a U(1) isometry, and

of a two-dimensional space C. The geometry of C is constrained by (3.16). The S1 upon

which the U(1) acts is fibered over C with ρ being the connection of the fibration. The

curvature of the connection is given by (3.31).

In fact the U(1) isometry is a symmetry of the full solution as it also leaves invariant

the fluxes; the latter can be verified by computing the Lie derivative with respect to ξ of

the fluxes’ expressions as presented in section 3.2. This symmetry was to be expected: it

is a U(1) R-symmetry corresponding to the R-symmetry of the dual N = 1 field theory.

The surface C is of less immediate interpretation, but already at this stage it seems to

suggest that the field theory should be a compactification on C of a six-dimensional field

theory. We will see later that this expectation is indeed borne out for the explicit solutions

we will find.

We have also reduced the task of finding solutions to a set of partial differential equa-

tions on three functions: a2, the dilaton φ, and the warp factor A, which in general

depend on four variables i.e. the coordinates xi, x, y. Supersymmetry equations alone give

us (3.18), (3.25a), (3.25b). Moreover, the fluxes should satisfy the relevant Bianchi identi-

ties, which away from sources give the further equations (3.28a), (3.33a), (3.33b). Thus we

have a total of six partial differential equations. Solving all of them might seem a daunting

task, but we will see in the next section that they simplify dramatically with a simple

Ansatz. This will allow us to find many explicit solutions.
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4 A compactification Ansatz

We have reduced the general classification problem to a set of six PDEs. To simplify the

problem, we will now make an Ansatz.

We assume that A, φ and a2 are functions of x and y only, and that

ds2
C = e2Ads2

Σ(x1, x2) . (4.1)

In other words, the ten-dimensional metric becomes ds2
10 = e2A(ds2

AdS5
+ ds2

Σ) + ds2
M3

. It

will soon follow that Σ has constant curvature; from now on we will assume it to be a

compact Riemann surface Σg. For g ≥ 1 this involves a quotient by a discrete subgroup,

but since no functions depend on its coordinates, this presents no difficulty.

This Ansatz is motivated by the fact that most known solutions in eleven-dimensional

supergravity (and hence in massless IIA) are of this type. We also have in mind our

original motivation for this paper: finding solutions dual to twisted compactifications of

CFT6. If one wants to study a CFT6 on R4 × Σg rather than on R6, one needs to replace

ds2
AdS7

= dρ2

ρ2
+ρ2ds2

R6 with dρ2

ρ2
+ρ2(ds2

R4 +ds2
Σ) in the UV, and then look for a solution that

represents the flow to the IR. Our Ansatz is basically that in the IR fixed point this metric

is only modified in the ρ2 term multiplying ds2
Σ, which drops out and becomes a constant.

Whatever its origin, we will now see that this Ansatz is remarkably effective at sim-

plifying the system of PDEs: we will be able to completely classify the resulting solutions.

One particular case will be source of many solutions, which will be analyzed in section 5.

4.1 Simplifying the PDEs

(4.1) implies

f1 = ∂xA , f2 = ∂yA . (4.2)

The integrability condition (3.18) is then satisfied trivially, while equations (3.19a)

and (3.19b) yield ∂xρ = ∂yρ = 0 (in the present Ansatz ρ0 = ρ).

Equations (3.24), (3.31) yield ` = e−2A[6 + 3∂x(e5A−φa2)]. (3.25a), (3.25b) are then

solved by

e5A−φa2 = cx+ ε c = const. , (4.3)

where ε = ε(y) is a function of y only. It follows that

` = e−2A(6 + 3c) (4.4)

i.e. the Gaussian curvature of Σg is equal to 6 + 3c.

Given the definitions (3.17b), (3.17c), the equations f1 = ∂xA and f2 = ∂yA become

∂x
(
e10A−2φb2

)
= 6e5A−φa2 , (4.5a)

∂y
(
e10A−2φb2

)
= 6e7A−φa1 . (4.5b)

Recall that a1 = −2ye−3A+φ and b2 = 1− a2
1 − a2

2. Using (4.3) we can solve these for

e10A−2φ − 4y2e4A = c(c+ 3)x2 + 2(c+ 3)εx+ β , (4.6a)

e4A = − ε′

2y
x− 1

12y

(
β′ − 2εε′

)
, (4.6b)

where β = β(y) is a function of y only, and a prime denotes differentiation with respect to y.
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So far we have solved the differential equations imposed by supersymmetry; we now

need to impose the Bianchi identities. First, the expression for F0, (3.28a), becomes

e12AF0 = −[c(c+ 3)x2 + 2(c+ 3)εx+ β](e4A)′ + e4A∂y(cx+ ε)2 + 2e8Acy . (4.7)

Recalling (4.6b), we see that this equation is polynomial in x, of degree 3. In other words,

we can view it as a set of four ODEs in y.

The Bianchi identities for F2, (3.33), become

∂2
x

(
e6A−2φ

)
= 0 , (4.8a)

∂y∂x
(
e6A−2φ

)
+ F0

ε′

2y
= 0 . (4.8b)

Substituting equations (4.3) and (4.6) in (4.8a) yields the differential equation

36(ε′)2β = −(c+ 3)(β′ − 2εε′)
[
cβ′ − 2(c+ 6)εε′

]
. (4.9)

Notice that the x dependence has dropped out from this equation. Concerning (4.8b),

just as for (4.7), it can be written as a polynomial in x of degree 3, and viewed as four

ODEs in y.

So we appear to have reduced the problem to four ODEs from (4.7), one from (4.8a)

(which becomes (4.9)), and four from (4.8b), for a total of nine ODEs in y. However, many

of these ODEs actually happen not to be independent from each other. For example, the

x3 component of both (4.7) and (4.8b) gives

4c(c+ 3)

(
ε′

y

)′
+ F0

(
ε′

y

)3

= 0 , (4.10)

as well as the x2 component of (4.8b).

To analyze the remaining ODEs, as a warm-up we will first look at the case F0 = 0,

where we will reproduce several known solutions. We will then look at the case F0 6= 0,

which we will further split into a generic case where ε′ 6= 0, and a special case where ε′ = 0;

both will give rise to new solutions.

4.2 F0 = 0

For F0 = 0, (4.10) becomes c(c+3)(ε′−yε′′) = 0. We can then have either ε′ = yε′′, c = −3,

or c = 0. In the c = 0 case, actually the x2 coefficient of (4.7) gives again ε′ = yε′′. So this

case becomes a subcase of the ε′ = yε′′ case.

• Case 1: ε′ = yε′′. In this case we have

ε =
1

2
c1y

2 + c2 , c1, c2 = const. . (4.11)

The x3 component of (4.7) is (4.10), which we just looked at. The x2 and x1 com-

ponents both require (
β′

y

)′
= 2

c+ 3

c+ 6
c1y . (4.12)
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The solution to this ODE is

β =
c+ 6

c+ 3

1

4
c2

1y
4 +

1

2
c3y

2 + c4 c3, c4 = const. . (4.13)

The x0 component of (4.7) then gives

(2c1c2 − c3)(2(c+ 6)c1c2 − cc3) +
36

(c+ 3)
c2

1c4 = 0 . (4.14)

Generically this can be solved for c4. In this case, the transformation

x→ x+
δ

c
, c2 → c2 − δ , β → β +

(3 + c)(δ2 − 2δε)

c
(4.15)

leaves the solution invariant and δ can be chosen such that

β =
c+ 6

c+ 3
ε2. (4.16)

This branch reproduces the solution obtained from reduction to ten dimensions of

the BBBW AdS5 solution of M-theory [7], as described in appendix C.4.

This however does not cover the case c1 = 0. Treating this separately, we find

that (4.14) leads to c = 0. This branch reproduces the INST solution [27], discussed

in appendix C.2.

• Case 2: c = −3. In this case, the x2 component of (4.7) gives ε′ = 0. With this, the

whole of (4.7) gives

2β(β′ − yβ′′) + yβ′2 = 0 . (4.17)

This equation is nonlinear, but if one defines z = y2/2 it becomes 2β∂2
zβ = (∂zβ)2,

which is easily solved by the square of a linear function; in other words, by

β = c2(y2 + 4c1)2 , c1, c2 = const. . (4.18)

This case reproduces the solution obtained from reduction to ten dimensions of the

Maldacena-Núñez AdS5 solution of M-theory [5], described in appendix C.3.

4.3 F0 6= 0

We will divide the analysis in the generic case, where c 6= 0 and −3, and two special cases

c = 0 or −3. Let us note that from (4.9), we see that ε′ = 0 implies either c = 0 or −3;

in other words, if c 6= 0 and −3, then ε′ 6= 0. On the other hand, from (4.10), we see that

ε′ 6= 0 implies c 6= 0 and −3; in other words, if c = 0 or −3, then ε′ = 0.

4.3.1 Generic case

We begin by analyzing (4.7) with the aid of (4.10) and (4.9). In particular, combining the

last two we derive

(e4A)′ =
(ε′)2

8c(c+ 3)y3

[
F0ε
′x+

1

6
F0(β′ − 2εε′)− 4cy2

]
. (4.19)
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Substituting (e4A)′ as expressed in the above equation, and β as expressed in (4.9), in (4.7),

the whole of the latter gives

β′ =
c+ 3

c
2εε′ . (4.20)

(4.9) then actually fixes

β =
c+ 3

c
ε2 . (4.21)

Finally, (4.8b) follows from (4.9) and (4.10), which can be solved by quadrature. The

solution is

ε = −
2
√

2c(c+ 3)

3F 2
0

(F0y − 2c1)
√
F0y + c1 + c2 , c1, c2 = const. . (4.22)

This yields an AdS5 solution which was not known before; we will analyze its features

here. Let us define

x̃ ≡ cx+ ε , (4.23)

since this quantity will appear several times. We know already, from (4.3), that e5A−φa2 = x̃.

By substituting β in (4.6a), we also find e10A−2φ(1− a2
1) = c+3

c x̃2. Recalling (3.6), we also

find e5A−φb =
√

3
c x̃. Again from the expression of β and from (4.6b) we find A:

e4A = − ε′

2cy
x̃ , (4.24)

while (4.6a) determines φ:

eφ =
√
c x̃3/4

(
−2cy

ε′

)−5/4

(−2yε′ + (c+ 3)x̃)−1/2 . (4.25)

Finally, collecting everything and recalling the expression of the metric (3.10), we can write

the metric for this solution as

ds2 = e2Ads2
Σg + e−8A+2φ

(
x̃2

3c
Dψ2 +

c+ 3

c
dQ2 +

2yε′ − (c+ 3)x̃

2(c+ 3)y

ε′

c
dy2

)
(4.26)

= e2Ads2
Σg +

√
− cε′

2yx̃

(
1

−2yε′ + (c+ 3)x̃

(
x̃2

3c
Dψ2 +

c+ 3

c
dQ2

)
− ε′

2c(c+ 3)y
dy2

)
,

where Q ≡ x+ 1
c+3ε.

Unfortunately, as it stands the metric (4.26) appears to be unphysical. To make M5

compact, we should be able to find some locus where the coefficient of Dψ2 vanishes.

One way this could happen is if x̃ = 0. However, this also leads to eA = 0. Hence this

cannot be a regular point. One might think about the presence of a brane (where eA might

legitimately go to zero), but the locus x̃ = 0 appears to be codimension 2, and there are

no such branes in IIA supergravity.

So we look for other loci where the coefficient of Dψ2 might vanish. Notice that the

coefficient
√
− cε′

2yx̃ cannot go to zero, since ε′ = −y
√

2c(c+3)√
F0y+c1

. Nonetheless, we have the

combination

− 2yε′ + 3ε =
c1[2c(c+ 3)]1/2

F 2
0

F0y + 2c1√
F0y + c1

+ 3c2 . (4.27)

– 16 –



J
H
E
P
0
6
(
2
0
1
5
)
1
9
5

So the denominator −2yε′+(c+3)x̃ can go to infinity where F0y+c1 = 0. However, on this

locus eφ → 0, and this locus cannot be regular. It also cannot correspond to the presence

of branes, for the same reason noted above for the locus x̃ = 0.

One last possibility, which we will not analyze here, would be to try to glue this solution

to other solutions (perhaps ones with F0 = 0) along a D8, much as we will do in the next

section. As we will see, such gluing can happen along loci where
√

1− a2
1e
A−φ is constant;

in our case this happens to be proportional to y
ε′ , which is a function of y. We leave the

study of such a possibility for the future.

4.3.2 Special cases

• For c = 0, equation (4.10) is trivially satisfied, while the x1 component of (4.7) yields

ε = 0. Then a2 = 0 and this leads to the (unphysical) massive solution of appendix B.

• For c=−3, (4.10) is again trivially satisfied, while (4.7) yields the following ODE for β:

e12AF0 = −β (e4A)′ − 6e8Ay . (4.28)

Using (4.6b) we see e4A = − β′

12y . This ODE is nonlinear, and a little tougher than

the ones we saw so far in this subsection. Hence we defer its further analysis to the

next section. We will see there that it leads to many new AdS5 solutions.

5 Compactification solutions

We will now analyze further the case we started considering in section 4.3.2. We will see

that it corresponds to a compactification of the AdS7 solutions considered in [8]. Moreover,

we will be able to find the most general explicit solution, thus providing a new infinite class

of AdS5 solutions.

5.1 Metric and fluxes

In section 4.3.2, we found that there are AdS5 solutions associated with solutions of the

ODE (4.28). Replacing the expression of A given there, we have

β
(
yβ′′ − β′

)
=

1

2
y(β′)2 − F0

144y
(β′)3 . (5.1)

This equation is non-linear; however, it can be rewritten as

(q2
5)′ =

2

9
F0 , q5 ≡ −

4y
√
β

β′
. (5.2)

We will see later that q5 has actually a useful physical interpretation (similar to the q

of [8]): it will turn out to be related to D8-brane positions. In any case, the trick (5.2)

allows us to solve the ODE (5.1): indeed we can write 16y2 β
(β′)2 = 2

9F0(y − ŷ0), which can

now be integrated by quadrature.

We will postpone the detailed analysis of the solutions of (5.1) to sections 5.5 and 5.6.

For the time being, in this subsection we will collect various features of the resulting AdS5

solutions.
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The internal metric for the class we are considering can be extracted from the general

expression (3.10). However, at first its global meaning is not transparent. It proves useful

to trade the coordinate x for a new coordinate θ, defined by

cos θ =
−3x+ ε√

β
. (5.3)

The metric then becomes

ds2
M5

= e2Ads2
Σg + ds2

M3
, ds2

M3
= dr2 +

1

9
e2A(1− a2

1)ds2
S2 . (5.4)

Here

ds2
S2 = dθ2 + sin2 θDψ2 (5.5)

is the metric of the round S2, fibered over Σg, which is a Riemann surface of Gaussian cur-

vature −3 (recalling (4.4), and c=−3) and hence g ≥ 2; the new coordinate r is defined by

dr =
e3A

√
β
dy . (5.6)

Moreover, from (3.7) and (4.6) we have

1− a2
1 =

3β

3β − yβ′
, e4A = − β′

12y
, eφ =

√
3e5A

√
3β − yβ′

. (5.7)

We can now remark that the q5 defined in (5.2) is

q5 ≡ e−φRS2 ≡
1

3
eA−φ

√
1− a2

1 = −4y
√
β

β′
. (5.8)

RS2 = 1
3e
A
√

1− a2
1 is the radius of the round S2, as inferred from (5.4). The role of this

particular combination of the radius and dilaton will become clearer in section 5.4.

From (5.8) and (5.7) we see that for the solution to make sense we must require

β ≥ 0 , −β
′

y
≥ 0 . (5.9)

We can now also obtain the fluxes, from the formulas in section 3.2. We have

F2 = q5

[
−(volS2 + 3 cos θvolΣg) +

1

3
F0a1e

A+φvolS2

]
, (5.10)

where volS2 ≡ sin θdθ ∧Dψ. The four-form flux reads

F4 =
1

3
volΣg ∧

[
2yβ

3β − yβ′
cos θvolS2 + sin2 θDψ ∧ dy

]
. (5.11)

When F0 6= 0, we need not give an expression for H: as usual for massive IIA, it can be

written as H = dB, where

B =
F2

F0
+ b , (5.12)
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where b is a closed two-form. When F0 = 0, the only solution in the class we are considering

in this section is the Maldacena-Núñez solution; an expression for B is presented for that

case in (C.21).

We can observe already now that the metric (5.4) and the flux (5.10) look related to

those for the AdS7 solutions in [8]; see (4.16) and (4.9) there. The expressions are very

similar; one obvious difference is that the three-dimensional metric in (5.4) is fibered over

Σg, and that the flux (5.10) has extra legs along Σg. Except for a few numerical factors,

everything seems to correspond nicely; the role of x in [8] seems to be played here by a1:

x in [8]→ a1 here. (5.13)

Actually this correspondence can be justified a little better. In [8], x is the zero-form part

of Imψ1
+ (in that paper’s notation), which is the calibration for a D6-brane extended along

AdS7. The analogue of this in our case would be a D6-brane extended along AdS5 × Σg;

the relevant calibration is the part along u ∧ ū of Imψ1
+ of the present paper. Looking

at (2.26), we see that that is indeed Rea = a1.

Motivated by this, in this section we will also use the name

x5 ≡ a1 . (5.14)

This x5 is meant to evoke the x in [8], and is not to be confused with the coordinate x we

temporarily used in sections 3 and 4.

5.2 Correspondence with AdS7

We will now show that solutions of the type considered in section 4.3.2 are in one-to-one

correspondence with the AdS7 solutions in [8]. The map we will find is directly inspired

from a similar map from AdS4 to AdS7 found in [20]. It would be possible to present our

new AdS5 solutions perfectly independently from the map to AdS7; in fact, in finding the

analytic solutions the map does not help at all. However, the existence of the map tells us

right away that infinitely many regular solutions do exist, and what data they depend on.

Let us start from (5.1). Using the definition (5.6), the expressions (5.7) and the

expression x5 = a1 = −2ye−3A+φ from (5.14), (3.7), we can see that

∂rφ =
1

4

e−A√
1− x2

5

(
11x5 − 2x3

5 +
(
2x2

5 − 5
)
F0e

A+φ
)
,

∂rx5 = −1

2
e−A

√
1− x2

5

(
4− x2

5 + x5F0e
A+φ

)
, (5.15)

∂rA =
1

4

e−A√
1− x2

5

(
3x5 − F0e

A+φ
)
.

Conversely, given a solution to this system, one may define β = e10A−2φ(1 − x2
5), y =

−1
2x5e

3A−φ (with an eye to (4.6), (3.7), which correspond to (5.7)); if one then eliminates r

from (5.15), the resulting equations imply β′ = −12ye4A (the second in (5.7)), and (5.1). So

the system (5.15) is in fact an equivalent way to characterize our solutions. It looks much

more complicated than the original ODE (5.1). We write it because it bears an uncanny
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resemblance with the system in [8, eq. (4.17)]: a few numerical factors have changed, and

two new terms have appeared. This suggests that there might be a close relationship

between solutions of one system and solutions of the other. This is in fact the case: to

any solution (φ5, x5, A5) of (5.15) one can associate a solution (φ7, x7, A7) of [8, eq. (4.17)]

given by

eφ7 =

(
3

4

)1/4 eφ5√
1− 1

4x
2
5

, eA7 =

(
4

3

)3/4

eA5 ,

x7 =

(
3

4

)1/2 x5√
1− 1

4x
2
5

, r7 =

(
4

3

)1/4

r5 .

(5.16)

Comparing (5.4) with [8, eq. (4.16)], we find that the map acts on the metrics as

e2A5

(
ds2

AdS5
+ ds2

Σg

)
+ dr2

5+
1− x2

5

9
e2A5ds2

S2 →√
4

3

(
4

3
e2A5ds2

AdS7
+ dr2

5 +
e2A5

12

1− x2
5

1− 1
4x

2
5

ds2
S2

)
.

(5.17)

Conversely, to any solution (φ7, x7, A7) of [8, eq. (4.17)], one can associate a solution

(φ5, x5, A5) of (5.15) given by

eφ5 =

(
4

3

)1/4 eφ7√
1 + 1

3x
2
7

, eA5 =

(
3

4

)3/4

eA7 ,

x5 =

(
4

3

)1/2 x7√
1 + 1

3x
2
7

, r5 =

(
3

4

)1/4

r7 .

(5.18)

This inverse map now acts on the metrics as

e2A7ds2
AdS7

+ dr2
7+

1− x2
7

16
e2A7ds2

S2 →√
3

4

(
3

4
e2A7

(
ds2

AdS5
+ ds2

Σg

)
+ dr2

7 +
1

12

1− x2
7

1 + 1
3x

2
7

e2A7ds2
S2

)
.

(5.19)

The simplicity of this map is basically a generalization of the simple Maldacena-Núñez solu-

tion [5], with the 1+ 1
3x

2
7 factor ultimately playing the role of the ∆ = 1+sin2 θ factor in [5].

One can also apply (5.16) directly to (5.7), and infer the expressions for the variables

of the seven-dimensional solution:

eA7 =
2

3

(
−β
′

y

)1/4

, x7 =

√
−yβ′

4β − yβ′
, eφ7 =

(−β′/y)5/4

12
√

4β − yβ′
. (5.20)

Moreover, dr7 =
(

3
4

)2 e3A7√
β
dy.

In [8], solving the system of ODEs in [8, eq. (4.17)] was only part of the problem.

First, one had to take care of flux quantization; second, most solutions include D8’s, and

one must take care that supersymmetry be preserved also on top of them. We will see in
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section 5.4 that the relevant conditions also map nicely under (5.16); that will lead us to

conclude that there are infinitely many AdS5 solutions, each one of them corresponding to

the AdS7 solutions in [8, 13]. Moreover, the map is quite simple: for example, it acts on

the metrics as in (5.19).

5.3 Regularity analysis

We showed that solutions of (5.1) are in one-to-one correspondence with solutions of the

system of ODEs relevant for AdS7 solutions. However, (5.1) looks much simpler than that

system; hence one may hope to learn more about both the AdS5 and the AdS7 solutions

by studying it.

In this subsection we will see what boundary conditions on (5.1) have to be imposed

in order to obtain compact and regular solutions.

We saw in (5.4) that the internal metric consists of an M3 fibered over a Riemann

surface Σg; M3 is itself a fibration of S2 over a one-dimensional space with coordinate r.

To make M3 compact, we can use the same logic as for the AdS7 solutions of [8]. One

might think of making it compact by periodically identifying r, but this doesn’t work for the

same reason as in [8, eq. (4.24)]: the quantity y = −1
2e

3A−φx5 is monotonic — from (5.15)

we see ∂ry = e2A−φ
√

1− x2
5, which is always positive; or also, directly from (5.6) we see

∂y
∂r = e−3A

√
β. So periodically identifying r is not an option. The other way to make M3

compact is to make the S2 shrink for two values of r, just like in [8]. This is what we will

now devote ourselves to.

To make the S2 shrink, we should make the coefficient (1 − a2
1) in (5.4) go to zero,

which, recalling (5.7), can be accomplished by making β vanish. If β has a single zero,

β = β1(y − y0) +O(y − y0)2 , (5.21)

the metric (5.4) near y0 is proportional to

dy2

4(y − y0)
+ (y − y0)ds2

S2 , (5.22)

which in fact upon defining r =
√
y − y0 turns into

dr2 + r2ds2
S2 , (5.23)

which is the flat metric on R3. Hence if β has a single zero at y0 6= 0 the metric is regular.

One might wonder what happens if β has a double zero:

β = β2(y − y0)2 +O(y − y0)3 . (5.24)

In this case, (5.4) is proportional to dy2√
y−y0 +(y−y0)3/2ds2

S2 , which upon defining ρ = y−y0

turns into
1
√
ρ

(
dρ2 + ρ2ds2

S2

)
; (5.25)

we also have eA ∼ ρ1/4, eφ ∼ ρ3/4. This is obviously not a regular point, but it is the local

behavior appropriate for a D6 stack whose transverse directions are ρ and the S2.
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Higher-order zeros do not lead to anything of physical relevance, and in fact they would

not lead to solutions, as we will see later. However, given that we have obtained boundary

conditions corresponding to a regular point and to presence of a D6 stack, it is natural

to wonder whether we can find boundary conditions corresponding to presence of an O6.

This is realized when

β = β0 + β1/2

√
y − y0 +O(y − y0) ; (5.26)

in this case the metric is proportional to (y − y0)1/4
(
dy2

y−y0 + 16α2
0ds

2
S2

)
, with α0 ≡

β1/2
β0

.

With the definition ρ =
√
y − y0, this turns into

√
ρ
(
dρ2 + 4α2

0ds
2
S2

)
; (5.27)

moreover, eA ∼ ρ−1/4, eφ ∼ ρ−3/4. These are the appropriate behaviors for fields near the

beginning of an O6 hole: to see this, one can start from the flat space O6 metric, given by

ds2
⊥ = H1/2(dρ2 + ρ2ds2

S2), eA = H1/4, eφ ∝ H3/4, H = 1− ρ0
ρ , and expand around ρ = ρ0,

which is indeed the boundary of the O6 hole.

This concludes our study of the physically relevant boundary conditions for the

ODE (5.1); as it will turn out, these are the only ones which are actually realized in

its solutions. Later in this section we will turn to the task of finding such solutions.

5.4 Flux quantization, D8 branes

Before we look at explicit solutions, we will discuss flux quantization. We will also introduce

D8-branes in our construction, as was done in [8]. This subsection is in many ways similar

to [8, section 4.8], which the reader may want to consult for more details.

We will start with some preliminary comments about the B field. In (5.12) we expressed

it in terms of a closed two-form b. We will need this second term because the term F2
F0

in (5.12) will jump as we cross a D8 (since F0 will jump there, by definition). More precisely,

looking at F2 we see that only the term proportional to volS2 +3 cos θvolΣg jumps (since in

the other term an F0 cancels out). Thus we can limit ourselves to considering b of the form

b = b0(volS2 + 3 cos θvolΣg) , (5.28)

which is indeed closed (while volS2 = sin θdθ ∧Dψ would not be, because of the presence

of ρ). (5.12) now becomes

B =

(
b0 −

q5

F0

)
(volS2 + 3 cos θvolΣg) +

q5

3
x5e

A+φvolS2 . (5.29)

At the poles, for regularity we should have that what multiplies volS2 should go to zero.

However, more precisely B should be understood as a “connection on a gerbe”. Con-

cretely, this means that it is not necessarily a globally well-defined two-form. On a chart

intersection U ∩U ′, BU −BU ′ can be any closed two-form whose periods are integer multi-

ples of 4π2 (known as a “large gauge transformation”). This translates into the requirement

that the coefficient of volS2 in (5.29) should wind π× an integer number of times in going
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from the north to the south pole. Alternatively, using Stokes’ theorem, we see that the

integral of H between rN and rS (the positions of the two poles) is∫
M3

H =

∫
S2

∫ rS

rN

drH =

∫
S2

(B(rN)−B(rS)) ; (5.30)

thus
∫
M3

H will be an integer multiple of 4π2, in agreement with flux quantization.

After these comments on the NSNS flux H, let us now consider the RR fluxes. First of

all, the zero-form should satisfy F0 = n0
2π , n0 ∈ Z. For the higher forms, we should consider

F̃2 ≡ F2 −BF0 , F̃4 ≡ F4 −B ∧ F2 +
1

2
B ∧BF0 , (5.31)

which are d-closed (unlike the original F2 and F4, which in our notation are (d−H∧)-closed).

Flux quantization imposes that those should have integer periods. For the two-form we

simply have

F̃2 = −bF0 = −b0F0(volS2 + 3 cos θvolΣg) . (5.32)

Integrating this on the fiber S2 and imposing that it is of the form 2πn2, n2 ∈ Z, we find

b0 = − n2

2F0
= −πn2

n0
, (5.33)

just like in [8]. A gauge transformation will change b0 → b0 + kπ, and simultaneously

n2 → n2 − k, so that (5.33) remains satisfied.

Near the north and south pole it is convenient to work in a gauge where B is regular;

then
∫
F̃2 →

∫
F2, and n2 should be equal to the limit near the pole of

(
b0− q5

F0
+ q5

3 x5e
A+φ

)
,

the coefficient of volS2 in (5.29). For a regular point, n2 near the pole is zero, and both

q5 → 0 and q5x5e
A+φ → 0. For a stack of n2 D6-branes, q5x5e

A+φ → 0, and q5 → −n2
2 . In

section 5.3, we saw that presence of a D6 corresponds to a double zero in β, (5.24). The

condition we just saw will then discretize the parameter β2, giving

β2 =

(
4y0

n2

)2

. (5.34)

An O6 point is different: n2 = ±1 (depending on whether we are considering the north

or south pole), q5 → 0, but q5
3 x5e

A+φ is non zero, and will have to tend to − n2
2F0

. Again

in section 5.3 we saw that an O6 corresponds in our class of solutions to the presence of a

square root, (5.26). Flux quantization will then fix

β0 = (18y0)2 . (5.35)

The four-form F̃4 can now be written, after some manipulations, as

F̃4 =

(
3

F0

(
−q2

5 +
n2

2

4

)
cos θvolS2 +

1

3
sin2 θDψ ∧ dy

)
∧ volΣg . (5.36)

Using (5.2) we can also write F̃4 = dC̃3, where

C̃3 =
3

2F0

(
−q2

5 +
n2

2

4

)
sin2 θDψ ∧ volΣg . (5.37)
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If both poles are regular points, C̃3 is a regular form. Indeed, as we saw, at such a pole we

should have n2 = 0 and q5 → 0. So the coefficient
(
−q2

5 +
n2
2

4

)
will actually go to zero at

the pole. Now, using the fact that β has a single zero (5.21), from (5.6) and (5.8) we see

that q5 starts with a linear power in r. Hence we have

C̃3 ∼ r2 sin2 θDψ ∧ volΣg . (5.38)

Now, r2 sin2 θdψ, going from spherical to cartesian coordinates xi, i = 1, 2, 3, is proportional

to x1dx2 − x2dx1, and hence is regular. All in all, we conclude that F̃4 does not have any

non-zero periods, since it is exact. In presence of a D6 or O6 point, it is best to go

back to (5.36). The space is topologically an S3 fibration over Σg; standard topological

arguments tell us that its cohomology is just the product of that of S3 and that of Σg. As

such it would have no four-cycles. Thus so far flux quantization for F̃4 is not an issue.

We will now introduce D8-branes. We will consider them to be extended along all

directions except r. Their treatment is very similar to [8] and we will be brief. The

defining feature of a D8 stack is that the Romans mass F0 jumps as we go across them.

Let us call n0 and n′0 the flux integers on the two sides. Moreover, we will allow the D8’s to

have non-zero worldsheet flux, which can also be thought of as a smeared D6 charge. This

will make the flux integer for F̃2 jump as well; we will call n2 and n′2 its value on the two

sides. The “slope” µ ≡ ∆n2
∆n0
≡ n′2−n2

n′0−n0
needs to be an integer. With this notation, imposing

that (5.29) be continuous we find the condition

q5|D8 =
1

2

n′2n0 − n2n
′
0

n′0 − n0
=

1

2
(−n2 + µn0) =

1

2
(−n′2 + µn′0) . (5.39)

This is to be read as a condition fixing the D8’s position.

One might now also wonder whether the flux of F̃4 along Σg×S2 might jump between

D8’s, as does the integral of F̃2. But actually
∫
S2 cos θvolS2 = 0. So even in presence of

D8’s we need not worry about flux quantization for F̃4.

Crucially, (5.39) is exactly the same condition that was found for D8-branes in [8,

eq. (4.45)]. The function called q in that paper, which we will call q7 here, is not exactly

the same as our q5 defined in (5.8): indeed q7 ≡ 1
4e
A7−φ7

√
1− x2

7. However, using the

map (5.16), we see that the different overall factor is reabsorbed:6

q5 = q7 . (5.40)

So (5.39) fixes the D8’s at exactly the same position in an AdS5 solution and in its AdS7

solution.

Since (5.39) was found by imposing that B should be continuous, it looks easy to impose

the condition on flux quantization. As remarked earlier, by Stokes’ theorem we can relate

the integrality of H to the periodicity of the coefficient of volS2 in B. (This periodicity

was expressed visually in several figures in [8, 13], as a dashed green line.) However, in

6Actually, the condition that the system (5.15) be mapped to the similar system [8, eq. (4.17)] for AdS7

solutions only fixed the map (5.16) up to a constant. We fixed the constant so that (5.39) would look

exactly equal to [8, eq. (4.45)].
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presence of D8’s one might encounter a region where F0 = 0; generically such a region will

exist (although there are also “limiting cases” where it does not exist; see [13, section 4.2]).

In such a region, (5.12) (and hence (5.29)) cannot be used; we have to resort to (C.21).

This allows to write a general expression for the integral of H, as shown in [13, eq. (4.7)].

Since we are going to simplify that formula for AdS7 solutions, let us review it quickly

here. To simplify things a bit, one derives first an expression for the integral in the “north-

ern hemisphere”, between x7 = 1 and x7 = 0; it can be shown that x7 = 0 is in the

massless region, where F0 = 0. There might be many D8’s; let D8n be the one right before

the massless region, {n2,n, n0,n = 0} the flux parameters right after it, and {n2,n−1, n0,n−1}
the ones right before it. Then we can divide the integral into a contribution from the

massive region and one from the massless region:∫
north

H =

∫ D8n

rN

H +

∫ x=0

D8n

H

= 4π

[
q7

(
x7

4
eA7+φ7 − 1

F0,n−1

)
− n2,n−1

2F0,n−1
+

3

32

R3

n2,n

(
x7 −

x3
7

3

)]
D8n

= 4π

[
−πµn +

1

4
qx7e

A7+φ7 − 1

4
q7x7e

A7+φ7 3− x2
7

1− x2
7

]
D8n

= 4π

[
−πµn +

R3

16n2,n
x7

]
D8n

.

(5.41)

We have used that for the massless solution −8q7
eA7+φ7

1−x27
= −2 e2A7√

1−x27
= R3

n2
, where R is

a constant. After this simplification, and putting together the contribution from
∫

southH

from the “southern hemisphere”, we can write

N ≡ − 1

4π2

∫
H = (|µn|+ |µn+1|) +

1

4π
e2A(x=0)(|xn|+ |xn+1|) , (5.42)

where xn and xn+1 are the values of x7 at the branes D8n and D8n+1.7

To derive a similar expression for AdS5 solutions, we follow a similar logic. It proves

convenient to use from the very beginning (A7, x7, φ7) variables, which are related to

(A5, x5, φ5) variables via (5.16). We can use (5.29) and (C.21), the latter of which is

already expressed in terms of x7. Some factors in the computation change, but remark-

ably the result turns out to be exactly the same as in (5.42). As a consequence, if the H

flux quantization is satisfied for an AdS7 solution, it is also satisfied for an AdS5 solution,

and viceversa.

So the conclusion of this section is that the flux quantization conditions and the con-

straints fixing the D8-brane positions are all precisely mapped by (5.16), in such a way

that if they are satisfied for an AdS7 solution they are also automatically satisfied for an

AdS5 solution. This proves that the map (5.16) produces infinitely many AdS5 solutions.

5.5 The simplest massive solution

We will now start studying solutions to (5.1), and their associated physics. We have already

indicated in (5.2) how to solve it analytically. However, in this section we will warm up

7The µi and xi before the massless region are positive, while those after the massless region are negative.
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by a perturbative study, which we find instructive and which will allow us to isolate a

particularly nice and useful solution.

In section 5.3 we studied the boundary conditions for the ODE (5.1). We can now

proceed to study it in the neighborhood of such a solution. We will do so by assuming

analytic behavior around y0: β =
∑∞

k=1 βk(y − y0)k, by plugging this Taylor expansion

in (5.1), and solving order by order.

Already at order zero we find (
β1 −

72y2
0

F0

)
β2

1 = 0 . (5.43)

The first branch, β1 =
72y20
F0

, lets β have a single zero, which as we saw after (5.21) corre-

sponds to a regular point. The second branch, β1 = 0, makes β have a double zero, which

as we saw after (5.24) corresponds to a D6. In this section we will use the first branch,

leaving the second for section 5.6.

Continuing to solve (5.1) perturbatively after having set β1 =
72y20
F0

, we find a nice

surprise: the perturbative expansion stops after three iterations. This leads to a very

simple solution to (5.1):

β =
8

F0
(y − y0)(y + 2y0)2 . (5.44)

This has the desired single zero at y = y0, and it also has a double zero at y = −2y0,

signaling that M3 has a D6 stack there. These are the qualitative features one expects

from the solution in [8, section 5.2]; in that paper, that solution was argued to exist (along

with many others, which we shall discuss in due course) on numerical grounds — see in

particular figure 3 in that paper. It would also be possible to find (5.44) by finding the

general solution, and imposing the presence of a simple zero; we will see this in section 5.6.

(5.44) looks superficially very similar to (4.18). Taking c1 = −y2
0/4, we see that (4.18)

has two double zeros, at y = ±y0, corresponding to two D6 stacks. This is indeed correct

for that massless solution: the two D6 stacks are generated by the reduction from eleven

dimensions, in a similar way as in [8, section 5.1]. Notice also that the massless limit

of (5.44), on the other hand, does not exist, since F0 appears there in the denominator.

Now that we have obtained one solution of (5.44), we can pause to explore what the

resulting AdS5 solution looks like; moreover, using the map (5.16), we can also produce an

AdS7 solution which will indeed be the one found numerically in [8, section 5.2].

The conditions (5.9) give us two possibilities:

{y0 < 0, F0 > 0, y ∈ [y0,−2y0]} or {y0 > 0, F0 < 0, y ∈ [−2y0, y0]} . (5.45)

We will assume the first possibility. One can then write the metric and fields most conve-

niently in terms of

ỹ ≡ y

y0
, (5.46)

which then has to belong to [−2, 1]. We have

ds2
M5

= e2Ads2
Σg +

√
− y0

8F0

(
dỹ2

(1− ỹ)
√
ỹ + 2

+
4

9

(1− ỹ)(ỹ + 2)3/2

2− ỹ
ds2
S2

)
, (5.47)
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and

e4A = −2
y0

F0
(2 + ỹ) , e2φ =

√
− 1

2y0F 3
0

(ỹ + 2)3/2

2− ỹ
. (5.48)

We also need to implement flux quantization, which in this case is the statement that the

D6 stack at the ỹ = −2 point has an integer number n2 of D6-branes. This constraint

was discussed right below (5.33). From (5.8) and (5.44) we find q5 = 1
3

√
2F0(y − y0),

which implies

y0 = −3

8

n2
2

F0
. (5.49)

We did not replace this constraint in (5.47), as we did in (1.2), because later we will glue

pieces of it together with other metrics and with itself, and in that context the parameter

y0 will be fixed by flux quantization a bit differently.

The AdS7 solutions can now be found easily by applying the map (5.16), and in

particular its action on the metric, (5.17). The internal metric on M3 is

ds2
M3

=

√
− y0

6F0

(
dỹ2

(1− ỹ)
√
ỹ + 2

+
4

3

(1− ỹ)(ỹ + 2)3/2

8− 4ỹ − ỹ2
ds2
S2

)
, (5.50)

and

e4A = −
(

4

3

)3

2
y0

F0
(ỹ + 2) , e2φ =

√
− 6

y0F 3
0

(ỹ + 2)3/2

8− 4ỹ − ỹ2
. (5.51)

(5.50) and (5.51) give analytically the solution found numerically in [8, section 5.2]. The

flux F2 can be read off from the expression F2 = q(x74 F0e
A+φ − 1)volS2 in [8, eq. (4.42)]:

F2 =
k√
3

(1− ỹ)3/2(ỹ + 4)

8− 4ỹ − ỹ2
volS2 . (5.52)

For both the AdS5 and AdS7 solutions, from (5.49) we can see that, making n2 large,

curvature and string coupling become as small as one wishes. This guarantees that the

supergravity approximation is applicable. Similar limits can be taken for the solutions that

we will present later. (This was shown in general in [13, section 4.1].)

5.6 General massive solution

Let us now go back to (5.43) and see what happens if we use the branch β1 = 0. This

means that β has a double zero, which corresponds to presence of a D6 stack at y = −2y0.

The perturbative expansion for (5.1) now does not truncate anymore. It is possible

to go to higher order, guess an expression for the k-th term βk in the Taylor expansion

β =
∑∞

k=1 βk(y − y0)k, and resum this guess. (This is in fact the way we originally

proceeded.) At this point it is of course much easier to use the trick explained below (5.2),

and find the general solution directly. Assuming y0 > 0, it reads

β =
y3

0

b32F0

(√
ŷ − 6

)2 (
ŷ + 6

√
ŷ + 6b2 − 72

)2
, (5.53)
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where

ŷ ≡ 2b2

(
y

y0
− 1

)
+ 36 , b2 ≡

F0

y0
β2 . (5.54)

This solution now depends on the two parameters y0 and b2, rather than just one as (5.44),

and we expect it to be the most general solution to (5.1). To see whether this is true, let

us analyze its features and compare them to what we expect from the qualitative study

in [8, section 5.2].

(5.53) has zeros in ŷ = 36 (which corresponds to y = y0) and for b2 < 12 also in

ŷ =
√
−3 +

√
81− 6b2. Also, at ŷ = 0 it has a point where it behaves as β ∼ β0+

√
ŷ+O(ŷ),

which up to translation is the same as in (5.26), which corresponds to an O6 point. Taking

also into account the constraints in (5.9), we find two possibilities, and one special case

between them.

• If b2 < 12, the solution is defined in the interval ŷ ∈
[√
−3 +

√
81− 6b2, 36

]
; there

are two double zeros at both extrema. This represents a solution with two D6 stacks

at both ends, but where the numbers of D6s are not the same on the two sides (unlike

for (4.18)). Under the map (5.16) to AdS7, it becomes a solution that was briefly

mentioned at the end of [8, section 5.2]; in terms of the graph in figure 3(b) in that

paper, its path would come from below and miss the green dot on the top side from

the left, so as to end up in a D6 asymptotics on the top side as well.

• If b2 > 12, the solution is defined for ŷ ∈ [0, 36]; there is a double zero at ŷ = 36, and

an O6 singularity (see (5.26)) at ŷ = 0. This represents a solution with one D6 stack

at one end, and one O6 at the other extremum. Under the map to AdS7, it becomes

another solution that was briefly mentioned in [8, section 5.2]; in terms of the graph

in figure 3(b) in that paper, its path would come from below and miss the green dot

on the top side from the right, so as to end up in an O6 asymptotics on the top side.

• In the limiting case, b2 = 12, the solution is again defined for ŷ ∈ [0, 36]; under the

map to AdS7 we expect to find the case where (again referring to [8, figure 3(b)])

we hit the green dot at the top, which should correspond to having a regular point.

Indeed in this case (5.53) reduces to

β =
y3

0

1728F0
ŷ(ŷ − 36)2 , (5.55)

which has a double zero in ŷ = 36 and a single zero in ŷ = 0; it is essentially (5.44).

It would have been possible to obtain (5.44) this way, but we chose to highlight it in

a subsection by itself because of its simplicity.

So the solution (5.53) has the features we expected from the qualitative analysis in [8,

section 5.2].
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We record also here some data of the corresponding solutions. For the AdS5 solution,

the metric, warping and dilaton read

ds2
M5

= e2Ads2
Σg +

y
5/4
0 dŷ2

4(b52F
3
0 ŷ

3β)1/4
+

(b72F0ŷ)1/4

18y
7/4
0

β3/4ds2
S2

2(b2 − 18)2 + 18(b2 − 12)
√
ŷ − (b2 − 18)ŷ

,

e8A =
b2β

F0y0ŷ
, e8φ =

b11
2 β

3

16F 3
0 y

11
0 ŷ

3
(
2(b2−18)2+18(b2−12)

√
ŷ − (b2−18)ŷ

)4 . (5.56)

The AdS7 solution reads

ds2
M3

=
y

5/4
0 dŷ2

4(b52F
3
0 ŷ

3β)1/4
+

(b72F0ŷ)1/4

3y
7/4
0

β3/4ds2
S2

12(b2 − 18)2 + 144(b2 − 12)
√
ŷ − 12(b2 − 18)ŷ − ŷ2

,

e8A =
212b2β

36F0y0ŷ
, e8φ =

144b11
2 β

3

F 3
0 y

11
0 ŷ

3
(
−12(b2−18)2 − 144(b2−12)

√
ŷ+12(b2−18)ŷ+ŷ2

)4 .
(5.57)

Finally, flux quantization can be taken into account by using (5.33), (5.34) and the

expansion of β around its zeros (or around its zero and its square root point, for the O6–

D6 case). We obtain two equations, which discretize the two parameters b2 and y0. The

expressions are not particularly inspiring (especially in the D6–D6 case) and we will not

give them here.

5.7 Some solutions with D8’s

We will now show two simple examples of solutions with D8-branes. These will be the ones

studied numerically in [8, section 5.3]; here we will give their analytic expressions. We will

simply have to piece together solutions we have already studied; all we will have to work

out is the position of the D8’s.

The first example is a solution with only one D8 stack. This can be obtained by gluing

two metrics of the type (5.47). We will assume

y0 < 0 , F0 > 0 ; y′0 > 0 , F ′0 < 0 . (5.58)

Following the logic in [8, section 5.3], the flux quantization conditions can be satisfied

by taking for example the two-form flux integer after the D8 stack to vanish, n′2 = 0,

n2 = µ(n′0 − n0), µ ∈ Z, and

n′0 = n0

(
1− N

µ

)
, (5.59)

where N = 1
4π2

∫
H is the NSNS flux integer. (Recall that F0 = n0

2π , and similarly for F ′0.)

As usual the metric can be written as ds2
M5

= e2Ads2
Σg

+ ds2
M3

, and putting together two
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copies of (5.47) we can write8

ds2
M3

=



1√
8F0

(
dy2

(y − y0)
√
−2y0 − y

+
4

9

(y − y0)(−2y0 − y)3/2

−y0(y − 2y0)
ds2
S2

)
, y0 < y < yD8 ;

1√
−8F ′0

(
dy2

(y′0 − y)
√

2y′0 + y
+

4

9

(y′0 − y)(2y′0 + y)3/2

y′0(2y′0 − y)
ds2
S2

)
, yD8 < y < y′0 .

(5.60)

We reverted to using y rather than ŷ, so as to be able to use the same coordinate before and

after the D8 stack. Imposing that A and φ (or, equivalently, that β and β′) be continuous

across the D8 stack, we get

y0 =
1

2

2F0 − F ′0
F0 + F ′0

yD8 , y′0 =
1

2

2F ′0 − F0

F0 + F ′0
yD8 . (5.61)

We also have to impose (5.39), which fixes

yD8 = y0 +
9(F ′0)2n2

2

8F0(F0 − F ′0)2
, (5.62)

which together with (5.61) and (5.59) gives

y0 = −3

2
F0π

2(N2 − µ2) , y′0 =
3

2
F0π

2(N − µ)(2N − µ) , yD8 = 3F0π
2(N − 2µ)(N − µ) .

(5.63)

One can also obtain the corresponding AdS7 solution. This can be done using the

map (5.19) on (5.60). Alternatively, we can just write one copy of (5.50) for y0 < y < yD8,

and a second copy of (5.50), formally obtained by y → −y, y0 → −y′0, F0 → −F ′0. This

provides the analytic expression of the solution in [8, figure 4].

We can also consider a configuration with two D8 stacks. We will take it to by sym-

metric, in the sense that the flux integers before the first D8 stack will be (n0, 0), between

the two stacks (0, n2 = −k < 0), and after the second stack (−n0, 0). This corresponds

to [8, figure 5]. Again we will assume y0 < 0; the positions of the two D8 stacks will be

yD8 < 0 and yD8′ = −yD8 > 0. We will give only the AdS7 internal metric:

ds2
M3

=



1√
6F0

(
dy2

(y − y0)
√
−2y0 − y

+
4

3

(y − y0)(−2y0 − y)3/2

8y2
0 − 4yy0 − y2

ds2
S2

)
, y0 < y < yD8 ;

244R6dy2 + (92R6 − 322y2)2ds2
S2

3 · 65(92R6 − 322y2)1/2
, yD8 < y < −yD8 ;

1√
6F0

(
dy2

(−y0−y)
√
−2y0+y

+
4

3

(−y0−y)(−2y0+y)3/2

8y0+4yy0−y2
ds2
S2

)
−yD8 < y < −y0 ;

(5.64)

8The sign differences between the expression before and after the D8 have to do with the simplification

of factors involving
√
F 2
0 = |F0| from applying (5.7) to (5.44).
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the metric in the middle region is the known massless metric in [8, eq. (5.4)], with the

change of coordinate (C.20).

We now have three unknowns: R, y0, yD8. Continuity of β and β′ this time only

imposes one condition; we then have (5.39) and the condition (5.42). We get

y0 = −9

4
kπ(N − µ) , yD8 = −9

4
kπ(N − 2µ) , R6 =

64

3
k2π2(3N2 − 4µ2) , (5.65)

where in this case µ = k
n0

. Notice that the in this case the bound in [13, eq. (4.10)] (which

can also be found by (5.42)) implies N > 2µ.

It would now be possible to produce solutions with a larger number of D8’s. It is in fact

possible to introduce an arbitrary number of them, although there are certain constraints

on their numbers and their D6 charges [13, section 4]. The most general solution can be

labeled by the choice of two Young diagrams; there is also a one-to-one correspondence

with the brane configurations in [14, 15]. One can in fact think of the AdS7 solutions

as a particular near-horizon limit of the brane configurations. For more details, see [13].

For these more general solutions, we expect to have to glue together not only pieces of

the solution in subsection 5.5 and of the massless solution, but also pieces of the more

complicated solution in 5.6.

5.8 Field theory interpretation

In this section we have found infinitely many new AdS5 solutions in massive IIA, and

we have established that they are in one-to-one correspondence with the AdS7 solutions

of [8, 13].

It is easy to guess the field theory interpretation of this correspondence. Recall first

the Maldacena-Núñez N = 2 solutions [5]. The original AdS7×S4 solution of M-theory has

an SO(5) R-symmetry; when one compactifies on a Riemann surface Σg, one “mixes” the

SO(2) of local transformations on Σg with an SO(2) ⊂ SO(5) subgroup; the commutant

SO(2)×SO(3)∼=U(2) remains as the R-symmetry of the resulting N = 2 CFT4. This is

reflected in the form of the metric of the S4, that gets distorted (except for the directions

protected by the R-symmetry).

In similar N = 1 solutions [5, 7], the SO(2) is embedded in SO(5) in a more intricate

way, so that its commutant is a U(1), which is indeed the R-symmetry of an N = 1 theory.

For us, the CFT6 has only (1, 0) supersymmetry, and thus its R-symmetry is already

only SU(2). The twisting is very similar to the usual one in [5]: it is signaled by the fact

that the ψ coordinate is fibered over the Riemann surface Σg.

When we mix this with the SO(2) of local transformations on Σg, the commutant is

only a U(1). So in principle there is no symmetry protecting the shape of the internal S2

in the AdS7 solutions; indeed the metric (5.4) does not have SO(3) isometry, because the

ψ direction is fibered over Σg. What is a bit surprising is that the breaking is not more

severe: (5.5) might have become considerably more complicated, with sin θ for example

being replaced by a different function. Likewise, in the fluxes, one can see that there is no

SO(3) symmetry: the cos θ in front of volΣg , for example, breaks it. Still, there are various

nice volS2 terms which were not guaranteed to appear.
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In any case, we interpret our solutions as the twisted compactification of the CFT6 dual

to the AdS7 solutions in [8, 13]. Recently, there has been a lot of progress in understanding

such compactifications for the (2, 0) theories [6, 7, 30], and it would be very interesting to

extend those results to our AdS5 solutions. Here, we will limit ourselves to pointing out a

couple of preliminary results about the number of degrees of freedom.

A common way of estimating the number of degrees of freedom using holography in

any dimension is to introduce a cut-off in AdS, and estimate the Bekenstein-Hawking

entropy (see for example [33, section 3.1.3]). This leads to
R5

AdS7
GN,7

in AdS7, and to
R3

AdS5
GN,5

in

AdS5, where GN,d is Newton’s constant in d dimensions. The latter can be computed as
1
g2s

vol10−d. In a warped compactification with non-constant dilaton, both RAdS and gs are

non-constant, and should be integrated over the internal space. In our case, for AdS7 this

leads to

F0,6 ≡
∫
M3

e5A7−2φ7vol3 (5.66)

and for AdS5 to F0,4 ≡
∫
M5

e5A5−2φ5vol5. These can be thought of as the coefficient in

the thermal partition function, F = F0,dV T
d, where V is the volume of space and T is

temperature. These computations however are basically the same for the coefficients in the

Weyl anomaly, at least at leading order (i.e. in the supergravity approximation).

As a consequence of our map (5.16), F0,6 and F0,4 are related. Taking into account

the transformation of the volume form according to (5.17), we find

F0,4 =

(
3

4

)4

F0,6Vol(Σg) . (5.67)

The volume of Σg can be easily computed using Gauss-Bonnet and the fact that its scalar

curvature equals −6: we get

Vol(Σg) =
4

3
π(g − 1) . (5.68)

So the ratio of degrees of fredom in four and six dimensions is universal, in that it depends

only on g and not on the precise (1, 0) theory we are considering in our class. This is

reminiscent of what happens for compactifications of the (2, 0) theory; see e.g. [6, eq. (2.8)],

or [7, eq. (2.22)].

We have not computed F0,6 in full generality for the (1, 0) theories. This would now

be possible in principle, since the analytic expressions are now known. One first example

is the solution in section 5.5. The corresponding brane configuration according to the

identification in [13] consists in k D6’s ending on N = k
n0

NS5-branes; see figure 1a.

We get

F0,6 =
512

45
k2π4N3 , (5.69)

which reassuringly goes like N3. (By way of comparison, for the massless case one gets

F0,6 = 128
3 k2π4N3.)

We also computed F0,6 for the solution (5.64), which has two D8’s and a massless

region between them. The corresponding brane configuration would be N NS5-branes in

the middle with k = µn0 D6’s sticking out of them, ending on n0 D8-branes both on the
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(a) (b)

Figure 1. Brane configurations for two sample theories. The circles represent stacks of N NS5-

branes; the horizontal lines represent D6-branes; the vertical lines represent D8-branes. In the

second case, on each side we have n0 = 2 D8-branes; |µ| = 3 D6-branes end on each, for a total of

k = n0|µ| = 6.

left and on the right; see figure 1b. This case was considered in [13, section 5], where

approximate expressions for F0,6 were computed, using perturbation theory around the

massless limit. Using (5.64) we can now obtain the exact result:

F0,6 =
128

3
k2π4

(
N3 − 4Nµ2 +

16

5
µ3

)
. (5.70)

This agrees with [13, section 5], but is now exact. Recall that µ = k
n0

; since this number

can be large, the second and third term are also large, and are not competing with stringy

corrections. Using (5.67), and comparing with the (2, 0) theory to fix the proportionality

factors, we get that for the CFT4 theory a = c = 1
3(g − 1)

(
N3 − 4Nµ2 + 16

5 µ
3
)
. Stringy

corrections will modify this result with terms linear in N and probably in µ.

6 Conclusions

We have classified supersymmetric AdS5 ×M5 solutions of massive type IIA supergravity,

and we have found a large class of new analytic solutions.

The general classification, obtained in section 3, is summarized in section 3.4. We

reduced the supersymmetry equations to six PDE’s. A solution to this system completely

determines the bosonic fields — metric, dilaton, and fluxes. The geometry of M5 is given

by a fibration of a three-dimensional manifold M3 over a two-dimensional space C.
We found an Ansatz that makes the PDE system solvable. As described in section 4, it

consists in relating the metric on C to the warping function A. We recover in this way several

known massless solutions: the BBBW [7, 26], Maldacena-Núñez [5], and INST [27] solu-

tions. More interestingly, we find new analytic solutions. One, described in section 4.3.1, is

unfortunately non-compact. Another class, however, is compact and globally well-defined.

This new class, analyzed in section 5, consists of infinitely many new solutions, which

preserve eight supercharges in five dimensions and are in one-to-one correspondence with

the AdS7 × S3 type IIA backgrounds classified in [8]. We have explicitly described the

map between the former and the latter. The geometry of the fibre M3 inside M5 is a

certain modification of the “distorted” S3 of the AdS7 compactifications, whereas the base

C is a Riemann surface with constant negative curvature and genus g > 1. An S2 inside
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M3 is twisted over C, breaking the SU(2)-isometry of M3
∼= S3 to U(1); this bears out

the field-theoretic expectation of having a U(1) R-symmetry for the dual four-dimensional

N = 1 SCFT.

Importantly, we have been able to find analytic expressions for all these AdS5 solu-

tions. Then, by means of the aforementioned one-to-one correspondence, we have obtained

analytic versions of all the AdS7 solutions in [8] (which were previously known only nu-

merically). Thanks to the analytic expressions for the fields on the gravity side, we have

computed explicitly the free energy for some examples of four-dimensional N = 1, and

six-dimensional N = (1, 0) SCFT’s at large N (using the AdS/CFT dictionary). It would

be very interesting to find a field theory description of these theories, perhaps along the

lines of [30].
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A Supersymmetry variations and the Killing vector

Setting to zero the type IIA supersymmetry variations (of gravitinos and dilatinos) yields

the following set of equations9

0 =

(
∇M +

1

4
HM

)
ε1 +

eφ

16
λ(F )ΓM ε2 , (A.1a)

0 =

(
∇M −

1

4
HM

)
ε2 +

eφ

16
F ΓM ε1 , (A.1b)

0 =

(
∇− ∂φ+

1

4
H

)
ε1 , (A.1c)

0 =

(
∇− ∂φ− 1

4
H

)
ε1 , (A.1d)

where suppressed indices are contracted with antisymmetric products of gamma matrices

and ε1, ε2 are Spin(1, 9) Majorana-Weyl spinors of opposite chirality.

9The first two equations follow from setting the gravitino variation δψM to zero, while the last two

equations follow from ΓMδψM − δλ = 0 where λ is the dilatino.
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We wish to obtain a set of differential and algebraic equations for the Spin(5) spinors

η1, η2 and so we decompose the the generators of Cliff(1, 9) as

Γµ = eAγ(1,4)
µ ⊗ 1⊗ σ3 Γi = 1⊗ γ(5)

m ⊗ σ1 , (A.2)

where µ = 0, . . . , 4, m = 1, . . . , 5 and σ1 and σ3 are the Pauli matrices; γ
(1,4)
µ generate

Cliff(1, 4) and γ
(5)
m Cliff(5). Accordingly, the chirality matrix Γ11 and the intertwiner B10

relating ΓM and Γ∗M , are decomposed as

Γ11 = 1⊗ 1⊗ σ2 , B10 = B1,4 ⊗B5 ⊗ σ1 . (A.3)

Furthermore, the supersymmetry parameters ε1, ε2 split as

ε1 = (ζ ⊗ η1 + ζc ⊗ ηc1)⊗ θ , (A.4a)

ε2 = (ζ ⊗ η2 + ζc ⊗ ηc2)⊗ θ∗ , (A.4b)

where ηc1,2 = B5η
∗
1,2 and ζc = B1,4ζ

∗. ζ is a Spin(1, 4) spinor obeying the AdS5 Killing

spinor equation

∇µζ =
1

2
γµζ , (A.5)

while θ obeys σ2θ = θ and σ1θ = θ∗.

Applying the above decomposition, the equations (A.1) become

0 =

(
∇i +

1

4
Hi

)
η1 +

eφ

16
λ(F )γ(5)

m η2 , (A.6a)

0 =

(
∇i −

1

4
Hi

)
η2 +

eφ

16
F γ(5)

m η1 , (A.6b)

0 =

(
i

2
e−A − 1

2
∂A

)
η1 −

eφ

16
λ(F )η2 , (A.6c)

0 =

(
i

2
e−A +

1

2
∂A

)
η2 +

eφ

16
Fη1 , (A.6d)

0 =

(
5i

2
e−A −∇− 5

2
∂A+ ∂φ− 1

4
H

)
η1 , (A.6e)

0 =

(
5i

2
e−A +∇+

5

2
∂A− ∂φ− 1

4
H

)
η2 . (A.6f)

Using equations (A.6a) and (A.6b) it is straightforward to show that ξ ≡ 1
2(η†1γ

mη2 −
η†2γ

mη2)∂m satisfies

∇(m ξn) = 0 , (A.7)

i.e. that ξ is a Killing vector, while equations (A.6c) and (A.6d) yield LξA = 0. That Lξφ =

0 follows from the algebraic equations obtained from (A.6e) and (A.6f) afer eliminating ∇,

using (A.6a) and (A.6b).10

10These conditions also follow directly from setting the dilatino variation δλ to zero.
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B A simple Ansatz

We assume that φ and A are functions of y only and that gC is independent of x i.e. f1 = 0.

From equation (3.17b) it follows that a2 = 0. The metric becomes

ds2
M5

= ds2
C +

1

9
e2Ab2Dψ2 + e−8A+2φdx2 +

e−4A+2φ

b2
dy2 , (B.1)

where now b2 = 1 − a2
1. Equation (3.18) is satisfied trivially while equations (3.19a)

and (3.19b) yield ∂xρ = ∂yρ = 0 (in the present Ansatz ρ0 = ρ). A(y) and φ(y) are

subject to the differential equations coming from the Bianchi identities of F0 and F2, and

equation (3.25b),

∂y`+ 2f2` = 0 . (B.2)

` is determined by (3.24) and (3.31) to be ` = 6e−2A + 12e−2Ay(∂yA− f2).

We first look at the Bianchi identity of F2; it yields:

F0(∂yA− f2) = 0 , (B.3)

so either F0 = 0 or f2 = ∂yA. We consider the two cases F0 = 0 and F0 6= 0 separately.

B.1 F0 = 0

In this case, from the expression (3.28a) for F0 we conclude that ∂yA = 0 i.e. A is con-

stant which without loss of generality we set to zero. F2 is zero, as can be seen from its

expression (3.28c). We thus need to solve equation (B.2). This yields the ODE

∂yf2 + 2f2
2 = 0 , (B.4)

which is solved by

f2 =
1

2

c

cy − k
, c, k = const. . (B.5)

Recalling the definition (3.17c) of f2, equation (B.5) is in turn solved for

e2φ =
k − cy

2(c1 − ky2)
, c1 = const. . (B.6)

Equations (3.16) are then solved by

u = eiψ
√

2(k − cy) û(x1, x2) . (B.7)

Substituting (B.5) and (B.7) in (3.31) yields

d2ρ = 12k volΣ , (B.8)

where Σ is the surface spanned by û. Its Gaussian curvature is thus 12k.

This solution was first discovered by Gauntlett, Martelli, Sparks and Waldram [3] (see

appendix C.1), and it is the T-dual of the AdS5 × Y p,q solution in type IIB supergravity.
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B.2 F0 6= 0

In this case f2 = ∂yA; equations (3.16) are solved by

u = eiψeA û(x1, x2) . (B.9)

` = 6e−2A obeys equation (B.2) automatically and

d2ρ = 6volΣ . (B.10)

Substituting f2 in (3.17b) gives

e4A = − 1

12y
∂yβ , (B.11)

where β(y) ≡ e10A−2φb2. The Bianchi identity of F0 becomes then an ODE for ε:

e12AF0 = −β ∂ye4A . (B.12)

The situation appears promising: we have reduced the problem to the ODE (B.12).

However, as we will now see, one cannot obtain physical compact solutions to this system.

Let us introduce the coordinate ỹ by dỹ = e−2A+φ

b dy, so that the metric (B.1) contains

dỹ2. (B.11) now reads

F0 = 16e−φb2∂ỹA . (B.13)

In order to obtain a compact solution, we should have the factor in front of the S1 in (B.1),

namely eAb, go to zero for some y = y0. For a regular point, this is impossible: since A and

φ should go to constant at y0, we should have b go to zero; but from (B.13) we see that this

is in contradiction with F0 6= 0. We might think of having a singularity corresponding to a

brane, but since only an S1 would shrink at y = y0, such a brane would be codimension-2;

there are no such objects in IIA supergravity.

C Recovered solutions

In this appendix we discuss a set of known, supersymmetric AdS5 ×M5 solutions of type

IIA supergravity with zero Romans mass, which we recovered in our analysis. Two of them

descend from AdS5 solutions of M-theory, whose reduction to ten dimensions we present.

We focus on the geometry of the solutions, as the fluxes are determined by it. We aim to

adhere to the notation of the original papers; whenever there is overlap with notation used

in the main body of the paper, we add a hatˆ.

There are more supersymmetric AdS5 solutions in IIA [29, 34–36] that should be par-

ticular cases of our general classification of section 3. These are outside the compactification

Ansatz of section 4.
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C.1 The Gauntlett-Martelli-Sparks-Waldram (GMSW) solution

The metric on M5 reads

ds2
M5

=
k − cy
6m2

ds2
Ck

+ e−6λ sec2 ζ +
1

9m2
cos2 ζDψ2 + e−6λdx2

3 , (C.1)

where

e6λ =
2m2(â− ky2)

k − cy
, cos2 ζ =

â− 3ky2 + 2cy2

â− ky2
. (C.2)

The dilaton is given by e−2φ = e6λ.

â, c are constants, k = 0,±1 and m−1 is the radius of AdS5. Ck is a Riemann surface

of unit radius; it is a sphere S2, a torus T 2 or a hyperbolic space H2 for k = 1, 0 or −1

respectively. The GMSW solution is the reduction to ten dimensions of an AdS5 ×M6

solution of M-theory, where M6 is a fibration of S2 over Ck×T 2 and the reduction is along

an S1 ∈ T 2.

The solution is the one recovered in subsection B.1. The constants c and k are identified

with the corresponding of B.1, while â = c1. The coordinate x3 is related to x via x3 = −x;

a minus is introduced for matching the expressions of the fluxes. Finally, in B.1 m = 1.

C.2 The Itsios-Núñez-Sfetsos-Thompson (INST) solution

The INST solution [27] was discovered by nonabelian T-dualizing the AdS5×T 1,1 solution

in type IIB supergravity. The metric on M5 reads

ds2
M5

= λ2
1ds

2
S2 +

λ2
2λ

2

∆
x2

1Dψ
2 +

1

∆

[
(x2

1 +λ2λ2
2)dx2

1 + (x2
2 +λ4

2)dx2
2 + 2x1x2dx1dx2

]
, (C.3)

where

∆ = λ2
2x

2
1 + λ2(x2

2 + λ4
2) , λ2

1 = λ2
2 =

1

6
, λ2 =

1

9
, (C.4)

and

ds2
S2 = dθ2

1 + sin2 θ1φ
2
1 , ρ = cos θ1dφ1 . (C.5)

The dilaton is given by e−2φ = ∆.

The INST solution fits into the c1 = 0 branch of the first case of subsection 4.2 for

c3 = −12 (achieved by setting the constant warp factor to zero) and ε = c2 = λλ2
2. Σg is

S2 of radius 1√
6
. The coordinate transformation relating x1, x2 to x, y is:

x2
1 = −36y2 + 36εx+ 6c4 − 6ε2 , x2 = 6y . (C.6)

C.3 The Maldacena-Núñez solution

We write the metric of the N =1 Maldacena-Núñez solution [5] in the form presented in [3]:

e−2λds2
11 = ds2

AdS5
+

1

3
ds2
H2 + e−6λ sec2 ζdy2 +

1

9m2
cos2 ζ

(
(dψ + P̃ )2 + ds2

S2

)
, (C.7)

where

e6λ = â+ y2 , cos2 ζ =
â− 3y2

â+ y2
, (C.8)
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and m−1 is the radius of AdS5. The metrics on H2 and S2 are

ds2
H2 =

dX2 + dY 2

Y 2
, ds2

S2 = dθ2 + cos2 θdν2 , (C.9)

while the connection of the fibration of ψ is

P̃ = − cos θdν − dX

Y
. (C.10)

C.3.1 Reduction to ten dimensions

We reduce the Maldacena-Núñez solution to ten dimensions, along ν. In order to do so,

we rewrite the part of ds2
M6

involving dψ or dν as

1

9m2
cos2 ζ

[
(dν +A1)2 + sin2 θDψ2

]
, (C.11)

where

A1 = − cos θDψ , ρ = −dX
Y

. (C.12)

Reducing along dν yields then

ds2
10 = e2Ads2

AdS5
+ ds2

M5
, (C.13)

where

e−2Ads2
M5

=
1

3
ds2
H2 + e−6A+2φ sec2 ζdy2 +

1

9m2
cos2 ζ

(
dθ2 + sin2 θDψ2

)
. (C.14)

Furthermore,

φ =
3

4
log

(
1

9m2
e2λ cos2 ζ

)
, A = λ+

1

3
φ . (C.15)

The reduced Maldacena-Núñez solution fits into the second case of section 4.2, for

ε = 0 (achieved by by a x→ x+ ε
3 shift), c1 = − â

12 and c2 = 1. Σg is H2 of radius 1√
3
. In

our conventions m = 1. The coordinate transformation relating x to y, θ is:

x = −1

9
(â− 3y2) cos θ . (C.16)

C.3.2 AdS7 variables

For our discussion in the main text, it is useful to also include two parameters R and k

which are usually set to one. If we use the slightly awkward-looking

β =
4

k2

(
y2 − 34

210
R6

)2

(C.17)

the corresponding solution, using (5.4) and (5.7), is

ds2
M5

= e2Ads2
σg +

1

33/2k

64dy2√
92R6 − 322y2

+
(92R6 − 322y2)3/2

16(35R6 + 322y2)
, (C.18)

e4A =
92R6 − 322y2

3 · 28k2
, e4φ =

(92R6 − 322y2)3

2 · 63k6(35R6 + 322y2)2
. (C.19)
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These again look messy, but upon using the map (5.16) and defining an angle α via

cosα ≡ 32

9R3
y (C.20)

turn into the expressions for the metric, A and φ of the massless AdS7 solution, obtained

by reducing AdS7 × S4/Zk to IIA supergravity: see [8, section 5.1].

In the main text we will need an expression for the B field of the AdS5 solution. We

give it directly in terms of x7, which is related to (5.14) via (5.16):

B =
R3

48k
x7

(5− x2
7)

1 + 1
3x

2
7

volS2 +
1√
3

x7√
1− x2

7

cos θvolΣg . (C.21)

This is similar to the one given for the AdS7 solution in [8, eq. (5.8)].

C.4 The Bah-Beem-Bobev-Wecht (BBBW) solution

The metric of the BBBW [7] solution is

ds2
11 = e2λ

[
ds2

AdS5
+ e2ν+2Â(x1,x1)

(
dx2

1 + dx2
2

)]
+ e−4λds2

M4
, (C.22)

where ds2
AdS5

is the unit radius metric on AdS5, and Â(x1, x2) is the conformal factor of

the constant curvature metric on the Riemann surface Σ̂g of genus g, obeying

(∂2
x1 + ∂2

x2)Â+ κe2Â = 0 . (C.23)

The constant κ is the Gaussian curvature of the Riemann surface which is set to 1, 0 or −1

for the sphere S2, the torus T 2 or a hyperbolic surface respectively. ν is a real constant.

The metric ds2
M4

is

ds2
M4

=

(
1 +

4y2

qf

)
dy2 +

qf

k

(
dq +

12yk

qf
dy

)2

+
â2

1

4

fk

q
(dχ+ V )2 +

qf

9
(dψ + ρ̂)2 . (C.24)

The metric functions are

e6λ = qf + 4y2 , f(y) ≡ 1 + 6
â2

â1
y2 , k(q) ≡ â2

â1
q2 + q − 1

36
, (C.25)

while the one-forms which determine the fibration of the ψ and χ directions are given by

ρ̂ = (2− 2g)V − 1

2

(
â2 +

â1

2q

)
(dχ+ V ) , dV =

κ

2− 2g
e2Âdx1 ∧ dx2 . (C.26)

The constants â1, â2 are fixed as

â1 ≡
2(2− 2g)e2ν

κ
, â2 ≡ 2(2− 2g)

(
1− 6e2ν

κ

)
. (C.27)
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C.4.1 Reduction to ten dimensions

We reduce the BBBW solution to ten dimensions, along χ. In order to do so, we rewrite

the part of ds2
M4

involving dψ or dχ as

h2
1(dχ+A1)2 + h2

2Dψ
2 , (C.28)

where

h2
1(y, q) ≡ â2

1

4

fk

q
+

1

4

qf

9

(
â2 +

â1

2q

)2

, (C.29a)

h2
2(y, q) ≡ qf

9
− 1

4

(
qf

9

)2(
â2 +

â1

2q

)2

, (C.29b)

and

ρ = (2− 2g)V , A1 = V − qf

9

1

2

(
â2 +

â1

2q

)
h−1

1 Dψ . (C.30)

Reducing along dχ yields then

ds2
10 = e2A

[
ds2

AdS5
+ e2ν+2Â(dx2

1 + dx2
2)
]

+ ds2
M3

, (C.31)

where

e4A−2φds2
M3

=

(
1 +

4y2

qf

)
dy2 +

qf

k

(
dq +

12yk

qf
dy

)2

+ h2
2Dψ

2 . (C.32)

Furthermore,

φ =
3

2
(log h1 − 2λ) , A =

1

2
log h1 . (C.33)

The reduced BBBW solution fits into the generic branch of the first case of subsection 4.2

for c1 = 9â1+â2
108 , c2 = (9â1+â2)â2

18â1
and c = â2

3â1
. The coordinate transformation relating x to

y, q is:

x = − â1(18â1 + â2 + 18â2q)

36â2

(
1 + 6

â2

â1
y2

)
. (C.34)

Certain generalizations of the BBBW class of solutions have also appeared [37, 38]. It

would be interesting to reduce these to solutions of IIA supergravity and verify that they

fit in our classification of section 3.
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