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Abstract This paper develops a methodology to aggregate signals in a network regarding
some hidden state of the world. We argue that focusing on edges around hubs will under
certain circumstances amplify the faint signals disseminating in a network, allowing for
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more efficient detection of that hidden state. We apply this method to detecting emergencies
in mobile phone data, demonstrating that under a broad range of cases and a constraint in
how many edges can be observed at a time, focusing on the egocentric networks around
key hubs will be more effective than sampling random edges. We support this conclusion
analytically, through simulations, and with analysis of a dataset containing the call log data
from a major mobile carrier in a European nation.

Keywords Network science · Mobile phone networks

1 Introduction

Imagine a scenario where some set of individuals witness an extraordinary event which
impels them to communicate regarding that event to other individuals, who in turn will
communicate with yet others. In this scenario, it is possible for an external observer to
witness the fact of communication, but not the content. How might that observer effectively
make the inference that an extraordinary event has occurred?

This is in fact a plausible scenario, with the existence of communication systems (most
notably phones) where timing and volume of traffic is observed, but (typically) not content.
Mobile phones are particularly notable in this regard, because of how pervasive they are.
Here we build on work examining detection of anomalous events in networks [7], but with
the focus on how to aggregate those signals in a computationally efficient fashion. That is,
if one cannot observe all nodes and edges, how best to sample the network?

Analyzing the spreading of information has long been the central focus in the study
of social networks for the last decade [6, 17, 18]. One of the main challenges associated
with modeling of behavioral dynamics in social communities with respect to anomalous
external events stems from the fact that it often involves stochastic generative processes.
A further challenge is the trade off that exists between coverage and prediction accuracy [3,
5, 6]. While simulations on realizations from these models can help explore the properties
of networks [16], a theoretical analysis is much more appealing and robust. The results
presented in this work are based on a pure theoretical analysis, validated both by extensive
simulations as well as by real world data derived from a unique dataset.

Contribution In this work we present an innovative approach for studying the network di-
mension of the changes that take place in social communities in the presence of emergencies.
We do so using a mechanism we call a “Social Amplifier”—a method for analyzing local
sub-networks spanning certain high-volume network nodes. The innovation in our proposed
approach is twofold: (a) using a non-uniform sampling of the network (namely, focusing on
activity in the social vicinity of network hubs), and (b) projecting the network activity into a
multi-dimensional feature space spanned around a multitude of topological network proper-
ties. We show using both simulation and real world data that starting with certain coverage
level of the network, our method outperforms the use of either random sampling, as well as
single signal analysis.

Validation We first validate our technique using an analytic model that predicts the effi-
ciency of our method for various network scenarios. Then, we conduct extensive experi-
mental analysis, simulating various networks in which we examine the way information
regarding an emergency spread. Using these results we demonstrate an assessment of the ef-
ficiency of our method compared to the conventional random network sampling. We further
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validated our proposed methods using a comprehensive dataset, containing the entire inter-
nal calls as well as many of the incoming and outgoing calls within a major mobile carrier
in a west European country, for a period of roughly 3 years. During this period that mobile
users have made approximately 12 billion phone calls. We used the company’s log files, pro-
viding all phone calls (initiator, recipient, duration, and timing) and SMS/MMS messages
that the users exchange within and outside the company’s network. All personal details have
been anonymized, and we have obtained IRB approval to perform research on it.

Paper organization The rest of the paper is organized as follows: Sect. 2 discusses related
work. Section 3 contains the problem’s definitions. Section 4 presents the methodology used
for testing our proposed mechanism. Section 5 discusses the Social Amplifier mechanism.
An in-depth analysis of the technique using a simulated environment is presented in Sect. 6
whereas its demonstration using with real world cellular data is given in Sect. 7. Section 8
contains discussion and concluding remarks.

2 Related Work

There is an emerging literature on the use of network data to detect extraordinary events,
especially around the use of mobile phone data. One important line of research examines
the question pertaining to the area where the event has occurred, and its dependence on the
nature of the event: a bomb attack is narrowly localized in space, thus likely the anoma-
lous calling activity will be limited to the immediate neighborhood of the event. This was
observed in an analysis of mobile data in the vicinity of a bomb attack [7].

Another critical question is: Whom do we call during an emergency? Do we call our
closest ties or best friends? Or the acquaintance who we perceive as being physically closest
to the event (and thus most likely to be affected)? Or do we call emergency personnel? The
call data allow us to distinguish these scenarios—indeed, we can determine from the histor-
ical call pattern who are the individuals with whom a user communicates most frequently,
as well as behavioral characteristics that might allow us to infer relationship type, as well as
their most likely location during the emergency, together with the range of places they nor-
mally visit. This allows us to look for trends in the calling patterns during the emergency. An
extended analysis of traffic patterns also shows that emergencies tend to induce cascading
calling patterns, helping the spread of situation awareness in the population [7].

It has been recently shown that in trying to assess the societal changes and anomalous
patterns that emerge in response to emergencies and security related events, it is crucial to
understand the underlying social network [24, 25], the role of the link weights [15], as well
as the response of the network to node and link removal [2]. Past research [20] had pointed
out the existence of powerful patterns in the placement of links, where—as predicted in
Granovetter’s seminal work [15]—that clusters of strongly tied together individuals tend
to be connected by weak ties. It was also shown that this finding provides insight into the
robustness of the network to particular patterns of link and node removal, as well as into the
spreading processes that take place in the social network [22, 23]. This latter result plays a
key role in the intellectual basis of our understanding of the spread of situational awareness
in an emergency.

Analysis of mobile networks traffic demonstrates a clear correlation between anomalies
in the network traffic and a distinct security event. Indeed, in the event of a large scale ex-
plosion it is likely to assume that the authorities would be notified about it very close to the
time of explosion. This, however, is not the case for many other scenarios. For example, the
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large fire outbreak that had taken place in northern Israel at the beginning of December 2012
[26] was identified and discussed by numerous observers passing through this region hours
before it caught the attention of relevant controllers in the fire department. Had an ability to
detect anomalies in mobile networks been active during this point, an alert, titled “potential
security event”, focused on the specific geographic region, would have been produced, re-
sulting in the dispatching of a local firefighting units, who could have easily extinguished
the fire at this point.

One of the first works that examined the timing of people’s communication behavior
found that the lengths of the time gaps between two consecutive phone calls is distributed
following a power law principle [8]. An extension of this work [10] showed that when an
anomalous event is present, various similar statistical properties of the network dynamics
gets distorted. Other works had examined the evolution of social groups, aiming for the de-
velopment of algorithms capable of identifying “new groups”—a certain kind of anomalous
network pattern [21].

The broader objective of this paper is to contribute to the ongoing development of more
efficient techniques for utilizing mobile phones as a ubiquitous large scale sensors network.
These techniques use mobile data to detect social relations [1, 12], mobility patterns [14],
socio-economical properties [13], and security related features [4].

3 Preliminaries

We denote the “global social network” as a graph G = 〈V,E〉 where V is the set of all nodes
and E is the set of undirected edges over those nodes (an edge (u, v) exists iff there have
been reciprocal calls between users u and v).

We assume that occasionally various anomalous events take place in the “real world”,
that are being observed directly by some portion of the network’s users, that subsequently
may respond by making one of more phone calls to their neighbors in the global social
network.

Given a mobile carrier M , we denote its set of covered nodes (derived from its market
share) as VM ⊆ V , and its set of covered edges as EM ⊆ E. An edge is covered by M if at
least one of its nodes is covered by M , i.e.:

EM = {
(u, v)

∣∣ (u, v) ∈ E ∧ (u ∈ VM ∨ v ∈ VM)
}

We assume that the operator M is interested to detect anomalous events such as emergen-
cies, and to do so as fast as possible, with as high accuracy rate as possible, and using as little
resources as possible. We measure the amount of resources required by M (or otherwise de-
fined as the complexity of the detection algorithm) as the overall number of edges being
analyzed, or monitored. We denote the subset of edges processed by M as the “monitored
edges”, SM ⊆ EM .

Given an upper bound, ε on the size of |SM |
|E| , we are interested in achieving the highest

detection performance (defined later on) that can be obtained by monitoring a portion of the
edges smaller than ε.

Throughout this work we refer to the 1 ego-network and the 1.5 ego-network of a node v.
The 1 ego-network of v is a graph G(V1,E1) such that nearest-neighbor nodes of v

comprise the vertices of V1 and the links between v and V1 comprise the edges E1. Similarly,
the 1.5 ego-network of v is a graph G(V1.5,E1.5), such that V1.5 is the same as V1 and E1.5

consists of E1 plus all direct links between the nearest-neighbors of v. The definitions of
1 ego-network and the 1.5 ego-network are illustrated in Fig. 1.
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Fig. 1 An illustration of the 1 ego-network around a node v, marked in red (left) and the 1.5 ego-network
around v (right). The nodes V1 = V1.5 are marked in blue. The E1 edges (left chart) and the E1.5 edges
(right chart) are marked in green (Color figure online)

4 Methodology

In the next three sections we analyze the performance of our proposed method by comparing
it to a “baseline” algorithm that uses random sampling of the network (instead of hubs-
sampling) and tracks the edges of the 1 ego-network (instead of the 1.5 ego-network used in
our method).

In Sect. 5 we construct an analytic model depicting the efficiency of our method and the
way it changes as a result of changes in the network’s conditions. In Sect. 6 we compare the
detection time of our method to the baseline detection method using extensive simulations.
In Sect. 7 we conduct a posteriori analysis of the detection accuracy of our proposed method,
as well as the baseline detection method, and compare them for several different kinds of
emergencies.

It should be noted that in order to compare our proposed method to the baseline algorithm
it has to be normalized. We do so by presenting all performance results as a function of the
number of “overall edges under converge”.

Table 1 contains a glossary of the technical annotations used in this paper (defined in
detail in the following sections).

5 The Social Amplifier

The proposed method is comprised of three stages: (a) network sampling, by detecting nodes
with high incoming and outgoing traffic volume (i.e. hubs), (b) building the social network
around the hubs and extracting the topological features of the networks, and (c) analyzing the
changes in these features along time, tracking anomalous dynamics that imply the existence
of an anomalous event.

5.1 Network Sampling

At the initial step of the analysis process we track the traffic volume in the network’s nodes,
looking for hubs—nodes with high traffic (either incoming or outgoing). The rationale be-
hind the use of hubs is that hubs are highly likely to be exposed to new information, due to
their high degree.
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Table 1 A glossary of the main definitions used in this paper

VM The nodes of the mobile network.

EM The edges of the mobile network.

SM The edges actually analyzed by the monitoring system.

E The overall amount of “energy” available to the monitoring system.

EINITIAL The energy spent on producing a high quality topographical coverage of the network.

EAMPLIFIER The energy spent for maintaining a 1.5 ego-network closure.

EDETECT The energy spent on the actual detection of the signal.

α The exposure coefficient of an event (the portion of nodes exposed to the event).

〈k〉 The average degree of the network’s nodes.

kMAX The maximal degree of the network’s nodes.

λ The “social amplification constant” of a network.

ε The portion of the edges being monitored (namely, the ratio of |SM | by |E|).
cp The coverage portion of the mobile carrier from the entire edges (the ratio |EM | by |E|).
w The initial number of witnesses to an event.

VBASE A prediction vector generated by the base method.

VAMPLIFIED A prediction vector generated by the social amplifier.

δ|E| The difference in the performance of VBASE and VAMPLIFIED, for |E| monitored edges.

�(w,c, cp) Delta in detection times, for a given parameters w,c, cp.

c Confidence level (the minimal number of edges generated by nodes exposed to an event,
that needs to be monitored in order to deduce the existence of the event, in a sufficient
level of confidence).

Given available resources ε, we select network nodes, v1, . . . , vn, from VM , such that
those nodes have the highest degrees in VM and the set SM = ⋃

1≤i≤n E1.5
M (vi) does not

contain more than ε portion of the edges, where E1.5
M (v) denote the 1.5 ego-network around

node v, that is—the edges between v and all of v’s neighbors, as well as the edges between
v’s neighbors and themselves:

E1.5
M (vk) = EM(vk) ∪ {

(u1, u2)
∣∣ (u1, u2) ∈ EM ∧ u1 ∈ E(vk) ∧ u2 ∈ E(vk)

}

The use of the 1.5 ego-network is required in order to analyze not only the overall number
of calls in the network (sampled by the hubs), as done in works such as [7], but rather to
generate the actual networks around the hubs, in order to enable their in-depth analysis.
More specifically, analyzing only the overall number of calls, can only detect massive global
events, but not local ones (unless the local events are known in advance, and the local data is
analyzed in retrospective). Figure 2 illustrates the importance of using the 1.5 ego-network.

5.2 Features Extractions

For each phone social network we extract the following set of 21 topological features for
each day during the test period:

– In Degree: The number of incoming edges of the hub.
– Out Degree: The number of outgoing edges of the hub.
– BI Direction Numbers: The amount of numbers that called the hubs, and that the hub

called them.
– Total Degree: In degree + out degree of the hub.
– In Calls: The number of incoming calls to the hub.
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– Out Calls: The number of outgoing calls from the hub.
– Total Calls: In calls + out calls.
– Norm In Calls: the number of in calls divided by the number of total calls.
– Norm Out Calls: the number of out calls divided by the number of total calls.
– Neighborhood Number of Connection: the number of connections in the 1.5 ego-

network of the hub.
– Number of Strong Connected Components: the number of strong connected compo-

nents of the 1.5 ego-network of the hub.
– Number of Weak Connected Components: number of weak connected components of

the 1.5 ego-network of the hub.
– Average Number of Strong Connected Components: the average number of nodes in

each strong connected components of the 1.5 ego-network of the hub.
– Average Number of Weak Connected Components: the average number of nodes in

each weak connected components of the 1.5 ego-network of the hub.
– Subgraph Density: the density of the 1.5 ego-network of the hub.
– Neighborhood Number of Connection: the number of connections in the network re-

ceived when removing from the 1.5 ego-network of the hub the hub itself, and all edges
directly connected to it.

– Number of Strong Connected Components: the number of strong connected compo-
nents of the 1.5 ego-network of the hub the hub itself, and all edges directly connected to
it.

– Number of Weak Connected Components: number of weak connected components of
the 1.5 ego-network of the hub the hub itself, and all edges directly connected to it.

– Average Number of Strong Connected Components: the average number of nodes in
each strong connected components of the 1.5 ego-network of the hub the hub itself, and
all edges directly connected to it.

– Average Number of Weak Connected Components: the average number of nodes in
each weak connected components of the 1.5 ego-network of the hub the hub itself, and all
edges directly connected to it.

– Subgraph Density: the density of the 1.5 ego-network of the hub the hub itself, and all
edges directly connected to it.

5.3 Anomalies Detection

In order to detect anomalies in the dynamics of the social network around the network’s hubs
we use the Local-Outlier-Factor (LOF) anomaly detection algorithm [9]. In other words, us-
ing the LOF algorithm for each number we detected days which anomaly features occurred
and then by using ensemble of all the hubs that we detected which dates have the highest
probability for anomaly (using majority voting method).

We do so by ranking each day according to the number of hubs that reported it as anoma-
lous. Then, for each day we look at the 29 days that preceded it, and calculate the final score
of the day by its relative position in terms of anomaly-score within those 30 days. Namely,
a day would be reported as anomalous (e.g., likely to contain some emergency) if it is “more
anomalous” compared to the past month, in terms of the number of hubs-centered social
networks influenced during it. Each day is given a score between 0 and 1, stating its relative
“anomaly location” within its preceding 30 days.
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Fig. 2 Three examples of the social networks that are centered around 3 hubs of the network. The top three
charts contains the 1.5 ego-network around a hub v (different hub for different chart), from which the hub
itself, together with the edged connecting it to the rest of the nodes, were deleted for the sake of visual clarity.
The bottom three charts represent the classification of days by 2 network properties: the overall number of
calls to or from the hub (the Y axis), and the overall number of calls between the hub’s neighbors (the X axis).
Each dot represents a single day, and is placed according to the values of said properties at that day. Note how
even in this 2-dimensional projection, certain emergencies (known in retrospect, and denoted by red circles)
are detected—which would not have been detected had we used only a single signal (as the chart would
collapse downwards had we used only the number of edges in the surrounding social graph, and leftwards
had we used only the number of incoming and outgoing edges to the hubs) (Color figure online)

5.4 Analytic Evaluation

Alongside its increased sensing capability, our proposed mechanism has also an additional
overhead, in terms of additional edges that should be monitored, compared to the standard
approach of “number of calls analysis”. This is the result of the following two reasons:

– Hubs: Due to their high degree, whenever the edges associated with an additional hub are
added to the monitored edges set they increase its size substantially (unlike the addition
of a randomly selected node, that is expected to be of a much lower degree). Although
this is often compensated by the hubs’ high “accessibility” to new information, the hubs-
sampling method is expected to achieve poor performance for very low values of k (the
number of monitored edges), as this implies very low number of hubs (and hence, low
topographical coverage of the network).

– 1.5 Ego-Network: For some node v, although the number of nodes in its 1 ego-network
equals exactly the number of nodes in its 1.5 ego-network, the latter is usually expected
to have substantially larger amount of edges. Those edges are used solely for extracting
the topological features of the social network, and have little influence on the aggregate
number of calls (as the number of calls on the edges directly connected to the hub is
significantly larger than the calls on edges connecting two of its neighbors).

We therefore write the utilization of the Social Amplifier mechanism as follows:

E = EINITIAL + EAMPLIFIER + EDETECT (1)

whereas E is the “energy” supplied to the system for monitoring some k edges, EINITIAL is
the overhead spent on monitoring the first few hubs until we achieve good topographical
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coverage of the network, EAMPLIFIER is the energy spent on maintaining a 1.5 ego-network
closure (that is, the number of edges of the 1.5 ego-network minus the number of edges at
the 1 ego-network), and EDETECT denotes the resources spent on the actual detection of the
signal.

We note that EINITIAL decreases with the time it takes the detection process to complete.
In other words, as the event to be detected is more explicit and broadly observed, it will be
detected using a shorter time, which implicitly increases the relative portion of EINITIAL. We
can therefore write:

EINITIAL ≈ α · E
for α ∈ [0,1] the exposure coefficient of the event.

Notice that as the exposure coefficient of an event decreases, it means that additional
edges (and nodes) are required in order to detect the event. For extreme low values of the
exposure coefficient there is no longer much difference between adding “hubs” and adding
random nodes (in terms of their degrees) to the monitored set of nodes. This means that the
ratio between the number of edges between hubs’ neighbors and the edges to and from the
hubs increases, resulting in an increase in EAMPLIFIER.

Namely, for high exposure coefficient values the ratio between EAMPLIFIER and EDETECT

is proportional to the ratio between the average aggregate degrees of hubs’ neighbors and
the average degree of the hubs themselves. For low exposure coefficient values this ratio
converges to 1

〈k〉 (denoting by 〈k〉 the average degree of the network):

λ

kMAX
≤ EAMPLIFIER

EDETECT
≤ λ

〈k〉
denoting by kMAX the maximal degree, and for λ ≥ 1 being the Social Amplification Constant
of the network.

The same effect is obtained when the portion of the edges being monitored ε changes, as
low values for ε cause the ratio EAMPLIFIER

EDETECT
to decrease, and very high values of it cause it to

converge to λ
〈k〉 . We can therefore write:

EAMPLIFIER ≈ λ · EDETECT

〈k〉 + αε(kMAX − 〈k〉) ≈ λ · EDETECT

〈k〉(1 − αε) + αεkMAX

We shall therefore rewrite Eq. (1) as follows:

EDETECT = E · (1 − α)

1 + λ
〈k〉(1−αε)+αεkMAX

(2)

Figure 3 illustrates the behavior of EDETECT as a function of the changes in the exposure
coefficient α and in the portion of edges being monitored ε. Notice how EDETECT has a
non-monotonous dependency on α, obtaining a global maximum for intermediate values.

6 Simulation Evaluation

The goal of our experiments was to check how the two different methods for selecting the
subset SM influence the time required by M to detect an event. In order to achieve this goal
we simulated the spreading of events in generated scale-free graphs and measured the time
taken for the mobile carrier to detect those events when using different coverage percentages
and different methods for selecting the subset SM .
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Fig. 3 The dependency of
EDETECT on the exposure
coefficient α and on the number
of edges being monitored. The
illustration assumed
kMAX = 10 · 〈k〉

The main steps of our simulation are outlined in Algorithm 1. In Step 1, a scale-free
graph, G〈V,E〉 with 100,000 nodes is randomly generated. In Step 2, different coverage
percentages, cp, for the mobile operator are tested. In Steps 3–5, the nodes and edges of
the mobile carrier M〈VM,EM〉 are randomly selected, based on the coverage percentage cp.
In Step 6, different numbers of initial witnesses to the event, w, are tested. The actual set
of w witnesses is randomly selected in Step 7. In Step 8, different confidence levels c are
tested. The confidence level is the minimum number of “spreading edges” (i.e. phone calls
related to the event) that M has to sense in order to be confident that an event has occurred.
In Step 9, different methods, f , for selecting SM is determined. In Steps 10–11, we iterate
over the nodes in V in the order determined by f . In Step 12, the current iterated node is
added to SM . In, Step 13, we simulate the spreading of an event on the configuration (G, M ,
W , SM , c). This is done by executing Algorithm 2, which returns the number of time steps
required to detect the event on the given configuration. Finally, in Steps 14–15, we store the
configuration parameters and the resulting number of time steps.

Next, we describe Algorithm 2. At each time step (Steps 3–12), we iterate over the set
W of nodes who “know” about the event (Steps 4–10). At first, the set W consists only
of the nodes who witnessed the event. Each node v in W calls one of its friend nodes,
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Algorithm 1 simulate
1: G〈V,E〉 ← a randomly generated scale-free graph with |V | = 100,000;
2: for cp ∈ {0.1,0.2, . . . ,1.0 do
3: VM ← cp · |V | random nodes from |V |;
4: EM ← {(u, v) | (u, v) ∈ E ∧ (u ∈ VM ∨ v ∈ VM)};
5: M ← 〈VM,EM〉;
6: for w ∈ {5,10,50,100} do
7: W ← w random nodes from V ;
8: for c ∈ {4,8,16,32,64,128,256,512,1024} do
9: for f ∈ {Random,Hubs} do

10: for i = 1 → |V | do
11: v ← use f to select the next node from V ;
12: SM ← SM ∪ EM(v);
13: t ← call Algorithm 2 with the parameters (G, M , W , SM , c);
14: sp ← |SM |/|EM |;
15: store result record (G, M , W , SM , c, cp, w, f , sp, t );
16: end for
17: end for
18: end for
19: end for
20: end for

Algorithm 2 spreadEvent(G, M , W , SM , c)
1: t ← 1;
2: D ← ∅;
3: while |D| ≤ c do
4: for v ∈ W do
5: u ← a “new” node from E(v);
6: if (v,u) ∈ SM then
7: D ← D ∪ {(v,u)};
8: end if
9: W ← W ∪ {u};

10: end for
11: t ← t + 1;
12: end while
13: return t ;

u ∈ E(v), to which it didn’t call before, and reports the event to it. If the edge (v, u) is being
covered by M , then M has managed to detect a “spreading edge”, and the edge is added to
D (Steps 6–8). Since u knows about the event, it is added to W (Step 9). The main loop ends
when the set of detected “spreading edges”, D, is large enough, as required by c (Step 3).
Finally, the number of time steps passed, t , is returned.

In order to reduce noise, we surrounded Steps 13, 3–19 and 1–20 of Algorithm 1 with
three outer loops, each one executing 10 iterations.

The simulation results were analyzed as follows. First, for each coverage percentage cp,
number of witnesses w, confidence c, and method f we plotted the required time steps t as
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Fig. 4 The required time steps t

as a function of the monitoring
percentage sp (cp = 0.1, w = 5,
c = 4 and f = Hubs). The blue
dots are the original results of the
simulation. The red curve was
obtained after smoothing the
points in order to demonstrate
their trend (Color figure online)

Fig. 5 t̃ (w, c, cp,f ) for
different values of cp and
different methods f (using fixed
w = 5 and c = 4). The red line
represents f = Hubs and the blue
line represents f = Random
(Color figure online)

a function of the monitoring percentage sp. Figure 4 shows the resulting plot for cp = 0.1,
w = 5, c = 4 and f = Hubs.

For each such plot, we calculated the value t̂ = ∫ 1
0 t dsp. Intuitively, t̂ is the averaged

required time steps over the different monitoring percentages. (Note that t̂ was calculated
over the original data points and not over the smoothed ones.) Then, for each w, c, cp

and f , we calculated t̃ (w, c, cp,f ), which is the average of t̂ values for all configurations
with the same w, c, cp and f values (recall that Steps 13, 3–19 and 1–20 of Algorithm 1
were repeated 10 times each and therefore there are exactly 103 such configurations).

As an illustrating example, Fig. 5 shows the influence of cp on t̃ (w, c, cp,f ) for the two
different methods f when fixing w = 5 and c = 4.

Next, for each set of w, c and cp values, we calculated the delta in detection times,
denoted as �(w,c, cp) and defined as follows:

�(w,c, cp) = t̃ (w, c, cp,Random) − t̃ (w, c, cp,Hubs) (3)
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Fig. 6 The influence of cp on �(w,c, cp) for 9 different c values and a fixed w = 5. �(w,c, cp) is repre-
sented by the red curve in the figures. The blue line represents a fixed 0. Positive values of �(w,c, cp) mean
an advantage for the Hubs method (Color figure online)

Figures 6, 7, 8 and 9 show �(w,c, cp) for w = 5, w = 10, w = 50 and w = 100 respec-
tively. Each of these figures includes 9 sub-figures which correspond to the 9 different c val-
ues. Each sub-figure illustrates the influence of cp on �(w,c, cp) for fixed w and c values.

Figures 6–9 demonstrate that none of the methods is absolutely superior to the other.
More precisely, we observe that for very small and very large confidence values, the Random
method outperforms the Hubs method. However, for some range of medium confidence
values, the Hubs method becomes superior. We also see that this range depends greatly on
the initial number of witnessing nodes w. In other words, for larger values of w, the range
of medium confidence values slides to larger confidence values. This makes sense as larger
w values require less time steps in order to achieve the same confidence level.

The above observations led us to adopt the definition of the exposure coefficient α (de-
fined in Sect. 5.4), combines w and c into a single variable: α = log2(c)/w. Figure 10 illus-
trates the influence of α and cp on �(α, cp) where �(α, cp) is the average of all �(w,c, cp)

such that w · cp = α. (Note that the original results were smoothened with R = 0.804 and
R2 = 0.646.) As expected, the Hubs method outperforms the Random method for medium
α values. In addition, the advantage of the Hubs method further increases with larger cp

values.
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Fig. 7 The influence of cp on �(w,c, cp) for 9 different c values and a fixed w = 10. �(w,c, cp) is repre-
sented by the red curve in the figures. The blue line represents a fixed 0. Positive values of �(w,c, cp) mean
an advantage for the Hubs method (Color figure online)

Note that the efficiency of our proposed method as illustrated in Fig. 10 closely resembles
the prediction of our analytic model, as discussed in Sect. 5.4, and specifically in Eq. (2) and
Fig. 3.

7 Emergencies Detection Using Real World Data

For evaluating our proposed Social Amplification technique as an enhanced method for
anomalies detection we have used a series of anomalous events that took place in the mobile
network country, during the time where the call logs data was recorded. Figure 11 presents
the events, including their “magnitude”, in terms of the time-span and size of population
they influenced.

We have divided the anomalies into the following three groups:

Concerts and Festivals Events that are anomalous, but whose existence is known in advance
to a large enough group of people. Those include events number 9–16, as appears in
Fig. 11.

“Small exposure events” Anomalous events whose existence is unforeseen, and that were
limited in their effect. Those include events numbers 1, 2, 5, 6.
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Fig. 8 The influence of cp on �(w,c, cp) for 9 different c values and a fixed w = 50. �(w,c, cp) is repre-
sented by the red curve in the figures. The blue line represents a fixed 0. Positive values of �(w,c, cp) mean
an advantage for the Hubs method (Color figure online)

“Large exposure events” Anomalous events whose existence is unforeseen, that affected a
large population. Those include events numbers 3, 4, 7, 8.

For each of the events we used the method described in Sect. 5 in order to rank each
day between 0 and 1, according to its “anomalousness”. This was done for increasingly
growing number of monitored edges, in order to track the evolution of the detection accu-
racy. The result of this process was a series a numeric vectors pairs: (VBASE, VAMPLIFIED)|E|,
corresponding to the two networks used (e.g. the random network sampling for VBASE and
the social-amplified hubs-sampling for VAMPLIFIED), for |E| edges which were monitored. In
addition, we created a binary vector V̂ having ‘1’ for anomalous days and ‘0’ otherwise.

For |E| edges which were monitored we denote by δ|E| the difference between the cor-
relation coefficient of VAMPLIFIED and V̂ , and the correlation coefficient of VBASE and V̂ ,
namely:

δ|E| = CORR(VAMPLIFIED, V̂) − CORR(VBASE, V̂)

for (VBASE, VAMPLIFIED)|E|, and for CORR(x, y) the correlation coefficient function.
Notice that whereas δ|E| measures the delta in detection accuracy, it has somewhat similar

meaning to �(α, cp), which measures delta in detection speed.
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Fig. 9 The influence of cp on �(w,c, cp) for 9 different c values and a fixed w = 100. �(w,c, cp) is
represented by the red curve in the figures. The blue line represents a fixed 0. Positive values of �(w,c, cp)

mean an advantage for the Hubs method (Color figure online)

Figure 12 presents the values of δ|E| for number of monitored edges ranging between
300 and 800. It can be seen how the hubs-sampling based social amplifier technique outper-
forms the basic random-sampling method. Furthermore, it can be seen that the positive delta
increases with the increase in the amount of available resources (namely, number of moni-
tored edges). This coincides with the analytic model that appears in Sect. 5 (and specifically,
Fig. 3), as well as with the simulative analysis as illustrated in Fig. 10.

Figure 13 presents the values of δ|E| for number of monitored edges between 300 and
800, for the three types of events. Notice how the results strongly coincide with the analytic
model as is illustrated in Fig. 3, as concerts and events have the highest exposure value a,
and the small exposure events have the lowest value.

8 Conclusions

This paper has demonstrated that under specified, and fairly broad, conditions, focusing on
the neighborhood around a hub (the connections among the alters) enables efficient detection
of events external to the network that provoke spreading communication within the network.
Hubs act as collectors (and as a result, amplifiers) of social information, through facilitating
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Fig. 10 The influence of α and cp on �(α, cp) as evaluated using simulative environment. �(α, cp) is
represented by the red area in the figure. The dark grid represents the fixed z = 0 plane. Positive values of
�(α, cp) mean an advantage for the Hubs method (Color figure online)

Fig. 11 A detailed list of the anomalous events that were identified, including their duration (in hours) and
the number of population that resided in the relevant region (denoted as GP ). Further details can be found
in [7]

the spread of communication in their immediate neighborhood. Traces of small scale in-
formation diffusion processes are more likely to be revealed when tracking hubs’ activities
compared to randomly selected nodes. In this work we show that this effect is so intense that
in many cases it outperforms the analysis of significantly larger amount of random nodes (in
order to compensate of the fact that the analysis of a single hub requires coverage of much
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Fig. 12 The changes in the value of δ|E| for growing numbers of edges being analyzed, evaluated using
real anomalies and mobile calls data collected from a developed European country for a period of 3 years.
Positive values indicate a higher detection efficiency of the social amplifier method compared to a basic
random sampling method, for the same number of monitored edges

Fig. 13 The changes in the value of δ|E| for growing numbers of edges being analyzed, segregated by the
type of event detected. Notice how concerts and festivals that have high exposure value a generate relatively
lower values of δ|E| (but still monotonously increase with |E|), while the small exposure events are charac-
terized by the highest values of δ|E|, specifically for low values of |E|. It is important to note that a low value
of δ|E| does not imply that the accuracy of the detection itself is low, but rather that the difference in accuracy
between the two methods is small

more edges than required for an arbitrary node). We dub this effect “Social Amplification”
and demonstrate it both analytically and experimentally.

We anticipate, however, that this methodology could be substantially extended and re-
fined. For example, because hubs can sometimes be major bottlenecks, it is plausible that
other neighborhoods within a large scale network would more efficiently act as social am-
plifiers. For example, it is possible that generally densely connected communities within a
network would more efficiently disseminate observable changes in communication behavior,
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virtually acting as a kind of “distributed hub” (the dramatic effect of the network topology
on the dynamics of information diffusion in communities was demonstrated in works such
as [11, 19]). It is also possible that the incorporation of other kinds of information about the
properties of nodes would greatly improve the model.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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