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1. Introduction

Hamaya [1] discussed the relationship between stability under disturbances from hull and
total stability for the integro-differential equation

x′(t) = f(t, x(t)) +
∫0

−∞
F
(
t, s, x(t + s), x(t)

)
ds, (1.1)

where f : R × R
n →R

n is continuous and is almost periodic in t uniformly for x ∈ R
n, and

F : R×(−∞, 0]×Rn×Rn →R
n is continuous and is almost periodic in t uniformly for (s, x, y) ∈

(−∞, 0]×Rn×Rn. He showed that for a periodic integro-differential equation, uniform stability
and stability under disturbances from hull are equivalent. Also, he showed the existence of
an almost periodic solution under the assumption of total stability in [2].

Song and Tian [3] studied periodic and almost periodic solutions of discrete Volterra
equations with unbounded delay of the form

x(n + 1) = f
(
n, x(n)

)
+

n∑
j=−∞

B
(
n, j, x(j), x(n)

)
, n ∈ Z

+, (1.2)
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where f : Z × R
n →R

n is continuous in x ∈ R
n for every n ∈ Z, and for any j, n ∈ Z (j ≤ n),

B : Z × Z × R
n × R

n →R
n is continuous for x, y ∈ R

n. They showed that under some suitable
conditions, if the bounded solution of (1.2) is totally stable, then it is an asymptotically almost
periodic solution of (1.2), and (1.2) has an almost periodic solution. Also, Song [4] proved
that if the bounded solution of (1.2) is uniformly asymptotically stable, then (1.2) has an
almost periodic solution.

Equation (1.2) is a discrete analogue of the integro-differential equation (1.1), and (1.2)
is a summation equation that is a natural analogue of this integro-differential equation. For
the asymptotic properties of discrete Volterra equations, see [5].

In this paper, in order to obtain an existence theorem for an almost periodic solution of
a discrete Volterra equations with unbounded delay, we will employ to change Hamaya’s
results in [1] for the integro-differential equation into results for the discrete Volterra
equation.

2. Preliminaries

We denote by R, R+, R−, respectively, the set of real numbers, the set of nonnegative real
numbers, and the set of nonpositive real numbers. Let Rn denote n-dimensional Euclidean
space.

Definition 2.1 (see [6]). A continuous function f : R×R
n →R

n is called almost periodic in t ∈ R

uniformly for x ∈ R
n if for any ε > 0 there corresponds a number l = l(ε) > 0 such that any

interval of length l contains a τ for which

∣∣f(t + τ, x) − f(t, x)
∣∣ < ε (2.1)

for all t ∈ R and x ∈ R
n.

Let R∗ = R
− ×Rn×Rn and let F(t, s, x, y) be a function which is defined and continuous

for t ∈ R and (s, x, y) ∈ R∗.

Definition 2.2 (see [9]). F(t, s, x, y) is said to be almost periodic in t uniformly for (s, x, y) ∈ R∗

if for any ε > 0 and any compact set K∗ in R∗, there exists an L = L(ε,K∗) > 0 such that any
interval of length L contains a τ for which

∣∣F(t + τ, s, x, y) − F(t, s, x, y)
∣∣ ≤ ε (2.2)

for all t ∈ R and all (s, x, y) ∈ K∗.
We denote by Z, Z+, Z−, respectively, the set of integers, the set of nonnegative

integers, and the set of nonpositive integers.

Definition 2.3 (see [3]). A continuous function f : Z×Rn →R
n is said to be almost periodic in n ∈

Z uniformly for x ∈ R
n if for every ε > 0 and every compact set K ⊂ R

n, there corresponds an
integer N = N(ε,K) > 0 such that among N consecutive integers there is one, here denoted
p, such that

∣∣f(n + p, x) − f(n, x)
∣∣ < ε (2.3)

for all n ∈ Z, uniformly for x ∈ R
n.
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Definition 2.4 (see [3]). Let Z∗ = Z
− × R

n × R
n. A set Σ ⊂ Z∗ is said to be compact if there is a

finite integer set Δ ⊂ Z
− and compact set Θ ⊂ R

n × R
n such that Σ = Δ ×Θ.

Definition 2.5. Let B : Z×Z×R
n ×R

n →R
n be continuous for x, y ∈ R

n, for any j, n ∈ Z, j ≤ n.
B(n, j, x, y) is said to be almost periodic in n uniformly for (j, x, y) ∈ Z∗ if for any ε > 0 and any
compact set K∗ ⊂ Z∗, there exists a number l = l(ε,K∗) > 0 such that any discrete interval of
length l contains a τ for which

∣∣B(n + τ, j, x, y) − B(n, j, x, y)
∣∣ ≤ ε (2.4)

for all n ∈ Z and all (j, x, y) ∈ K∗.

For the basic results of almost periodic functions, see [6–8].
Let l−(Rn) denote the space of all Rn-valued bounded functions on Z

− with

‖φ‖∞ = sup
n∈Z−

∣∣φ(n)∣∣ < ∞ (2.5)

for any φ ∈ l−(Rn).
Let x : {n ∈ Z : n ≤ k}→R

n for any integer k. For any n ≤ k, we define the notation
xn : Z− →R

n by the relation

xn(j) = x(n + j) (2.6)

for j ≤ 0.
Consider the discrete Volterra equation with unbounded delay

x(n + 1) = f
(
n, x(n)

)
+

n∑
j=−∞

B
(
n, j, x(j), x(n)

)
, n ∈ Z

+,

= f
(
n, x(n)

)
+

0∑
j=−∞

B
(
n, n + j, x(n + j), x(n)

)
,

(2.7)

where f : Z ×R
n →R

n is continuous in x ∈ R
n for every n ∈ Z and is almost periodic in n ∈ Z

uniformly for x ∈ R
n, B : Z×Z×Rn ×Rn →R

n is continuous in x, y ∈ R
n for any j ≤ n ∈ Z and

is almost periodic in n uniformly for (j, x, y) ∈ Z∗. We assume that, given φ ∈ l−(Rn), there is
a solution x of (2.7) such that x(n) = φ(n) for n ∈ Z

−, passing through (0, φ). Denote by this
solution x(n) = x(n, φ).

LetK be any compact subset of Rn such that φ(j) ∈ K for all j ≤ 0 and x(n) = x(n, φ) ∈
K for all n ≥ 1.

For any φ, ψ ∈ l−(Rn), we set

ρ(φ, ψ) =
∞∑
q=0

ρq(φ, ψ)

2q
[
1 + ρq(φ, ψ)

] , (2.8)
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where ρq(φ, ψ) = max−q≤m≤0|φ(m)−ψ(m)|, q ≥ 0. Then, ρ defines a metric on the space l−(Rn).
Note that the induced topology by ρ is the same as the topology of convergence on any finite
subset of Z− [3].

In view of almost periodicity, for any sequence (n′
k) ⊂ Z

+ with n′
k →∞ as k→∞, there

exists a subsequence (nk) ⊂ (n′
k
) such that

f
(
n + nk, x

) −→ g(n, x) (2.9)

uniformly on Z × S for any compact set S ⊂ R
n,

B
(
n + nk, n + l + nk, x, y

) −→ D(n, n + l, x, y) (2.10)

uniformly on Z × S∗ for any compact set S∗ ⊂ Z∗, g(n, x) and D(n, n + l, x, y) are also almost
periodic in n uniformly for x ∈ R

n, and almost periodic in n uniformly for (j, x, y) ∈ Z∗,
respectively. We define the hull

H(f, B)

=
{
(g,D) : (2.9) and (2.10) hold for some sequence

(
nk

) ⊂ Z
+with nk → ∞ as k → ∞}

.

(2.11)

Note that (f, B) ∈ H(f, B) and for any (g,D) ∈ H(f, B), we can assume the almost periodicity
of g and D, respectively [3].

Definition 2.6 (see [3]). If (g,D) ∈ H(f, B), then the equation

x(n + 1) = g
(
n, x(n)

)
+

n∑
j=−∞

D
(
n, j, x(j), x(n)

)
, n ∈ Z

+ (2.12)

is called the limiting equation of (2.7).

For the compact set K in R
n, (p, P) ∈ H(f, B), (q,Q) ∈ H(f, B), we define π(p, q) and

π(P,Q) by

π(p, q) = sup
{∣∣p(n, x) − q(n, x)

∣∣ : n ∈ Z, x ∈ K
}
,

π(P,Q) =
∞∑

N=1

πN(P,Q)
2N

[
1 + πN(P,Q)

] , (2.13)

where

πN(P,Q) = sup
{∣∣P(n, j, x, y) −Q(n, j, x, y)

∣∣ : n ∈ Z, j ∈ [−N, 0], x, y ∈ K
}
,

π
(
(p, P), (q,Q)

)
= max

{
π(p, q), π(P,Q)

}
,

(2.14)

respectively. This definition is a discrete analogue of Hamaya’s definition in [1].
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3. Main results

Definition 3.1 (see [3]). A function φ : Z→R
n is called asymptotically almost periodic if it is a

sum of an almost periodic function φ1 and a function φ2 defined on Z which tends to zero as
n→∞, that is φ(n) = φ1(n) + φ2(n), n ∈ Z.

It is known [8] that the decomposition φ = φ1 + φ2 in Definition 3.1 is unique, and φ
is asymptotically almost periodic if and only if for any integer sequence (τ ′

k
) with τ ′

k
→∞ as

k→∞, there exists a subsequence (τk) ⊂ (τ ′k) for which φ(n + τk) converges uniformly for
n ∈ Z as k→∞.

Hamaya [9] proved that if the bounded solution x(t) of the integro-differential
equation (1.1) is asymptotically almost periodic, then x(t) is almost periodic under the
following assumption:

(H) for any ε > 0 and any compact set C ⊂ R
n, there exists S = S(ε, C) > 0 such that

∫−S

−∞

∣∣F(t, s, x(t + s), x(t)
)∣∣ds ≤ ε, t ∈ R, (3.1)

whenever x(σ) is continuous and x(σ) ∈ C for all σ ≤ t.

Also, Islam [10] showed that asymptotic almost periodicity implies almost periodicity
for the bounded solution of the almost periodic integral equation

x(t) = f(t) +
∫ t

−∞
F
(
t, s, x(s)

)
ds. (3.2)

Throughout this paper, we impose the following assumptions.

(H1) For any ε > 0 and any τ > 0, there exists an integer M = M(ε, τ) > 0 such that

n−M∑
j=−∞

∣∣B(n, j, x(j), x(n))∣∣ < ε, n ∈ Z, (3.3)

whenever |x(j)| < τ for all j ≤ n.

(H2) Equation (2.7) has a bounded solution x(n) = x(n, φ), that is, |x(n)| ≤ c for some
c ≥ 0, passing through (0, φ), where φ ∈ l−(Rn).

Note that assumption (H1) holds for any (g,D) ∈ H(f, B). Also, we assume that the
compact set K in R

n satisfies ψ(j) ∈ K for all j ≤ 0 and y(n) = y(n, ψ) ∈ K for all n ≥ n0,
where y(n) is any solution of the limiting equation of (2.12) and (2.7) .

Theorem 3.2. Under assumptions (H1) and (H2), if the bounded solution x(n) is asymptotically
almost periodic, then (2.7) has an almost periodic solution.

Proof. Since x(n) is asymptotically almost periodic, it has the decomposition

x(n) = p(n) + q(n), (3.4)
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where p(n) is almost periodic in n and q(n)→ 0 as n→∞. Let (nk) be a sequence such that
nk →∞ as k→∞, p(n+nk)→ p∗(n) as k→∞, and p∗(n) is also almost periodic. We will prove
that p∗(n) is a solution of (2.7) for n ≥ 1.

Note that, by almost periodicity,

f
(
n + nk, x

) −→ f∗(n, x) (3.5)

uniformly on Z × C, where C is a compact set in R
n, and

B
(
n + nk, n + j + nk, x, y

) −→ B∗(n, n + j, x, y) (3.6)

uniformly on Z ×K∗, where K∗ is a compact subset of Z∗ = Z
− × R

n × R
n.

Let xk(n) = x(n + nk), n + nk ≥ 0. Then, we obtain

x
(
n + nk + 1

)
= f

(
n + nk, x

(
n + nk

))
+

n+nk∑
j=−∞

B
(
n + nk, j, x(j), x

(
n + nk

))

= f
(
n + nk, x

k(n)
)
+

n∑
j=−∞

B
(
n + nk, j + nk, x

k(j), xk(n)
)
.

(3.7)

This implies that xk(n) is a solution of

x(n + 1) = f
(
n + nk, x(n)

)
+

n∑
j=−∞

B
(
n + nk, j + nk, x(j), x(n)

)
. (3.8)

For n ≤ 0, p∗(n) ∈ K since

∣∣p(n + nk

)∣∣ ≤ ∣∣x(n + nk

)∣∣ + ∣∣q(n + nk

)∣∣
≤ c +

∣∣q(n + nk)
∣∣, n + nk ≥ 0.

(3.9)

Moreover, for any n ∈ Z, there exists a k0 > 0 such that n + nk ≥ 1 for all k ≥ k0. Thus

xk(n) = x
(
n + nk

)
= p

(
n + nk

)
+ q

(
n + nk

) −→ p∗(n) (3.10)

as k→∞whenever k ≥ k0. Hence,

xk(n + 1) = f
(
n, xk(n)

)
+

n∑
j=−∞

B
(
n, j, xk(j), xk(n)

)
, k ≥ k0. (3.11)

Now, we show that

n∑
j=−∞

B
(
n, j, xk(j), xk(n)

) −→
n∑

j=−∞
B
(
n, j, p∗(j), p∗(n)

)
, (3.12)
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as k→∞. Note that, for some c > 0, |xk(n)| ≤ c and |p∗(n)| ≤ c for all n ∈ Z and k ≥ 1. From
(H1), there exists an integer M > 0 such that

n−M∑
j=−∞

∣∣B(n, j, xk(j), xk(n)
)∣∣ < ε,

n−M∑
j=−∞

∣∣B(n, j, p∗(j), p∗(n))∣∣ < ε

(3.13)

for any ε > 0. Then, we have

∣∣∣∣∣
n∑

j=−∞
B
(
n, j, xk(j), xk(n)

) − n∑
j=−∞

B
(
n, j, p∗(j), p∗(n)

)∣∣∣∣∣

≤
n−M∑
j=−∞

∣∣B(n, j, xk(j), xk(n)
)∣∣ + n−M∑

j=−∞

∣∣B(n, j, p∗(j), p∗(n))∣∣

+
n∑

j=n−M+1

∣∣B(n, j, xk(j), xk(n)
) − B

(
n, j, p∗(j), p∗(n)

)∣∣

≤ 2ε +
n∑

j=n−M+1

∣∣B(n, j, xk(j), xk(n)
) − B

(
n, j, p∗(j), p∗(n)

)∣∣

(3.14)

by (3.13).
Since B(n, j, x, y) is continuous for x, y ∈ R

n and xk(n)→ p∗(n) on [n−M,n] as k→∞,
we obtain

n∑
j=n−M+1

∣∣B(n, j, xk(j), xk(n)
) − B

(
n, j, p∗(j), p∗(n)

)∣∣ < ε. (3.15)

It follows from the continuity of f(n, x) that

xk(n + 1) = f
(
n, xk(n)

)
+

n∑
j=−∞

B
(
n, j, xk(j), xk(n)

)

−→ p∗(n + 1) = f
(
n, p∗(n)

)
+

n∑
j=−∞

B
(
n, j, p∗(j), p∗(n)

)
,

(3.16)

as k→∞. Therefore, p∗(n) is an almost periodic solution of (2.7) for n ≥ 1.

Remark 3.3. Recently Song [4] obtained a more general result than that of Theorem 3.2, that
is, under the assumption of asymptotic almost periodicity of a bounded solution of (2.7), he
showed the existence of an almost periodic solution of the limiting equation (2.12) of (2.7).

Total stability introduced by Malkin [11] in 1944 requires that the solution of x′(t) =
f(t, x) is “stable” not only with respect to the small perturbations of the initial conditions, but
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also with respect to the perturbations, small in a suitable sense, of the right-hand side of the
equation [11]. Many results have been obtained concerning total stability [3, 7, 9, 12–15].

Definition 3.4 (see [1]). The bounded solution x(t) of (1.1) is said to be totally stable if for any
ε > 0, there exists a δ = δ(ε) > 0 such that if t0 ≥ 0, ρ(xt0 , yt0) ≤ δ and h(t) is any continuous
function which satisfies |h(t)| ≤ δ on [t0,∞), then

ρ
(
xt, yt

)
< ε, t ≥ t0, (3.17)

where y(t) is a solution of

x′(t) = f
(
t, x(t)

)
+
∫0

−∞
F
(
t, s, x(t + s)

)
, x(t)

)
ds + h(t), (3.18)

such that yt0(s) ∈ K for all s ≤ 0. Here, xt : R− →R
n is defined by xt(s) = x(t + s) for any

x : (−∞, A)→R
n, −∞ < A ≤ ∞.

Hamaya [1] defined the following stability notion.

Definition 3.5. The bounded solution x(t) of (1.1) is said to be stable under disturbances from
H(f, F)with respect to K if for any ε > 0, there exists an η = η(ε) > 0 such that

ρ
(
xt, yt

)
< ε, t ≥ τ, (3.19)

whenever (g,G) ∈ H(f, F), π((fτ , Fτ), (g,G)) ≤ η, and ρ(xτ , yτ) ≤ η for some τ ≥ 0, where
y(t) is a solution through (τ, yτ) of the limiting equation

x′(t) = g
(
t, x(t)

)
+
∫0

−∞
G
(
t, s, x(t + s)

)
, x(t)

)
ds (3.20)

of (1.1) such that yτ(s) ∈ K for all s ≤ 0.

The concept of stability under disturbances from hull was introduced by Sell [16, 17]
for the ordinary differential equation. Hamaya proved that Sell’s definition is equivalent
to Hamaya’s definition in [1]. Also, he showed that total stability implies stability under
disturbances from hull in [1, Theorem 1]. To prove the discrete analogue for this result, we
list definitions.

Definition 3.6 (see [3]). The bounded solution x(n) of (2.7) is said to be totally stable if for any
ε > 0 there exists a δ = δ(ε) > 0 such that if n0 ≥ 0, ρ(xn0 , yn0) < δ and p(n) is a sequence such
that |p(n)| < δ for all n ≥ n0, then

ρ
(
xn, yn

)
< ε, n ≥ n0, (3.21)
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where y(n) is any solution of

x(n + 1) = f
(
n, x(n)

)
+

n∑
j=−∞

B
(
n, j, x(j), x(n)

)
+ p(n) (3.22)

such that yn0(j) ∈ K for all j ∈ Z
−.

Definition 3.7. The bounded solution x(n) of (2.7) is said to be stable under disturbances from
H(f, B) with respect to K if for any ε > 0, there exists an η = η(ε) > 0 such that if
π((f, B), (g,D)) ≤ η and ρ(xn0 , yn0) ≤ η for some n0 ≥ 0, then

ρ
(
xn, yn

)
< ε, n ≥ n0, (3.23)

where y(n) is any solution of the limiting equation (2.12) of (2.7), which passes through
(n0, yn0) such that yn0(j) ∈ K for all j ∈ Z

−.

Theorem 3.8. Under assumptions (H1) and (H2), if the bounded solution x(n) of (2.7) is totally
stable, then it is stable under disturbances fromH(f, B) with respect to K.

Proof. Let ε > 0 be given and let δ = δ(ε) be the number for total stability of x(n). In view of
(H1), there exists an L = L(δ(ε)/4, K) > 0 such that

−L∑
j=−∞

∣∣B(n, j, x(n + j), x(n)
)∣∣ ≤ δ

4
(3.24)

whenever |x(j)| ≤ τ for all j ≤ τ . Also, since D ∈ H(B) satisfies (H1), we have

−L∑
j=−∞

∣∣D(
n, j, x(n + j), x(n)

)∣∣ ≤ δ

4
(3.25)

whenever |x(j)| ≤ τ for all j ≤ n. We choose N = N(ε) > 0 such that [−L, 0] ⊂ [−N, 0] and set

η(ε) = max
{
δ′(ε),

δ(ε)
4

}
, δ′ =

δ/4L
2N(1 + δ/4L)

. (3.26)

Let y(n) be any solution of the limiting equation (2.12), passing through (n0, yτ), n0 ≥ 0, such
that yn0(j) ∈ K for all j ≤ 0. Note that y(n) ∈ K for all n ≥ n0 by the assumption on K. We
suppose that π((f, B), (g,D)) ≤ η and ρ(xn0 , yn0) ≤ η. We will show that ρ(xn, yn) < ε for all
n ≥ nn0 .
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For every n ≥ n0, we set

p(n) = g
(
n, y(n)

) − f
(
n, y(n)

)
+

0∑
j=−∞

D
(
n, j, y(n + j), y(n)

) − 0∑
j=−∞

B
(
n, j, y(n + j), y(n)

)
.

(3.27)

Then, y(n) is a solution of the perturbation

x(n + 1) = f
(
n, x(n)

)
+

0∑
j=−∞

B
(
n, j, x(n + j), x(n)

)
+ p(n) (3.28)

such that yn0(j) ∈ K for all j ∈ Z
−. We claim that |p(n)| ≤ δ for all n ≥ n0. From

π
(
(f, B), (g,D)

)
= max

{
π(f, g), π(B,D)

}
= max

{
δ′,

δ

4

}
, (3.29)

we have

π(f, g) = sup
{∣∣f(n, x) − g(n, x)

∣∣ : n ∈ Z, x ∈ K
} ≤ δ

4
. (3.30)

Thus

∣∣g(n, y(n)) − f
(
n, y(n)

)∣∣ ≤ δ

4
, (3.31)

when y(n) ∈ K for n ≥ n0. Since

π(B,C) =
∞∑

N=1

πN(B,D)
2N

[
1 + πN(B,D)

] ≤ η = max
{
δ′,

δ

4

}
, (3.32)

we obtain

πN(B,D)
2N

[
1 + πN(B,D)

] ≤ δ′ =
δ/4L

2N(1 + δ/4L)
, (3.33)

and thus

πN(B,D) = sup
{∣∣B(n,m, x, y) −D(n,m, x, y)

∣∣ : n ∈ Z, m ∈ [−N, 0], x, y ∈ K
} ≤ δ

4L
.

(3.34)

This implies that

|D(n,m, y(n +m), y(n)) − B(n,m, y(n +m), y(n))| ≤ δ

4L
, (3.35)
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where m ∈ [−L, 0] ⊂ [−N, 0], as long as y(n) ∈ K. Therefore, we have

∣∣∣∣∣
0∑

m=−∞
D
(
n,m, y(n +m), y(n)

) − 0∑
m=−∞

B(n,m, y(n +m), y(n)
)∣∣∣∣∣

≤
∣∣∣∣∣

−L∑
m=−∞

D
(
n,m, y(n +m), y(n)

)
+

0∑
m=−L

D
(
n,m, y(n +m), y(n)

)

−
−L∑

m=−∞
B
(
n,m, y(n +m), y(n)

) − 0∑
m=−L

B
(
n,m, y(n +m), y(n)

)∣∣∣∣∣

≤
L∑

m=−∞

∣∣D(
n,m, y(n +m), y(n)

)∣∣ + −L∑
m=−∞

∣∣B(n,m, y(n +m), y(n)
)∣∣

+
0∑

m=−L

∣∣D(
n,m, y(n +m), y(n)

) − B
(
n,m, y(n +m), y(n)

)∣∣

≤ δ

4
+
δ

4
+

δ

4L
L

=
3δ
4

(3.36)

as long as y(n) ∈ K. Consequently, we obtain that |p(n)| ≤ δ for all n ≥ n0. Since x(n) is totally
stable, we have

ρ
(
xn, yn

)
< ε, n ≥ n0. (3.37)

This shows that x(n) is stable under disturbances from H(f, B) with respect to K.

Remark 3.9. Yoshizawa [15, Lemma 5] proved that the total stability of a bounded solution
of the functional differential equation x′(t) = f(t, xt) implies the stability under disturbances
from hull. For a similar result for the integro-differential equation (1.1), see [1, Theorem 1].

Yoshizawa showed the existence of asymptotically almost periodic solution by
stability under disturbances from hull for the nonlinear differential equation x′(t) = f(t, x)
and the functional differential equation x′(t) = f(t, xt) in [7, Theorem 12.4] and [15, Theorem
5], respectively.

Also, as the discrete case, Zhang and Zheng [18, Theorem 3.2] obtained the similar
result for the functional difference equation x(n + 1) = f(n, xn). For the discrete Volterra
equation (2.7), we get the following result.

Theorem 3.10. Under assumptions (H1) and (H2), if the bounded solution x(n) of (2.7) is stable
under disturbances fromH(f, B) with respect to K, then x(n) is asymptotically almost periodic.

Proof. For any sequence (nk) ⊂ Z with nk →∞ as k→∞, let w(n) = xk(n) = x(n + nk). Then,
xk(n) is a solution of (3.8) passing through (0, xk

0 ) where xk
0 (s) = xnk(s) for all s ≤ 0, as in the

proof of Theorem 3.2. We claim that xk(n) is stable under disturbances fromH(fnk , Bnk)with
respect to K for (ε, η(ε)).
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Consider the limiting equation

x(n + 1) = g
(
n, x(n)

)
+

0∑
j=−∞

D
(
n, j, x(n + j), x(n)

)
, (3.38)

where (g,D) ∈ H(fnk , Bnk). Assume that

π
((
fnk , Bnk

)
, (g,D)

) ≤ η,

ρ
(
wτ, yτ

) ≤ η
(3.39)

for some τ ≥ 0, where y(n) is any solution of (3.38). We will show that ρ(wn, yn) < ε for all
n ≥ τ .

Putting z(n) = y(n − nk), z(n) is a solution of

x(n + 1) = g
(
n − nk, x(n)

)
+

0∑
j=−∞

D
(
n − nk, j, x(n + j), x(n)

)
(3.40)

passing through (τ + nk, yτ) such that zτ+nk(s) = yτ(s) for all s ≤ 0. If we set (h, E) =
(g−nk ,D−nk) ∈ H(f, B), then z(n) is a solution of

x(n + 1) = h
(
n, x(n)

)
+

0∑
j=−∞

E
(
n, j, x(n + j), x(n)

)
. (3.41)

Since

π
((
fnk , Bnk

)
, (g,D)

)
= max

{
π
(
fnk , g

)
, π

(
Bnk ,D

)} ≤ η, (3.42)

we have

π
(
(f, B), (h, E)

)
= π

(
(f,B),

(
g−nk ,D−nk

)) ≤ η,

ρ
(
xτ+nk , zτ+nk

)
= ρ

(
wτ, yτ

) ≤ η.
(3.43)

Since x(n) is stable under disturbances fromH(f, B), we obtain

ρ
(
xn, zn

)
< ε, n ≥ τ + nk, (3.44)

that is,

ρ
(
wn, yn

)
< ε, n ≥ τ. (3.45)

This shows that w(n) = xk(n) is stable under disturbances from H(fnk , Bnk) with respect to
K for (ε, η(ε)).
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Now, from the almost periodicity, there exists a subsequence of (nk), which we denote
by (nk) again, such that f(n + nk, x) converges uniformly on Z × K and B(n + nk, j, x, y)
converges uniformly on Z×T ×K×K, where T is a compact subset of Z−, as k→∞. It follows
that for any ε > 0, there exists a k1(ε) > 0 such that k,m ≥ k1 implies

∣∣f(n + nk, x
) − f

(
n + nm, x

)∣∣ < η, n ∈ Z, x ∈ K,

∣∣B(n + nk, j, x, y
) − B

(
n + nm, j, x, y

)∣∣ < η

2

(3.46)

for all n ∈ Z, j ∈ [−N, 0], x, y ∈ K, where N is a positive integer such that

∞∑
j=N+1

1
2j

<
η

2
. (3.47)

Since

π
(
Bnk , Bnm

) ≤
N∑
j=1

πj

(
Bnk , Bnm

)
2j
[
1 + πj

(
Bnk , Bnm

)] +
∞∑

j=N+1

1
2j

≤
N∑
j=1

πj

(
Bnk , Bnm

)
2j

+
η

2

< η,

(3.48)

we have

π
((
fnk , Bnk

)
,
(
fnm, Bnm

))
< η (3.49)

whenever k,m ≥ k1. We can assume that xk(n) converges uniformly on any compact interval
in Z

−. Thus, there exists a k2(ε) > 0 such that ρ(xk
0 , x

m
0 ) < η whenever k,m ≥ k2. To show that

x(n) is asymptotically almost periodic, we will show that

∣∣xk(n) − xm(n)
∣∣ < ε, (3.50)

if k,m ≥ k0(ε) = max{k1(ε), k2(ε)}, where xm(n) is a solution of

x(n + 1) = f
(
n + nm, x(n)

)
+

0∑
j=−∞

B
(
n + nm, j, x(n + j), x(n)

)
(3.51)

such that xm
0 (s) ∈ K for all s ≤ 0 and (fnm, bnm) ∈ H(fnk , Bnk) = H(f, B). Since

π
((
fnk , Bnk

)
,
(
fnm, Bnm

))
< η,

ρ
(
xk
0 , x

m
0

)
< ε

(3.52)
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whenever k,m ≥ k0, we have

ρ
(
xk
n, x

m
n

)
< ε, n ≥ 0, k,m ≥ n0 (3.53)

from the fact that xk(n) is stable under disturbances from H(fnk , Bnk) with respect to K.
Consequently, we obtain

∣∣x(n + nk

) − x(n + nm

)∣∣ ≤ sup
s∈[−1,0]

∣∣x(n + nk + s
) − x

(
n + nm + s

)∣∣
(3.54)

whenever k,m ≥ k0. Therefore, x(n) is asymptotically almost periodic.

Finally, in view of Theorems 3.10 and 3.2, we obtain the following.

Corollary 3.11. Under assumptions (H1) and (H2) if the bounded solution x(n) of (2.7) is stable
under disturbances fromH(f, B) with respect to K, then (2.7) has an almost periodic solution.

Remark 3.12. Song and Tian obtained the result for the existence of almost periodic solution
to (2.7) by showing that if the bounded solution x(n) of (2.7) is totally stable, then it is an
asymptotically almost periodic solution in [3, Theorem 4.4]. Note that total stability implies
stability under disturbances from hull for (2.7) in view of Theorem 3.8.

Acknowledgments

The authors would like to thank the referees for their helpful comments and suggestions
which led to an important improvement of original manuscript. This work was supported by
the Second Stage of Brain Korea 21 Project in 2008.

References

[1] Y. Hamaya, “Stability property for an integrodifferential equation,” Differential and Integral Equations,
vol. 6, no. 6, pp. 1313–1324, 1993.

[2] Y. Hamaya, “Periodic solutions of nonlinear integrodifferential equations,” Tohoku Mathematical
Journal, vol. 41, no. 1, pp. 105–116, 1989.

[3] Y. Song and H. Tian, “Periodic and almost periodic solutions of nonlinear discrete Volterra equations
with unbounded delay,” Journal of Computational and Applied Mathematics, vol. 205, no. 2, pp. 859–870,
2007.

[4] Y. Song, “Asymptotically almost periodic solutions of nonlinear Volterra difference equations with
unbounded delay,” Journal of Difference Equations and Applications, vol. 14, no. 9, pp. 971–986, 2008.

[5] S. K. Choi and N. J. Koo, “Asymptotic property of linear Volterra difference systems,” Journal of
Mathematical Analysis and Applications, vol. 321, no. 1, pp. 260–272, 2006.

[6] C. Corduneanu, Almost Periodic Functions, Chelsea, New York, NY, USA, 2nd edition, 1989.
[7] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,

Applied Mathematical Sciences, vol. 14, Springer, New York, NY, USA, 1975.
[8] C. Zhang, Almost Periodic Type Functions and Ergodicity, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 2003.
[9] Y. Hamaya, “Total stability property in limiting equations of integrodifferential equations,” Funkcialaj

Ekvacioj, vol. 33, no. 2, pp. 345–362, 1990.
[10] M. N. Islam, “Almost periodic solutions of nonlinear integral equations,” Nonlinear Analysis: Theory,

Methods & Applications, vol. 30, no. 2, pp. 865–869, 1997.
[11] I. Malkin, “Stability in the case of constantly acting disturbances,” Prikladnaya Matematika i Mekhanika,

vol. 8, pp. 241–245, 1944.



S. K. Choi and N. Koo 15

[12] P. Anderson and S. R. Bernfeld, “Total stability of scalar differential equations determined from their
limiting functions,” Journal of Mathematical Analysis and Applications, vol. 257, no. 2, pp. 251–273, 2001.

[13] Y. Hino and S. Murakami, “Total stability and uniform asymptotic stability for linear Volterra
equations,” Journal of the London Mathematical Society, vol. 43, no. 2, pp. 305–312, 1991.

[14] X. Liu and S. Sivasundaram, “Stability of nonlinear systems under constantly acting perturbations,”
International Journal of Mathematics and Mathematical Sciences, vol. 18, no. 2, pp. 273–278, 1995.

[15] T. Yoshizawa, “Asymptotically almost periodic solutions of an almost periodic system,” Funkcialaj
Ekvacioj, vol. 12, pp. 23–40, 1969.

[16] G. R. Sell, “Nonautonomous differential equations and topological dynamics. I. The basic theory,”
Transactions of the American Mathematical Society, vol. 127, pp. 241–262, 1967.

[17] G. R. Sell, “Nonautonomous differential equations and topological dynamics. II. Limiting equations,”
Transactions of the American Mathematical Society, vol. 127, pp. 263–283, 1967.

[18] S. Zhang and G. Zheng, “Almost periodic solutions of delay difference systems,” Applied Mathematics
and Computation, vol. 131, no. 2-3, pp. 497–516, 2002.


	1. Introduction
	2. Preliminaries
	3. Main results
	Acknowledgments
	References

