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Abstract In this work, we discuss the accretion onto
static spherically symmetric regular black holes for specific
choices of the equation of state parameter. The underlying
regular black holes are charged regular black holes using
the Fermi–Dirac distribution, logistic distribution, nonlinear
electrodynamics, respectively, and Kehagias–Sftesos asymp-
totically flat regular black holes. We obtain the critical radius,
critical speed, and squared sound speed during the accretion
process near the regular black holes. We also study the behav-
ior of radial velocity, energy density, and the rate of change
of the mass for each of the regular black holes.

1 Introduction

At present, the type 1a supernova [1], cosmic microwave
background (CMB) radiation [2], and the large scale struc-
ture [3,4] have shown that our universe is currently in an
accelerating expansion period. Dark energy is responsible for
this acceleration and it has the strange property that it vio-
lates the null energy condition (NEC) and the weak energy
condition (WEC) [5,6] and produces strong repulsive grav-
itational effects. Recent observations suggests that approxi-
mately 74 % of our universe is occupied by dark energy and
the rest 22 and 4 % is of dark matter and ordinary matter,
respectively. Nowadays dark energy is the most challenging
problem in astrophysics. Many theories have been proposed
to handle this important problem in last two decades. Dark
energy is modeled using the relationship between energy den-
sity and pressure by a perfect fluid with the equation of state
(EoS) ρ = ωp. The candidates of dark energy are a phantom-
like fluid (ω < −1), quintessence (−1 < ω < −1/3),
and the cosmological constant (ω = −1) [7]. Other mod-
els are also proposed as an explanation of dark energy, like
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k-essence, DBI-essence, Hessence, dilation, tachyons, Chap-
lygin gas, etc. [8–16].

On the other hand, the existence of essential singulari-
ties [which leads to various black holes (BHs)] is one of the
major problems in general relativity (GR) and it seems to be a
common property in most of the solutions of Einstein’s field
equations. To avoid these singularities, regular BHs (RBHs)
have been developed. These BHs are solutions of Einstein’s
equation with no essential singularity; hence their metric is
regular everywhere. The strong energy condition (SEC) is
violated by these RBHs somewhere in space-time [17,18],
while some of these satisfy the WEC. However, it is neces-
sary for those RBHs to satisfy the WEC having a de Sitter
center. The study of an RBHs solutions is very important for
understanding the gravitational collapse. Since the Penrose
cosmic censorship conjecture claims that singularities pre-
dicted by GR [19,20] occur, they must be explained by event
horizons. Bardeen [21] has done pioneering work in this way
by presenting the RBH known as the “Bardeen black hole”,
satisfying the WEC.

The discussion as regards the properties of the BHs have
led to many interesting phenomena. Accretion onto the BHs
is one of them. When massive condensed objects (e.g. black
holes, neutron stars, stars etc.) try to capture a particle of the
fluid from its surroundings, then the mass of condensed object
has been effected. This process is known as accretion of fluid
by condensed object. Due to accretion the planets and star
form inhomogeneous regions of dust and gas. Supermassive
BHs exist at the center of giant galaxies, which suggests that
they could have formed through an accretion process. It is not
necessary that the mass of the BH increases due to the accre-
tion process, sometimes in-falling matter is thrown away like
cosmic rays [22]. For a first time, the problem of accretion on
a compact object was investigated by Bondi using the New-
tonian theory of gravity [23]. After that many researchers
such as Michel [24], Babichev et al. [25,26], Jamil [27] and
Debnath [31] have discussed the accretion on Schwarzschild
BHs under different aspects. Kim and Kang [29] and Jimenez
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Madrid and Gonzalez-Diaz [30] studied accretion of dark
energy on a static BH and a Kerr–Newman BH. Sharif and
Abbas [28] discussed the accretion on stringy charged BHs
due to phantom energy.

Recently, the framework of accretion on general static
spherical symmetric BHs has been presented by Bahamonde
and Jamil [22]. We have extended this general formalism for
some RBHs. We analyze the effect of the mass of a RBH by
choosing different values of the EoS parameter. This paper is
organized as follows: In Sect. 2, we derive a general formal-
ism for a spherically static accretion process. In Sect. 3, we
discuss some RBHs and for each case, we explain the critical
radius, critical points, speed of sound, radial velocities pro-
file, energy density, and the rate of change of the RBH mass.
In the end, we conclude our results.

2 General formalism for accretion

The generalized static spherical symmetry is characterized
by the following line element:

ds2 = −X (r)dt2 + 1

Y (r)
dr2

+Z(r)(dθ2 + sin θ2dφ2), (1)

where X (r) > 0, Y (r) > 0, and Z(r) > 0 are functions of
r only. The energy-momentum tensor is considered in terms
of a perfect fluid which is isotropic and inhomogeneous and
defined as follows:

Tμν = (ρ + p)uμuν + pgμν, (2)

where p is the pressure, ρ is the energy density, and uμ is the
four-velocity, which is given by

uμ = dxμ

dτ
= (ut , ur , 0, 0), (3)

where τ is the proper time. uθ and uφ both are equal to
zero due to spherical symmetry restrictions. Here the pres-
sure, the energy density, and the four-velocity components
are only functions of r . The normalization condition of the
four-velocity must satisfy uμuμ = −1, and we get

ut := dt

dτ
=

√
u2 + Y

XY
, (4)

where u = dr/dτ = ur [22], ut can be negative or positive
due to the square root which represents the backward or for-
ward in time conditions. However, u < 0 is required for the
accretion process, otherwise for any outward flows u > 0.
Both inward and outward flows are very important in astro-
physics. One can assume that the fluid is determined by dark

energy or any kind of dark matter. For a spherically sym-
metric BH, the proper dark energy model could be obtained
by generalizing Michel’s theory. In dark energy accretion,
Babichev et al. [25] have introduced the above generaliza-
tion of the Schwarzschild black hole. Similarly, some authors
[22,31] have extended this procedure for a generalized static
spherically symmetric BH. In these works, the equation of
continuity plays an important role, which turns out to be

(ρ + p)u
X (r)

Y (r)

√
u2 + Y (r)Z(r) = A0, (5)

where A0 is the constant of integration. Using uμT
μν
μ = 0,

we obtain the continuity (or relativistic energy flux) equation

uμρ,μ + (ρ + p)uμ

;μ = 0. (6)

Furthermore, we assume p = p(ρ), a certain EoS in this
case. After some calculations, the above equation becomes

ρ
′

ρ + p
+ u

′

u
+ X

′

2X
+ Y

′

2Y
+ Z

′

Z
= 0, (7)

where a prime represents the derivative with respect to r . By
integrating the last equation, we obtain

uZ(r)

√
X (r)

Y (r)
e
∫ dρ

ρ+p(ρ) = −A1, (8)

where A1 is the constant of integration. By equating Eqs. (5)
and (8), we get

(ρ + p)

√
X (r)

Y (r)

√
u2 + Ye− ∫ dρ

ρ+p(ρ) = − A0

A1
= A3, (9)

where A3 is another constant, depending upon A0 and A1.
Moreover, the equation of mass flux yields

ρu

√
X (r)

Y (r)
Z(r) = A2, (10)

where A2 is the constant of integration. By using Eqs. (5)
and (10), we obtain the following important relation:

(ρ + p)

ρ

√
X (r)

Y (r)

√
u2 + Y = A1

A2
≡ A4, (11)

where A4 is arbitrary constant which depends on A1 and A2.
Taking differentials of Eqs. (10) and (11) and some manipu-
lation lead to
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(
V 2 − u2

u2 + Y

)
du

u
+

(
(V 2 − 1)

(
X

′

X
− Y

′

Y

)

+ Z
′

Z
V 2 − Y

′

2(u2 + Y )

)
dr = 0. (12)

In addition, we have introduced the variable

V 2 ≡ d ln ρ + p

d ln ρ
− 1. (13)

If the bracketed terms in Eq. (12) vanish, we obtain the critical
point (where the speed of sound equals the speed of the flow),
which is located at r = rc. Hence at the critical point, we get

V 2
c = u2

c

u2
c + Y (rc)

, (14)

and Eq. (12) turns out to be

(V 2
c − 1)

(
X

′
(rc)

X (rc)
− Y

′
(rc)

Y (rc)

)
+ Z

′
(rc)

Z(rc)
V 2
c

= Y
′
(rc)

2(u2
c + Y (rc))

. (15)

Also, uc is the critical speed of the flow evaluated at the crit-
ical value r = rc. We can decouple the above two equations
and obtain

u2
c = Y (rc)Z(rc)X

′
(rc)

2X (rc)Z
′
(rc)

,

V 2
c = Z(rc)X

′
(rc)

2X (rc)Z
′
(rc) + Z(rc)X

′
(rc)

. (16)

The speed of sound is evaluated at r = rc as follows:

c2
s = dp

dρ
|r=rc = A4

√
Y (rc)

X (rc)(u2
c + Y (rc))

− 1. (17)

Obviously, u2
c and V 2

c can never be negative and hence

X
′
(rc)

Z ′
(rc)

> 0. (18)

Moreover, the rate of change of the BH mass can be
defined as follows [31]:

Ṁacc = 4π A3M
2(ρ + p). (19)

Here a dot is for a derivative with respect to time. We can
observe that the mass of the BH will increase for the fluid,
ρ + p > 0, and hence the accretion occurs outside the BH.
Otherwise, for ρ+ p < 0 like a fluid, the mass of the BH will
decrease. The mass of the BH cannot remain fixed because it
will decrease due to Hawking radiation, while it will increase

due to accretion. If we consider the time dependence of the
BH mass, then we first assume that it will not change the
geometry and symmetry of space-time. Hence the space-time
metric remains static spherically symmetric [22].

3 Spherically symmetric metrics with charged RBHs

In this section, we discuss the spherically symmetric metrics
with charged RBHs in which X (r) = Y (r). For this assump-
tion, Eq. (16) gives

u2
c = Z(rc)X

′
(rc)

2Z ′
(rc)

,

V 2
c = Z(rc)X

′
(rc)

2X (rc)Z
′
(rc) + Z(rc)X

′
(rc)

. (20)

Although our focus is on charged RBHs metrics with event
horizons, the present analysis is forbidden for a horizon
space-time. In many cases, we are concerned with critical
values (critical radius), critical velocities, speed of sound in
fluid, behavior of energy density of fluid, radial velocity, and
the rate of change of the mass of the accreting objects. So the
horizon is not involved anywhere [22].

3.1 Charged RBH using Fermi–Dirac distribution

The said RBH solution has the following metric functions
[32]:

X (r) = 1 − 2M

r

(
ξ(x)(βr)

ξ∞

)β

= Y (r), (21)

where the Fermi–Dirac distribution function is

ξ(x) = 1

ex + 1
. (22)

By replacing x = q2

Mβr , we can obtain the distribution func-
tion as

ξ(βr) = 1

e
q2
Mβr + 1

, (23)

with normalization factor ξ∞ = 1
2 . Also the distribution

function satisfies

ξ(r)

ξ∞
→ 1, (24)

where r → ∞. Hence the metric functions turn out to be

X (r) = Y (r) = 1 − 2M

r

(
2

e
q2
Mr + 1

)β

, Z(r) = r2.

(25)
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Fig. 1 Velocity profile against x = r
M for β = 1, q = 1.055M ,

M = 1, and A4 = 0.45 of the charged RBH using the Fermi–Dirac
distribution

If we set β → 0 and β → ∞, we obtain

X (r) = Y (r) = 1 − 2M

r
e

−q2

Mr , (26)

X (r) = Y (r) = 1 − 2M

r
e

−q2

2Mr . (27)

In both equations, the difference of the factor 2 must be noted
[32].

It is possible to integrate the conversation laws and obtain
analytical expressions of the physical parameters. For sim-
plicity, we will study the barotropic case where the fluid has
the equation p(r) = ωρ(r). Using (5) and (11), we obtain

u(r)

=

((
2M

(
1
2e

q2

Mr + 1
2

)−β

− r

)
(ω + 1)2 + A2

4r

)1/2

(ω + 1)
√
r

,

(28)

ρ(r)

= A2(ω + 1)

r3/2

√√√√(
2M

(
1
2e

q2
Mr + 1

2

)−β

− r

)
(ω + 1)2 + A2

4r

.

(29)

The velocity profile for different values of ω is shown
in Fig. 1. Here ω = 1, 0,−1 refer to the stiff, dust, and
cosmological constant cases, respectively, and −1 < ω <

Fig. 2 Energy density against x = r
M for β = 1,q = 1.055M , M = 1,

A2 = 1, and A4 = 0.45 of the charged RBH using the Fermi–Dirac
distribution

−1/3 and ω < −1 refer to quintessence and phantom energy.
It can be seen that for ω = −1.5,−2 the radial velocity of the
fluid is negative and it is positive for ω = −0.5, 0, 0.5, 1. If
the flow is outward then u < 0 is not allowed and vice versa.
In the case of ω = −1.5,−0.5 the fluid is at rest at x = 10.
Figure 2 represents the behavior of energy density of fluids
in the surrounding area of the RBH. Obviously the WEC and
DEC satisfied by dust, stiff, and quintessence fluids. When
the phantom fluid (ω = −1.5,−2) moves toward the RBH
then the energy density decreases and the reverse will happen
for dust, stiff, and quintessence fluids (ω = −0.5, 0, 0.5, 1).
Asymptotically ρ → 0 at infinity for ω = −1.5,−0.5, while
it approaches the maximum at x = 1.2, 1.3, 1.8 and near the
RBH.

Using this metric, Eqs. (19) and (29), the rate of change
of the mass of the RBH due to accretion becomes

Ṁ = 4π A2
2A4(ω + 1)

r3/2

√√√√(
2M

(
1
2e

q2
Mr + 1

2

)−β

− r

)
(ω + 1)2 + A2

4r

.

(30)

Figure 3 represents the change in RBH mass for different
values of ω. The mass of the RBH will increase near it and
at x = 1.2, 1.3, 1.7 for ω = 1, 0.5, 0, respectively. On the
other hand, the mass of the RBH decreases near it and at
x = 1.7 for ω = −2. Hence the mass of the RBH increases
due to the accretion of quintessence, dust, and stiff matter,
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Fig. 3 Rate of change of the mass of a RBH against x = r
M for β = 1,

q = 1.055M , M = 1, A2 = 1, and A4 = 0.45 of a charged RBH using
the Fermi–Dirac distribution

Table 1 Charged RBH using the Fermi–Dirac distribution

ω rc u(rc) c2
s

−2 1.37495 0.3138832070 0.0000002580

−1.5 7.5044 0.2382908936 −0.4999997476

−0.5 7.5044 −0.2382908936 −0.4999997476

0 1.3749 −0.3138832070 0.0000002580

0.5 1.092 −0.2476468259 0.503110174

1 0.999 −0.1998921298 1.002986469

while it decreases due to the accretion of phantom-like flu-
ids.

The critical values, critical velocities, and speed of sound
are obtained for different values of the EoS parameter in
Table 1. The critical radius is shifting to the left when ω ≥
0 increases. Thus, the in-falling fluid acquires supersonic
speeds closer to RBH. The same critical radius is obtained
for ω = −2, 0 and ω = −1.5,−0.5 with the same critical
velocities but in an opposite direction. We get a negative
speed of sound at x = 7.5044 and a positive speed of sound
for the remaining critical radius. Also, the speed of sound
increases near the RBH. For this metric, we find that

u2
c =

2β−1
((

Mr − q2
)
e

q2

βMr + Mr

)

r2

(
e

q2
βMr + 1

)β+1 , (31)

V 2
c =

2β

((
Mr−q2

)
e

q2

βMr +Mr

)

2r2

(
e

q2
βMr +1

)β+1

−2β

((
3Mr+q2

)
e

q2
βMr +3Mr

) .

(32)

Also, the condition (18) yields

2β

((
Mr − q2

)
e

q2

βMr + Mr

)

r4

(
e

q2
βMr + 1

)β+1 > 0. (33)

3.2 Charged RBH using logistic distribution

The logistic distribution function is [32]

ξ(x) = e−x

(e−x + 1)2 , (34)

in which we replace x = 2q2

Mβr ; then we obtain the distribution
function

ξ(βr) = e
−2q2

Mβr(
e

−2q2
Mβr + 1

)2 , (35)

with normalization factor σ∞ = 1
4 . Also the distribution

function satisfies

ξ(r)

ξ∞
→ 1, (36)

where r → ∞. The horizons can be obtained for β = 1
where q = 1.055M . The metric function can be written as

X (r) = Y (r) = 1 − 2M

r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4e
−

√
2q2
βMr⎛

⎝e
−

√
2q2
βMr + 1

⎞
⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

β

,

Z(r) = r2. (37)

If we set β → 0, then we obtain the Schwarzschild BH, and
if we set β → ∞ we get

X (r) = Y (r) = 1 − 2M

r
e

−q2

2Mr . (38)

It is noteworthy that this metric function corresponds to an
Ayon-Beato and Garca BH [32].

The radial velocity and energy density for the metric (37)
using Eqs. (5) and (10) is given by
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Fig. 4 Velocity profile against x = r
M for β = 1, q = 1.055M ,

M = 1, and A4 = 0.4 of a charged RBH using the logistic distribution

u(r) = 1

(ω + 1)
√
r

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4e
−

√
2q2
βMr⎛

⎝e
−

√
2q2
βMr +1

⎞
⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

β

+r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(ω+1)2−A2
4r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1/2

,

(39)

ρ(r) = − A2(ω + 1)

r3/2

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝2M

⎛
⎜⎜⎜⎝ 4e

−
√

2q2
βMr⎛

⎝e
−

√
2q2
βMr+1

⎞
⎠

2

⎞
⎟⎟⎟⎠

β

−r

⎞
⎟⎟⎟⎠ (ω+1)2+A2

4r

⎞
⎟⎟⎟⎠

1/2 .

(40)

The velocity profile for different values of ω is shown
in Fig. 4. It can be observed that for ω = −1.5,−2 the
radial velocity of the fluid is negative and it is positive
for ω = −0.5, 0, 1. If the flow is inward then u > 0 is
not allowed and vice versa. In the case of ω = −2, 0 the
fluid is at rest at x ≈ 5. Figure 5 represents the behavior
of energy density of fluids in the surrounding area of the
RBH. Obviously the WEC and DEC are satisfied by dust,
stiff, and quintessence fluids. When a phantom-like fluid
(ω = −1.5,−2) moves toward a RBH the energy density
decreases and the reverse will happen for dust, stiff, and
quintessence fluids (ω = −0.5, 0, 0.5, 1).

Fig. 5 The energy density against x = r
M for β = 1, q = 1.055M ,

M = 1, A2 = 1, and A4 = 0.4 of a charged RBH using logistic
distribution

The Ṁ of an RBH for distinct EoS parameters is obtained
by using (19),

Ṁ

= − 4π A2
2A4(ω + 1)

r3/2

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝2M

⎛
⎜⎜⎜⎜⎜⎝

4e
−

√
2q2
βMr⎛

⎝e
−

√
2q2
βMr+1

⎞
⎠

2

⎞
⎟⎟⎟⎟⎟⎠

β

−r

⎞
⎟⎟⎟⎟⎟⎠ (ω+1)2+A2

4r

⎞
⎟⎟⎟⎟⎟⎠

1/2 .

(41)

Figure 6 represents the change in the RBH mass against
x. It is evident that the mass of the RBH increases due to
quintessence, dust, and stiff fluids and it decreases due to
phantom fluids.

The critical radius, the critical velocity, and the speed of
sound are obtained for different values of EoS parameter
in Table 2. The critical radius is shifting to the right when
ω ≥ 0 increases. Thus the in-falling fluid acquires super-
sonic speeds closer to the RBH. For a phantom-like fluid,
quintessence, dust, and stiff matter the critical radius and crit-
ical velocities are explained in Table 2. Same critical radius
is obtained for ω = −2, 0 and ω = −1.5,−0.5 with the
same critical velocities but different in sign. We obtained a
negative speed of sound at x = 1.36375, 3.777412 and pos-
itive speed of sound at x = 1.12974, 1.1850. Near the RBH
the speed of sound will increase. For this metric we find that
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Fig. 6 Rate of change of the mass of a RBH against x = r
M for β = 1,

q = 1.055M , M = 1, A2 = 1, and A4 = 0.4 of a charged RBH using
the logistic distribution

u2
c =

2−2+2β
√
Me

√
2q2β
Mr

((√
2qβ + 2

√
βMr

)
+

(
−√

2qβ + 2
√

βMr
)
e

√
2q2β
Mr

)
√

βr3/2

(
e

√
2q2β
Mr

) , (42)

V 2
c =

(
2βMe

√
2q2β
Mr

((√
2qβ + 2

√
βMr

)
+

(
−√

2qβ + 2
√

βMr
)
e

√
2q2β
Mr

))

×
⎛
⎝4

√
βMr3/2

(
e

√
2q2β
Mr

)
− 2βe−

√
2βq2
Mr

⎛
⎝ (

−√
2Mqβ + 6

√
βrM3/2

)

× e
−

√
2q2
βMr + √

2Mqβ + 6
√

βrM3/2

⎞
⎠

⎞
⎠

−1

. (43)

Also, the condition (18) yields

2−1+2β
√
Me−

√
2q2β
Mr

((√
2qβ + 2

√
βMr

)
e−

√
2q2β
Mr +

(
−√

2qβ + 2
√

βMr
))

√
βr7/2

(
e

√
2q2β
Mr

) > 0. (44)

3.3 Charged RBH from nonlinear electrodynamics

We use the line element

X (r) = Y (r) = 1 − 2M(r)

r
. (45)

Table 2 Charged RBH using logistics distribution

ω rc u(rc) c2
s

−2 1.36375 −0.3998729763 −0.1018620364

−1.5 3.777412 −0.3138895411 −0.5007414180

−0.5 3.77412 0.3138895411 −0.5007414180

0 1.36375 0.3998724197 −0.1018620364

0.5 1.1850 0.4018068205 0.116622918

1 1.12974 0.4014558621 0.231766770

Here the function

M(r) = M

(
1 − tan h

(
q2

2Mr

))
, (46)

and its associated electric field source is

E = q

r2

(
1 − tan h2

(
q2

2Mr

))

×
(

1 − q2

4Mr
tan h

(
q2

2Mr

))
, (47)

where q and M represent the electric charge and the mass,
respectively [33]. The solution elaborates RBH and its global
structure is like R-N BH. The asymptotic behavior of the
solution is

X (r) = 1 − 2M

r
+ q2

r2 + O

(
1

r4

)
. (48)
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Fig. 7 Velocity profile against x = r
M for q = 1.055M , M = 1, and

A4 = 0.7 of a charged RBH from nonlinear electrodynamics

So we have the metric function

X (r) = Y (r)

= 1 − 2M

r

(
M

(
1 − tan h(

q2

2Mr
)

))
, Z(r) = r2.

(49)

The radial velocity and energy density for this metric are
given by

u(r) =

√(
−2M tan h

(
q2

2Mr

)
+ 2M − r

)
(ω + 1)2 + A2

4r

(ω + 1)
√
r

,

(50)

ρ(r) = (ω + 1)A2

r3/2

√(
−2M tan h(

q2

2Mr +2M−r)
)

(ω+1)2+A2
4r

.

(51)

The absolute value of the velocity profile for different
values of ω is shown in Fig. 7. It can be observed that for
ω = −2 the radial velocity of the fluid is negative and it is
positive for ω = 0.5, 0, 1. If the flow is inward then u > 0 is
not allowed and vice versa. In the case of ω = −2, 0 the fluid
is at rest at x ≈ 5. Figure 8 represents the energy density of
fluids in the region of the RBH. It is apparent that the WEC
and DEC is satisfied by phantom fluids. When the phantom
fluids moves toward the RBH the energy density increases;
on the other hand it decreases for dust and stiff matter.

Fig. 8 Energy density against x = r
M for q = 1.055M , M = 1, A2 =

1, and A4 = 0.7 of a charged RBH from nonlinear electrodynamics

The rate of change of the mass is given by

Ṁ=− 4π A2
2A4(ω+1)

r3/2

√(
−2M tan h

(
q2

2Mr +2M−r
))

(ω+1)2+A2
4r

.

(52)

The rate of change of in the RBH mass against x is plotted
in Fig. 9. Due to accretion of dust and stiff matter the mass
of the RBH will increase for small values of x and vice versa
for phantom fluids. It is also noted that the maximum rate
of the RBH mass increases due to ω = 1 followed by ω =
0.5, 0,−2.

The critical values, critical velocities, and speed of
sound are obtained for different values of the EoS param-
eter in Table 3. The critical radius is shifting to the
right when ω ≥ 0 increases. The speed of sound is
negative at x = 3.685523529 and near the BH the
speed of sound will increase. For this RBH we find
that

u2
c =

q2
(

tan h2
(

q2

2Mr

)
−1

)
+ 2Mr

(
− tan h

(
q2

2Mr

)
+1

)
4r2 ,

(53)

V 2
c =

q2
(

tan h2
(

q2

2Mr

)
−1

)
+2Mr

(
− tan h

(
q2

2Mr

)
+1

)
4r2+q2

(
tan h2

(
q2

2Mr

)
−1

)
+6+Mr

(
tan h

(
q2

2Mr

)
−1

) .

(54)
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Fig. 9 Rate of change of the mass of an RBH against x = r
M for

q = 1.055M , M = 1, A2 = 1, and A4 = 0.7 of charged RBH from
nonlinear electrodynamics

Table 3 Charged RBH from nonlinear electrodynamics

ω rc u(rc) c2
s

−2 3.685523529 −0.2993097288 −0.125

0 3.685523529 0.2993097288 −0.125

0.5 1.506050868 0.2844719573 0.312500584

1 1.106971797 0.1633564212 0.750003072

Also, the condition (18) yields(
tan h2

(
q2

2Mr

)
− 1

)
q2 + 2Mr

(
− tan h

(
q2

2Mr

)
+ 1

)
2r4 > 0.

(55)

3.4 Kehagias–Sftesos asymptotically flat BH

KS studied the following BH metric:

X (r) = Y (r) = 1 + br2 −
√
b2r4 + 4Mbr , Z(r) = r2.

(56)

In the frame work of Horava theory, where m is the mass,
b is the positive constant related to the coupling constant of
the theory. The metric asymptotically behaves like the usual
Schwarzschild BH [34],

X (r) = Y (r) ≈ 1 − 2M

r
+ O

(
1

r4

)
, (57)

Fig. 10 Velocity profile against x = r
M for M = 1, b = 0.9 and

A4 = 0.9 of a Kehagias–Sftesos asymptotically flat BH

for r 	 ( rb )1/3. The KS metric has two horizons at

r± = M

(
1 ±

√(
1 − 1

2bM2

))
, (58)

with 2bM2 ≥ 1 [34].
The radial velocity and energy density are given by

u(r) =
(
A2

4 +
(√

b2r4 + 4Mbr − br2 − 1
)

(ω + 1)2
)1/2

ω + 1
,

(59)

ρ(r) = A2(ω + 1)

r2
(
A2

4+
(√

b2r4+4Mbr−br2−1
)

(ω + 1)2
)1/2 .

(60)

The radial velocity for different values of ω is shown in
Fig. 10. The radial velocity is negative for a phantom-like
fluid and positive for quintessence, dust, and stiff matter. The
evolution of the energy density of the fluids in the surrounding
area of an RBH is plotted in Fig. 11. The energy density for
phantom fluids is negative, while the energy density for stiff,
dust, and quintessence fluids is positive.

For this RBH, rate of change of the mass becomes

Ṁ = 4π A2
2A4(ω + 1)

r2
(
A2

4 +
(√

b2r4 + 4Mbr − br2 − 1
)

(ω + 1)2
)1/2 .

(61)
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Fig. 11 Energy density against x = r
M for M = 1, A2 = 1, b = 0.9,

and A4 = 0.9 of the Kehagias–Sftesos asymptotically flat BH

Fig. 12 Rate of change of the mass of an RBH against x = r
M for

M = 1, A2 = 1, b = 0.9, and A4 = 0.9 of a Kehagias–Sftesos
asymptotically flat BH

Figure 12 represents the rate of change in an RBH mass
against x. We see that the RBH mass will increase for ω =
−0.35, 0, 0.5, 1, and it will decrease for ω = −2.

The critical values, critical velocities, and speeds of sound
for different values of ω are presented in Table 4. For
quintessence matter, we obtain a very large critical radius.
Similarly to the case before, we obtain the same critical radius

Table 4 Kehagias–Sftesos asymptotically flat BH

ω rc u(rc) c2
s

−2 7.8946 −0.2505321935 0.0000008330

−0.34 30267.74 0.6327458490 −0.0513167023

0 7.8946 0.2505321736 0.0000008330

0.5 2.3185 0.3961993774 0.500013404

1 1.8183 0.3888079314 0.500013404

for dust and phantom-like fluids and the same critical veloc-
ities but different in sign. If we increase the EoS parameter
then the critical radius is shifted near RBH. It is evident that
the critical velocity is negative for a phantom-like fluid and
positive for quintessence, dust, and stiff matter. The speed
of sound is negative at x = 30267.74 and positive for the
remaining critical radius. For this metric, we find that

u2
c = r

4

⎛
⎝2br − 2b2r3 + 2Mb√

r
(
b2r3 + 4Mb

)
⎞
⎠ , (62)

V 2
c =

r2
(

2br − 2b2r3+2Mb√
r(b2r3+4Mb)

)

r2

(
2br− 2b2r3+2Mb√

r(b2r3+4Mb)

)
+4r

(
1+br2−

√
r
(
b2r3+4Mb

)) .

(63)

The condition (18) becomes

(
2br − 2b2r3+2Mb√

r(b2r3+4Mb)

)
2r

> 0. (64)

4 Concluding remarks

In this work, we have investigated the accretion onto various
RBHs (such as an RBH using the Fermi–Dirac distribution,
a RBH using the logistic distribution, an RBH using nonlin-
ear electrodynamics, and a Kehagias–Sftesos asymptotically
flat RBH) which asymptotically leads to Schwarzschild and
Reissner–Nordstrom BHs (most of them satisfy the WEC).
We have followed the procedure of Bahamonde and Jamil
[22] and obtained the critical points, critical velocities, and
the behavior of the speed of sound for the chosen RBHs.
Moreover, we have analyzed the behavior of the radial veloc-
ity, the energy density, and the rate of change of the mass
for RBHs for various EoS parameters. For calculating these
quantities, we have assumed the barotropic EoS and found the
relationship between the conservation law and the barotropic
EoS. We have found that the radial velocity (u) of the fluid
is positive for stiff, dust, and quintessence matter and it is
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negative for phantom-like fluids. If the flow is inward then
u < 0 is not allowed and u > 0 is not allowed for outward
flow. Also, we have seen that the energy density remains pos-
itive for quintessence, dust, and stiff matter, while it becomes
negative for a phantom-like fluid near RBHs.

In addition, the rate of change of the mass of the BH is a
dynamical quantity, so the analysis of the nature of its mass
in the presence of various dark energy models may become
very interesting in the present scenario. Also, the sensitivity
(increasing or decreasing) of the BHs’ mass depends upon
the nature of the fluids which accrete onto it. Therefore, we
have considered the various possibilities of accreting fluids,
such as dust and stiff matter, quintessence, and phantom. We
have found that the rate of change of the mass of all RBHs
increases for dust and stiff matter, and quintessence-like flu-
ids, since these fluids do not have enough repulsive force.
However, the mass of all RBHs decreases in the presence
of a phantom-like fluid (and the corresponding energy den-
sity and radial velocity become negative) because it has a
strong negative pressure. This result shows the consistency
with several works [22,31,35–47]. Also, this result favors
the phenomenon that the universe undergoes the big rip sin-
gularity, where all the gravitationally bounded objects are
dispersed due to the phantom dark energy.

Although we have assumed the presence of a static fluid,
this may be extended for a non-static fluid without assuming
any EoS and thus can be obtained more interesting results.
This is left for future considerations.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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Commons license, and indicate if changes were made.
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