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Abstract Therapeutic options for patients with amyotrophic
lateral sclerosis (ALS) are currently limited. However, recent
studies show that almost all cases of ALS, as well as tau-
negative frontotemporal dementia (FTD), share a common
neuropathology characterized by the deposition of TAR-
DNA binding protein (TDP)-43-positive protein inclusions,
offering an attractive target for the design and testing of novel
therapeutics. Here we demonstrate how diverse environmental
stressors linked to stress granule formation, as well as muta-
tions in genes encoding RNA processing proteins and protein
degradation adaptors, initiate ALS pathogenesis via TDP-43.
We review the progressive development of TDP-43
proteinopathy from cytoplasmic mislocalization and
misfolding through to macroaggregation and the addition of
phosphate and ubiquitin moieties. Drawing from cellular and
animal studies, we explore the feasibility of therapeutics that
act at each point in pathogenesis, from mitigating genetic risk
using antisense oligonucleotides to modulating TDP-43
proteinopathy itself using small molecule activators of au-
tophagy, the ubiquitin-proteasome system, or the chaper-
one network. We present the case that preventing the
misfolding of TDP-43 and/or enhancing its clearance

represents the most important target for effectively treating
ALS and frontotemporal dementia.
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Introduction

Amyotrophic lateral sclerosis (ALS) is the most common
adult-onset motor neuron disease, and is characterized by the
progressive loss of upper and lower motor neurons from the
spinal cord, brain stem, and motor cortex, leading to muscle
weakness and eventual respiratory failure. Approximately 5–
10% of ALS cases are familial with the remaining 90% being
sporadic, indicating that both genetic and environmental fac-
tors contribute to risk. Despite this diverse etiology of disease,
97 % of patients display a common phenotype in disease-
affected tissues, namely the deposition of the TAR-DNA bind-
ing protein (TDP)-43 [1, 2]. Deposition of TDP-43 is also the
major feature of tau-negative frontotemporal dementia (FTD),
which shows clinical overlap with ALS [1, 3]. This conver-
gence of genetic and environmental risk factors upon TDP-43
is hugely informative with regard to general disease mecha-
nisms. Here we explore the pathways linking risk factors to
the development of TDP-43 proteinopathy, and linking
proteinopathy to the development of disease, with a view to
identifying key points for therapeutic intervention.

TDP-43 and TDP-43 Proteinopathy

TDP-43 Protein Function

Encoded by TARDBP, TDP-43 is a ubiquitously expressed
DNA-/RNA-binding protein [4]. TDP-43 contains 2 RNA
recognition motifs, a nuclear localization sequence (NLS), a
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nuclear export signal [5], and a glycine-rich C-terminus
that mediates protein–protein interactions [6, 7]. TDP-43 pre-
dominantly resides in the nucleus, but is capable of
nucleocytoplasmic shuttling [5]. In the nucleus, TDP-43
plays a critical role in regulating RNA splicing, as well
as modulating microRNA biogenesis [8, 9]. TDP-43 can
regulate the stability of its own mRNA, providing a mech-
anism for the autoregulation of TDP-43 protein levels [10,
11]. In addition to TDP-43 RNA, TDP-43 regulates the
splicing and stability of a large number of other transcripts
[10, 12–15], and thus influences diverse cellular processes.

Although mostly nuclear, up to ~30 % of TDP-43 protein
can be found in the cytoplasm [16], with nuclear efflux regu-
lated by both activity and stress [17]. TDP-43 is a key compo-
nent of dendritic and somatodendritic RNA transport granules
in neurons [18, 19], and plays an important role in neuronal
plasticity by regulating local protein synthesis in dendrites [17].
TDP-43 is also involved in the cytoplasmic stress granule re-
sponse [20]—the formation of protein complexes that sequester
mRNAs redundant for survival [21]—meaning TDP-43 func-
tion is particularly important under conditions of cellular stress.
Understanding the functions of endogenous TDP-43 is crucial
to establishing whether loss of these functions might be key to
disease pathogenesis, and to developing effective therapeutics.

TDP-43 Proteinopathy

TDP-43 protein was identified as a major component of the
ubiquitinated neuronal cytoplasmic inclusions deposited in
cortical neurons in FTD and in spinal motor neurons in ALS
[1]. TDP-43-positive inclusions have subsequently been
shown to be common to 97 % of ALS cases [22, 23],
whether sporadic or familial. The main exceptions are
cases caused by mutations in SOD1 or FUS [24–28]. Neu-
rodegenerative diseases linked to the deposition of TDP-43
are termed BTDP-43 proteinopathies^, and BTDP-43
proteinopathy^ also describes the characteristic histopath-
ological transformation of TDP-43 that occurs in disease
[29]. This transformation is evidenced by the deposition of
full-length and fragmented TDP-43 protein as detergent-resis-
tant, ubiquitinated and hyperphosphorylated aggregates in the
cytoplasm, with associated clearing of TDP-43 from the nu-
cleus [1]. The regional spread of TDP-43 proteinopathy from
spinal and cortical motor neurons and glia to other cortical
regions can be used to stage ALS progression [30], which
suggests that some or all of the features of transformed
TDP-43 protein are linked to pathogenesis.

However, a key question in ALS research is which of these
features of TDP-43 proteinopathy are required for the devel-
opment of disease and thus represent therapeutic targets. Is
ALS pathogenesis linked to the loss of wild-type TDP-43
function through protein misfolding and failure to interact
with binding partners, or is it linked to a gain of toxic function

of the aforementioned TDP-43 aggregates, which are the hall-
mark of TDP-43 proteinopathy? A number of studies have
examined the roles of TDP-43 gain or loss of function in
disease. Overexpression of wild-type TDP-43 recapitulates
TDP-43 proteinopathy and disease phenotypes in a range of
animal models [31–33], supporting a role for gain of toxic
function in disease. Initial studies testing a loss-of-function
hypothesis used knock-out of TDP-43 from mice, which re-
sulted in embryonic lethality [34–36]. This demonstrated
TDP-43 to play a vital role in early development without
necessarily demonstrating that loss of function could be de-
generative in adulthood. However, conditional and partial
knockout models soon demonstrated that loss of TDP-43
function can, indeed, induce motor neuron defects, a progres-
sive motor phenotype reminiscent of human disease, and even
typical TDP-43 proteinopathy [37–39]. Interestingly, either
overexpression or knockdown of TDP-43 selectively in glia
or muscle also recapitulates ALS-like phenotypes [40, 41].
The emerging picture is that both gain and loss of TDP-43
function may be mechanistic in disease, and, as we will dem-
onstrate, TDP-43 misfolding may link the two. We will dem-
onstrate that therapies that remedy TDP-43 misfolding should
be prioritized to best target the spectrum of disease with the
fewest assumptions around mechanism.

Disease Mechanisms in the TDP-43 Proteinopathies

Disease Mechanisms Upstream of TDP-43 Proteinopathies

We have introduced the concept that TDP-43 is the conver-
gence point for a range of upstream risk factors for ALS. Here
we briefly review these genetic and environmental risk factors
for the development of ALS, and for the development of TDP
proteinopathy, and explore the potential for targeting thera-
peutics towards these diverse risk factors.

Genetic Factors in ALS

Currently, genetic causes are known for approximately 15 %
of all ALS cases; accounting for 11 % of sporadic ALS and
68 % of familial ALS [42]. Many of the ALS-linked genes
group together functionally to implicate specific cellular pro-
cesses in the pathogenesis of ALS (Table 1 and Fig. 1).

TARDBP mutations Mutations in TARDBP are a rare cause of
ALS [43]. To date, 38 nonsynonymous TARDBP mutations
have been identified in both familial and sporadic ALS, most
clustering in the region encoding the C-terminus, and account-
ing for approximately 1–2% of total cases [43–58]. Like wild-
type TDP-43 proteinopathy, mutant TDP-43 in TARDBP-
linked ALS patient tissue is characterized by cytoplasmic
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accumulation as aggregated and insoluble deposits [44, 55],
nuclear clearing in a subset of motor neurons [44], and C-
terminal fragmentation [55]. But what is the relationship of
mutant TDP-43 proteinopathy to pathogenesis?

Cellular and transgenic animal models indicate that both
overt proteinopathy, as well as preproteinopathic changes in
TDP-43 may be at play in TARDBP-linked disease. Loss of
RNA processing and axonal transport function of mutant
TDP-43 has been suggested to precede other features of pa-
thology [18, 19, 59], and the failure of mutant TDP-43 to
rescue motor neuron defects caused by knockout of endoge-
nous TDP-43 supports the notion that TARDBP mutations
cause loss of function [18, 39]. However, they also promote
C-terminal fragmentation [43, 45, 46, 60], cytoplasmic
mislocalization [16, 61, 62], aggregation [18, 63–65], and
altered proteostasis [66–69]. These structural abnormalities
may therefore underpin both loss of function and
proteinopathic transformation ofmutant TDP-43. The fact that
TARDBP mutations cause ALS provides robust evidence that
altered TDP-43 structure (i.e., misfolding) and the resultant
loss and gain of function is not simply a cellular response to
disease but is pathogenic.

We previously demonstrated that a mutant TDP-43 allele
(M337V) can be selectively silenced using small interfering
RNA [70], and, indeed, mutation-specific therapy may be-
come feasible with the recent demonstration of safety of si-
lencing agents in humans [71]. However, generic TDP-43-

based refolding or reduction strategies to be discussed ahead
in this review may be more broadly useful, given the number
of unique TARDBP mutations linked to disease.

Protein degradation gene mutations ALS-linked mutations in
SQSTM1 [72], VCP [73], UBQLN2 [74], and OPTN [75] are
rare but together implicate impaired protein turnover in TDP-43
proteinopathy and in ALS pathogenesis. They encode p62,
valosin-containing protein (VCP), ubiquilin 2, and optineurin,
repectively; effectors of the autophagy and/or ubiquitin-protea-
some system (UPS) protein degradation pathways [76–80].
TDP-43 proteostasis is normally maintained by the coordinated
action of the UPS and authophagy, which is particularly impor-
tant for clearing TDP-43 oligomers and aggregates [81–87].

Notably, VCP and p62 are required for the formation of
Baggresomes^ [84, 88, 89], which are large perinuclear inclu-
sions decorated with ubiquitin, ubiquilin, and p62. The TDP-
43-positive aggregates that are the hallmark ALS pathology
are likely aggresomes [76, 90]. Aggresomes act as a staging
center for Baggrephagy^—the removal of misfolded proteins
by autophagy [91, 92]—and augmentation of aggrephagy is
thus emerging as a potential therapeutic strategy in ALS [90].

But is the removal of TDP-43 a logical approach in ALS
linked to global impairment of protein degradation, when
TDP-43 is just one of many substrates of these systems? At
the high concentrations caused by global impairment in pro-
tein degradation, TDP-43, like other neurodegenerative

Table 1 Genetic factors in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) implicating RNA processing and protein degra-
dation pathways

Gene ALS/FTD Percentage of cases TDP-43
deposits

Characteristic features Refs*

ALS FTD

Sporadic Familial Sporadic Familial

Sporadic ALS ALS 90–95 – – + – –

RNA processing C9ORF72 Both 4–7 39 6 25 + DPRs, RNA foci [177]

TARDBP Both 1 4 <1 + – [42, 159]

MATR3 ALS 1 1 – + Matrin 3 elevated/
inclusions

[121]

hnRNPA1 ALS, MSP <1 2 – +† hnRNPA1 inclusions† [122]

FUS Both 1 4 <1 – FUS inclusions [42, 159]

Protein degradation UBQLN2 Both <1 <1 <1 + UBQLN2 inclusions [42, 159]

VCP Both, MSP 1 1 <1 + Nuclear TDP-43 inclusions [42, 159]

SQSTM1 ALS, PDB <1 1 – + Increased p62 inclusions [42]

OPTN ALS, POAG <1 <1 – + OPTN inclusions [42]

Other SOD1 ALS 1–2 12 – – SOD-1 inclusions [42]

TDP-43=TAR-DNA binding protein-43; MSP=multisystem proteinopathy (previously Binclusion body myopathy with frontotemporal dementia
Paget’s disease of bone and amyotrophic lateral sclerosis^); PDB=Paget’s disease of bone; POAG=primary open angle glaucoma; DPRs=dipeptide
repeats; FUS=fused in sarcoma; UBQLN2=ubiquilin 2; OPTN=optineurin; SOD-1=superoxide dismutase-1

*Reference for percentage of cases attributable to the gene
† In muscle tissue in MSP. No gene-positive tissue from ALS patients tested
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disease proteins [93–95], and RNA-binding proteins (RBPs)
[96], is highly prone to aggregation [64]. Thus, TDP-43 may
be particularly adversely affected by genetic mutations affect-
ing protein homeostasis. Supporting this idea, the predomi-
nant pathology in ALS linked to VCP mutation is the nuclear
accumulation of TDP-43 rather than VCP protein itself or
other degradation substrates [97]. Therefore, it is feasible that
the misfolding and accumulation of TDP-43 and not other

proteins is the Bsmoking gun^, and clearance of misfolded
TDP-43 might represent a common druggable target.

Certainly, small molecule activators of the UPS or autoph-
agy have been shown to promote TDP-43 clearance and/or
mitigate toxicity in models based on TDP-43 overexpression
[66, 77, 98, 99]. Autophagy activators may offer selectivity in
clearing misfolded TDP-43 [76, 79]; however, given the abil-
ity of TDP-43 to autoregulate, even nonselective clearance

Fig. 1 TAR-DNA protein-43 (TDP-43) proteinopathy and its relation-
ship to amyotrophic lateral sclerosis (ALS) pathogenesis. (1) TDP-43 is a
DNA- and RNA-binding protein involved in RNA processing. Natively
folded TDP-43, shown in the nucleus, regulates RNA splicing. As a
nucleocytoplasmic shuttling protein, TDP-43 is also involved in cytoplas-
mic RNA processing including the stress granule response and RNA
transport. (2) C9ORF72 mutation causes the sequestration of RNA-
binding proteins, which impairs RNA processing. C9ORF72-mediated
ALS also manifests with accumulation and aggregation of TDP-43. (3)
MATR3, hnRNPA1 and hnRNPA2B1mutations also impair RNA process-
ing and induce TDP-43 proteinopathy, likely through direct binding in-
teractions with TDP-43 which influence its folding and function. (4) FUS
mutations are thought to cause ALS, independent of TDP-43
proteinopathy, via impaired processing of transcripts that may be com-
mon to those targeted by TDP-43. (5) Mislocalization of excess TDP-43
to the cytoplasm can be promoted by (6) TARDBP mutations and (7)

environmental stressors, both of which also promote (8) TDP-43 frag-
mentation. (9) Cleaved and mislocalized TDP-43 species are prone to
misfolding and aggregation, which is associated with the addition of
phosphorylation and ubiquitin chains. (10) The ubiquitin proteasome sys-
tem (UPS) and autophagy ordinarily serve to maintain TDP-43 homeo-
stasis; however, in ALS these protein degradation systems fail to prevent
the accumulation of TDP-43, thus favoring the formation of large protein
complexes called aggresomes. (11) Mutations in VCP, UBQLN2, and
SQSTM1 can impair protein degradation. (12) Aberrant RNA processing,
and particularly stress granule formation, may promote the aggregation of
TDP-43. (13) Conversely, TDP-43 misfolding and aggregation impairs
RNA processing function, and sequesters TDP-43 in a dominant-negative
fashion. Strategies that prevent TDP-43 misfolding and/or enhance clear-
ance of pathological TDP-43 have the potential to prevent RNA process-
ing deficits and pathogenesis in the majority of ALS cases. P=phosphor-
ylation; Ub4=tetra-ubiquitin chain
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strategies hold promise for safely restoring TDP-43
proteostasis.

RNA processing pathway gene mutations The identification
of disease-linked mutations affecting other RNA-binding
proteins suggests an important role for deficits in RNA
processing, which is a key TDP-43 function, in disease
pathogenesis. ALS-linked mutations in the RBP fused in
sacroma (FUS) lead to its mislocalization from the nucleus
to the cytoplasm and aggregation [27], but they do not
cause TDP-43 proteinopathy [26–28]. However, TDP-43
and FUS do share a subset of RNA targets, which may be
part of a disease-relevant pathway [100, 101]. Indeed,
RNA targets shared with TDP-43 may also be involved
in ALS linked to other RNA processing genes.

The most common ALS-linked mutation is an intronic
GGGGCC repeat expansion in C9ORF72 [102, 103], the pa-
thology of which is characterized by classical TDP-43 inclu-
sions in the motor cortex and spinal cord [102]. C9ORF72-
linked disease can be distinguished by the additional presence
of nuclear foci of repeat-containing RNA [102]. These RNA
foci sequester RBPs [104, 105], leading to dysregulation of a
large number of transcripts [106, 107]. C9ORF72 cases also
harbor TDP-43-negative inclusions throughout the central
nervous system, which are decorated by ubiquitin [102], p62
[14, 108], and/ or ubiquilin 2 [109]. These inclusions contain
dipeptide-repeat proteins (DPRs) translated in all 6 frames
from repeat-containing RNA [110–112]. Overexpression of
DPRs, particularly those that are arginine-rich (polyGR,
polyPR) [113, 114], can cause toxicity independently of
RNA foci formation [115, 116]. However, the distribution of
dipeptide aggregates in ALS/FTD brain and spinal cord, at
least for polyGA, shows poor correlation with neurodegener-
ation [117, 118]. Mapping of arginine-rich DPRs, including
preaggregated species, may reveal a role for DPRs in disease,
but currently the marker most closely correlated with degen-
eration remains TDP-43 deposition [118]. Thus, while the
reduction of repeat-containing transcript levels or foci forma-
tion holds promise in C9ORF72-mediated disease [106, 107,
119, 120], TDP-43 misfolding should also be pursued as a
potential therapeutic target.

Mutations in the RNA-binding protein genes MATR3 and
hnRNPA1 are also associated with ALS and TDP-43
proteinopathy [121, 122], potentially through direct binding
of the affected RBP to TDP-43 [6, 121]. Taken together with
FUS and C9ORF72, these ALS-linked genes indicate that
RNA processing deficits can be a cause of ALS in the pres-
ence or absence of TDP-43 proteinopathy, and that rescue of
RNA processing defects could be beneficial to patients. As is
the case for C9ORF72-linked disease, the extent to which
RNA processing defects are due to TDP-43 proteinopathy will
determine whether TDP-43-based therapeutics are effective in
patients.

Environmental Stress

For the majority of ALS cases, no genetic mutations
have yet been identified to account for disease; there-
f o r e , t h e dev e l opmen t o f ALS and TDP-43
proteinopathy in susceptible individuals is thought to
also involve environmental factors. This idea was first
proposed following observations of unexpectedly high
disease incidence rates in certain Bhotspots^, such as
the Kii peninsula of Japan and the island of Guam
[36, 123, 124]. While patients in these regions show
an increased frequency of ALS-linked genes or genetic
modifiers such as MAPT [125–128], these only partly
account for the observed rates of disease. Proposed en-
vironmental agents underlying the high incidence in the-
se populations include dietary neurotoxins such as β-
methylamino-L-alanine [129, 130], or mineral deficien-
cies [75].

There is an association between US military service and
increased risk of ALS [131], which may implicate intense
physical activity, or exposure to lead, pesticides, or other
toxins. Exposure to electromagnetic fields [87, 114], agricul-
tural chemicals [114, 115, 132], head injuries [113, 117], and
smoking [116, 119] may also increase susceptibility. Increased
incidence of ALS has been reported in professional football
players [120, 133, 134]; however, this link has been disputed
[135], and risk is not increased for other professional athletes
[133]. While no single environmental factor has been un-
equivocally linked to increased ALS risk, the risk factors
discussed can collectively be viewed as cellular stressors,
and together implicate cellular stress in disease pathogenesis.

Indeed, cellular studies have drawn links between a diverse
range of stressors and the properties of TDP-43 protein. Os-
motic stress [136], oxidative stress [20, 137, 138], endoplas-
mic reticulum stress [66], and heat stress [138] can induce
TDP-43 to redistribute from the nucleus to the cytoplasm
and incorporate into stress granules. While the regulated ag-
gregation of RBPs and RNA into stress granules is wholly
reversible under normal conditions [99, 139], it has been pro-
posed that in conditions of prolonged or repeated neuronal
stress, stress granules might act to Bseed^ the irreversible path-
ological transformation of TDP-43 [96, 140, 141]. Certainly,
TDP-43 within stress granules is detergent resistant and may
become post-translationally modified [137, 138, 142], which
are defining features of TDP-43 proteinopathy. Also, stress
granule markers have been found by several groups to co-
localize with TDP-43 aggregates in ALS patient spinal cord
[137, 143], although not by others [20, 144]. Together, these
findings suggest that myriad and diverse environmental
stressors, which normally induce the reversible coalescence
of TDP-43 into stress granules, might instead promote irre-
versible TDP-43 changes and that these are linked to a com-
mon pattern of degeneration. A number of antioxidants have
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been trialed in patients with ALS, unfortunately without suc-
cess [134], highlighting the need for better understanding of
factors which precipitate proteinopathy and disease.

Disease Mechanisms via TDP-43 Proteinopathy: Toxic
Features and Points of Intervention

The vast majority of ALS and FTD cases are of unknown
etiology but are linked by TDP-43 proteinopathy, which is
defined by cytoplasmic mislocalization, fragmentation, aggre-
gation, and post-translational modification. Here we examine
how each of these features of pathological TDP-43 is linked to
ALS pathogenesis, and whether preventing these common
features might be a valid therapeutic strategy.

Cytoplasmic Mislocalization of TDP-43

Mislocalization of TDP-43 in ALS and FTD is evidenced by
the deposition of granular, skein-like, and macroaggregated
TDP-43 in the cytoplasm, as well as clearing of TDP-43 from
the nucleus [1]. Enhanced levels of TDP-43 in the cytoplasm
can occur downstream of ALS-linked mutations [16, 39, 60,
145, 146], cellular stress [20, 136–138], or impaired degrada-
tion [147]. TDP-43 mislocalization can be induced in model
systems by targeted mutation of the NLS; importantly, this
sets in motion many pathological features of disease—NLS
mutant TDP-43 is cytoplasmic, aggregated, and capable of
recruiting wild-type TDP-43 [5]. Interestingly, several studies
have shown that increased levels of cytoplasmic TDP-43 are
toxic to cells, but that toxicity is independent of inclusion
formation at the level of light microscopy [16, 148]. An im-
portant question therefore is whether pathogenic TDP-43 in
the cytoplasm is natively folded or misfolded.

As a very early pathogenic event cytoplasmic
mislocalization is a desirable intervention point, and selective-
ly reducing mislocalized TDP-43 is linked to reduced toxicity
in vivo. However, studies that demonstrated that link had
targeted autophagy or interactions with stress granule compo-
nents rather than TDP-43 nucleocytoplasmic shuttling per se
[99, 141]. Without identifying the unique characteristics of the
subset of cytoplasmic TDP-43 that exerts toxicity, developing
therapeutics that do not affect TDP-43 undergoing normal
nucleocytoplasmic shuttling may be challenging.

Fragmentation of TDP-43

Phosphorylated C-terminal fragments (CTFs) of TDP-43 are a
major constituent of neuronal protein inclusions in ALS and
FTD brains, but less so in spinal cord [1, 149]. Cleavage of
TDP-43 is enhanced by C-terminal TDP-43 mutations [45,
43], by cellular stress [150–152], and proteasomal inhibition
[124]. Cleavage generates CTFs, which mislocalize to the
cytoplasm owing to removal of the NLS, and are

aggregation-prone owing to the presence of a prion-like do-
main [153]. CTFs that correspond in size to those in ALS
patient tissue may Bseed^ the formation of inclusions that
are detergent-resistant and ubiquitinated [80], and able to se-
quester full-length TDP-43 [63, 154–156].

But i s f ragmenta t ion of TDP-43 a ta rge t fo r
therapeutic intervention? There is no current consensus as to
whether cleavage enhances or mitigates TDP-43 toxicity [80,
150, 155]. It has been proposed that TDP-43 toxicity requires
intact RNA binding capacity [157]; therefore, CTFs may not
directly exert toxicity. Cleavage is also not a prerequisite for
TDP-43 aggregation [151]; indeed, CTFs expressed at physi-
ological levels require a second Bhit^ to precipitate misfolding
and aggregation [158]. Importantly, cleavage may be required
for normal TDP-43 degradation, such that preventing cleav-
age would favor the accumulation of TDP-43, possibly to
greater detriment [124]. Current evidence therefore argues that
inhibiting fragmentation of TDP-43 may not be a sound ap-
proach for preventing ALS pathogenesis.

Misfolding, Aggregation, and Insolubility of TDP-43

The role of TDP-43 aggregation in pathogenesis is one of the
most controversial topics in ALS research; thus, preventing
aggregation as a therapeutic strategy is equally controversial.
Several animal studies have found that mutant TDP-43 causes
toxicity in the absence of visible aggregates [59], and
preventing visible TDP-43 aggregates from forming failed to
reduce toxicity in a cellular model [159]. It should be noted,
however, that visible aggregates are only the endpoint of an
aggregation pathway that includes a range of TDP-43 species
from misfolded monomer to oligomer to mature aggregate
[76]. Unfortunately, sensitive methods for detecting misfolded
or early aggregated isoforms are seldom employed, so it is
difficult to rule out their existence in studies that fail to find
aggregates by light microscopy. Certainly, the vast majority of
ALS-linked TDP-43 mutations are found in the prion-like C-
terminal domain and serve to promote misfolding, which
strongly implies that disease pathogenesis is linked, if not to
visible inclusions then at least to TDP-43 misfolding [16, 39,
64, 67].

Misfolded mutant TDP-43 shows a reduced ability to trans-
port RNA appropriately [18, 19], constituting a loss of func-
tion. Subsequent to misfolding, the formation of oligomers
and aggregates of TDP-43 in the cytoplasm may recruit native
TDP-43 or its interactors [160]. This constitutes a gain of
function, which acts in a dominant-negative fashion, thus es-
sentially also causing loss of function [9, 155]. By restoring
proper TDP-43 folding and/or clearing early misfolded TDP-
43, we predict that both loss and gain of function toxicity
could be abrogated. It is also possible that late TDP-43 aggre-
gates acquire novel toxic functions such as impairment of the
proteasome or blockade of axonal transport, but few studies
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have addressed this. If large aggregates are not a toxic species
then strategies that prevent the sequestration of toxic
misfolded species into macroaggregates might be detrimental.

There are several intrinsic cellular mechanisms that can act
to either prevent or resolve protein misfolding, namely the
chaperone system, autophagy, and the UPS. The chaperone
system maintains proper protein folding during synthesis and
thereafter, or delivers misfolded substrates for degradation
[161]. In the case of TDP-43, the chaperone heat shock protein
(Hsp)90 enhances solubility (i.e., folding) [162], while HspB8
promotes autophagic clearance of aggregated TDP-43 [163].
Potentiated forms of the disaggregase Hsp104 can mediate
TDP-43 refolding [161]. Monomeric misfolded TDP-43 is
likely handled by the UPS [76].

Augmentation of chaperones or protein degradation path-
ways has been protective in several models of ALS and FTD
[161, 162]. Because TDP-43 misfolding causes loss of func-
tion, as well as providing a substrate for aggregation and gain-
of-function/dominant-negative toxicity, we see early
misfolding events as one of the most attractive therapeutic
targets in ALS with TDP-43 proteinopathy.

Phosphorylation and Ubiquitination of TDP-43

In ALS and FTD patient tissue, hyperphosphorylation and
ubiquitination are signatures for pathological TDP-43, as they
preferentially label TDP-43 that is cleaved, aggregated, and
detergent-resistant [164–166]. Phosphorylation appears to
precede ubiquitination, and phospho-TDP-43-specific anti-
bodies detect a greater proportion of TDP-43 inclusions in
patient tissue [164, 166]. However, the role of post-
translational modifications in promoting or preventing TDP-
43 toxicity, and the likely therapeutic benefit of targeting
them, remains hotly debated.

There are 29 phosphorylation sites on TDP-43 for casein
kinase 1 alone [167], the best studied of which are residues
409/410. Casein kinase 2 may also phosphorylate TDP-43
[13, 164]. TDP-43 phosphorylation at 409/410 is not a pre-
requisite for aggregation [80, 151, 168]. However, when phos-
phorylation is detected it is almost always associated with
misfolding and insolubility of TDP-43. In addition, interven-
tions that modify TDP-43 phosphorylation have been demon-
strated to alter its toxicity. Unfortunately, the reported studies
conflict over whether TDP-43 phosphorylation mitigates or
exacerbates aggregation and toxicity [13, 169–172]. Thus, at
present, TDP-43 phosphorylation is of uncertain value as a
therapeutic target but can be considered a good marker for
gauging the efficacy of therapeutics that aim to modify
TDP-43 misfolding.

The influence of ubiquitination on TDP-43 proteinopathy
is less well studied. TDP-43 is modified with polyubiquitin
chains that are predominantly K48- or K63-linked [7, 76,
173]. However, it is unclear precisely which TDP-43

conformers are ubiquitinated, and what the effects of TDP-
43 ubiquitination are. Ubiquitination involving UBE2E ubiq-
uitin ligases causes TDP-43 to shift to the insoluble fraction,
but does not promote its degradation [174]. In contrast, Parkin
ubiquitination of TDP-43 promotes its cytosolic translocation
either with or without an enhancement in degradation [7, 175].
Studies preventing the removal of ubiquitin chains have yielded
conflicting answers as to the possible therapeutic utility of
targeting TDP-43 ubiquitination. Inhibition of the
deubiquitinase USP14 promotes TDP-43 clearance through re-
tention of ubiquitin chains [98]. However, knockdown of the
deubiquitinase UBPY exacerbated the toxicity of TDP-43 in
Drosophila, despite ubiquitin chain retention [174]. The pro-
miscuity of deubiquitinases may limit the therapeutic useful-
ness of inhibitors in patients; however, augmentation of prote-
olysis itself, which declines with age [176], remains a potential
strategy in ALS, as well as other neurodegenerative diseases.

Conclusions and Future Perspectives

The contributions of genetic and environmental factors to the
etiology of ALS and FTD are complex and interwoven. The
increasing accessibility of genotyping and the recent demon-
stration of safe gene silencing using antisense oligonucleo-
tides may render the targeting of individual gene mutations
feasible, but currently this is not the case, except perhaps for
C9ORF72 patients. Similarly, dysregulated RNA processing
almost certainly lies at the heart of pathogenesis, but its wide-
spread downstream effects argue against rescue of selected
transcripts being useful in patients. Therapeutic strategies
would best be directed at a common target proximal to the
deficit, which, for most cases, is the misfolding of TDP-43
that is central to its loss of function and gain of function/
dominant-negative toxicity. Specifically, enhancers of
chaperone-dependent TDP-43 folding, as well as activators
of the UPS and autophagy, have shown most promise in mod-
el systems. Ongoing refinement of model systems in which to
test therapeutics, and recognition of the roles of non-neuronal
cell types will be important in bringing these compounds to
preclinical and clinical testing. In addition, unbiased large-
scale compound screening efforts and the identification of
novel causative genes may yield additional insights into dis-
ease mechanisms and the role of TDP-43.
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