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Bld du Triomphe, CP225, B-1050 Brussels, Belgium
bPhysik-Institut, Universität Zürich,
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1 Introduction

Employing the data collected at 7 and 8 TeV of center of mass energy, the LHC experiments

have recently published the results of an impressive number of searches for electroweak

production of new physics. In many cases, they were able to set constraints on the masses

of new electroweakly-interacting particles above the previous best bounds from LEP. This

is the case in particular for the electroweak sector of the minimal supersymmetric standard

model (MSSM), as well as of any of its extensions. The exact bounds depend on the details

of the spectrum, especially on the mass hierarchy controlling the decay chains, and there is

a generic loss of sensitivity in the regime of low mass splittings. However, it is remarkable

that, in the most favourable cases, the limits in the MSSM are up to 300 GeV for the

sleptons [1, 2] and up to 700 GeV for the charginos and neutralinos [2, 3].

The above mentioned searches have a crucial role in testing supersymmetric Dark

Matter (DM) scenarios as they allow to probe the relevant parameter space independently

of the colored sector of the theory, which might in principle be too heavy to be directly

accessed by the LHC experiments. The cardinal idea is the following: the measurements of

the DM relic density based on Cosmic Microwave Background (CMB) observations set non-

trivial requirements on the supersymmetric spectrum, thus providing an handle for collider

tests. This is true in particular if the lightest supersymmetric particle (LSP) is a bino-like

neutralino, whose weak interactions typically lead to overproduction in the early universe,

unless an efficient annihilation mechanism is at work. Since a limited set of supersymmetric

particles and parameters is involved in the computation of the neutralino annihilation cross

section, and hence of its relic density, one can define simplified models that highlight only

the necessary features of the spectrum and their observable consequences at the LHC.

– 1 –
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The above sketched procedure has been recently employed by us to answer the question

on how light the MSSM neutralino is still allowed to be by direct searches for electroweakly-

interacting supersymmetric particles at the LHC [4, 5]. Other related studies on light

neutralino Dark Matter have been recently published in [6–9]. For neutralinos lighter than

about 30 GeV, the typical spectrum selected by the relic density constraints features rather

light staus and Higgsinos, with masses smaller than few hundred GeV [10]. The electroweak

production of these particles and the following decays lead to events with multiple taus

and missing transverse momentum. Employing an ATLAS search for such a signature in

combination with the limits on the decay rate of the Higgs into neutralinos, we could set

a lower bound on the DM mass at about 24 GeV. Remarkably, with the above exercise, we

showed that electroweak LHC searches are at the moment more powerful than direct and

indirect searches in testing light neutralino Dark Matter. For early works addressing limits

on light neutralino Dark Matter, see e.g. [11–13], and for limits on (very) light neutralinos

without cosmological bounds we refer to refs. [14, 15] and references therein.

In the present paper, we want to extend our previous work to the case where no light

sfermions are in the spectrum, i.e. scenarios with only neutralinos and charginos lighter

than few hundreds GeV. A motivation for such an exercise is that light Higgsinos are the

minimal ‘tree-level’ requirement posed by naturalness arguments. A Higgsino-like LSP can

not however account for the full amount of the observed Dark Matter, unless its mass is

in the TeV range, since the Higgsino-Higgsino annihilation processes are too efficient, see

e.g. [16]. Simultaneous presence of light bino and Higgsinos is thus the minimal ingredient

for electroweak scale neutralino Dark Matter in natural SUSY. Scenarios with mixed bino-

Higgsino Dark Matter, labelled as ‘well-tempered neutralino’, can provide a natural DM

candidate overcoming the above mentioned problems of a pure Higgsino (or wino) LSP [17].1

We are however interested to focus on the light DM regime (i.e. mχ̃0
1
. 100 GeV), where the

neutralino can not be ‘well-tempered’ as it is bounded to be mainly bino due to chargino

mass limits. Let us note in passing that, even giving up naturalness like in split SUSY

scenarios [19, 20], or rather ‘mini-split’ [21] as suggested by the observed Higgs mass, the

set-up we are studying is relevant to obtain the absolute lower bound on DM mass. In fact,

in these models there are no light sfermions that can mediate the neutralino annihilation

and the relic density requirements must be fulfilled by the gaugino-Higgsino sector alone.

As we are going to see, possible resonant enhancements of the neutralino annihilation

cross section due to s-channel Z and h exchanges play a crucial role in the low mass regime

we are going to study. This provides a further, purely phenomenological, motivation for

our study: the effective coupling with nuclei for neutralino Dark Matter close to the above

mentioned resonances might drastically drop, as well as the today annihilation rate relevant

for indirect DM searches, hence one has to find alternative handles to test this corner of

the parameter space. As we are going to show, if nature has chosen this peculiar scenario,

LHC experiments compete and in some cases prove to be more constraining than dedicated

DM experiments.

1For a recent discussion of the LHC prospects of this scenario, see [18].
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LHC limits and prospects for the gaugino-Higgsino sector of the MSSM have been re-

cently discussed — however, without a focus on light neutralino DM — in [22–28], including

the challenging case of compressed spectra.

The rest of the paper is organized as follows. In section 2 we present the light neutralino

parameter space, where resonant annihilation dominates, including relevant collider and

astrophysical constraints. In section 3 we discuss the resulting LHC phenomenology and

in section 4 we present the corresponding limits. Finally, in section 5 we conclude.

2 Resonant neutralino annihilations

As anticipated in the introduction, we are interested to study the phenomenology of the

MSSM neutralino as a Dark Matter candidate in the low-mass regime, i.e. with mχ̃0
1
.

100 GeV, in the case that only neutralinos and charginos are possibly light, while the rest

of the spectrum, in particular the sfermions, might be decoupled. This setup is completely

defined by the parameters that describe the gaugino-Higgsino sector in the MSSM:

M1, M2, µ, tanβ, (2.1)

which are respectively the SUSY-breaking bino and wino masses, the superpotential Higgs

mixing parameter that controls the spontaneous electroweak symmetry breaking and sets

the mass of the Higgsinos, and the ratio of the two Higgs doublets vevs.

As a result of the LEP limit on charginos, mχ̃±
1
≈ min(M2, |µ|) & 100 GeV, the lightest

neutralino has to be mainly bino in the mass range we consider. As usual, an efficient

annihilation mechanism is thus required in order to satisfy the relic density constraints

from CMB observations. Since we are assuming that there are no sfermions (and no extra

Higgs bosons) below few hundreds GeV or more, the main annihilation modes go through

an s-channel Z or h exchange:

χ̃0
1χ̃

0
1 → Z∗/h∗ → ff̄ (2.2)

Full expressions for the corresponding annihilation cross sections can be found in [29].

Let us recall here that the s-wave contribution vanishes in the h mediation case and it is

suppressed by a factor m2
f/m

2
Z for a Z exchange. On the other hand, p-wave contributions

are in both cases only suppressed by the temperature, ∼ T/mχ̃0
1
, and are therefore relevant

for the calculation of annihilation rate in the early universe.

In order to have a qualitative understanding of the dependence of the relic density on

the parameters shown in eq. (2.1), we have to consider the interactions of the neutralinos

with Z and h only. They are given by the following expressions [30]:

Lχ̃0
i χ̃

0
jZ

=
g

2cW
Zρχ̃0

i γ
ρ
[
OZLij PL +OZRij PR

]
χ̃0
j , (2.3)

Lχ̃0
i χ̃

0
jh

=
g

2
Chij hχ̃

0
i χ̃

0
j , (2.4)

where the couplings are defined as:

OZLij = −1

2
Ni3N

∗
j3 +

1

2
Ni4N

∗
j4, OZRij = −OZL∗ij (2.5)

Chij =
1

2
[(Ni2 −Ni1 tan θW )(sinαNj3 + cosαNj4) + (i↔ j)] . (2.6)

– 3 –
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The matrix N diagonalizes the neutralino mass matrix:

χ̃0
i = Ni1B̃ +Ni2W̃

0 +Ni3H̃
0
d +Ni4H̃

0
u. (2.7)

We refer to the appendix for further details on our conventions and relevant approximate

formulae for the elements Niα.

From the expressions in eqs. (2.3)–(2.6), we see that the couplings of the lightest

neutralino to Z and h vanish if χ̃0
1 is pure bino (or wino), i.e. if N13 = N14 = 0. This only

occurs when the Higgsino sector is decoupled, µ�M1, mZ . In fact, using the approximate

expressions shown in the appendix for the Higgsino components of χ̃0
1, we find:

N13 =
mZsW
µ

[
sβ + cβ

M1

µ

]
, N14 = −

mZsW
µ

[
cβ + sβ

M1

µ

]
, (2.8)

where for simplicity we assumed M2 � |µ|. Here we defined cβ ≡ cosβ, sβ ≡ sinβ and

sW ≡ sin θW . It is therefore clear that the upper limit on the DM relic density will translate

into an upper limit on |µ|, i.e. on the mass scale of the Higgsinos. Thus, relatively light

Higgsinos are a generic prediction of our setup, while from eqs. (2.5), (2.6) it is clear that

the wino plays no crucial role in the annihilation process and might in principle be heavier.

A closer look at the expressions for the annihilation cross section reported in [29]

shows the well-known possibility of a resonant enhancement of the p-wave annihilation,

occurring if

mχ̃0
1
≈ mZ/2 or mχ̃0

1
≈ mh/2. (2.9)

Obviously, the closer mχ̃0
1

approaches these conditions the looser the upper bound on µ

becomes, since the enhancement can compensate smaller couplings of χ̃0
1χ̃

0
1Z, χ̃0

1χ̃
0
1h. On

the other hand, we expect the relic density constraints to set a tighter bound on µ as the

massmχ̃0
1

lies further from the resonant conditions of eq. (2.9). In what follows, we illustrate

and quantify these simple features by means of a numerical scan of the relevant parameters

(in section 2.1) and we discuss the LHC phenomenology of this region of resonant neutralino

dark matter (in section 3) and the constraints set by searches for chargino-neutralino

production (in section 4).

Before moving on, let us comment about the possible role of the extra Higgses. It is

well known, that an s-channel exchange of the CP-odd Higgs A can also provide an efficient

annihilation mechanism for neutralino DM, especially close to the resonant conditionmχ̃0
1
≈

mA/2 and/or for a sizeable Higgsino component in χ̃0
1 [31]. However, in the light neutralino

regime we are considering, A would be required to be relatively light [13, 32–34]. This

possibility is challenged [35] by direct searches for extra Higgses at the LHC [36], as well

as by the measurements of the Higgs production and decays, that prove to be SM-like at

least at the 30% level (see e.g. [37]), and by rare decays such as Bs → µ+µ− [38]. For

these reasons, here we do not consider the possibility that the extended Higgs sector of the

MSSM plays a role in the neutralino annihilation and we assume for simplicity that the

heavy Higgses are also decoupled.

– 4 –
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Figure 1. Results of the parameter scan defined in eqs. (2.10)–(2.12) in the mχ̃0
1
− |µ| plane for

µ > 0 (left panel), µ < 0 (right panel). Red points satisfy the relic density upper bound of eq. (2.13)

and all other constraints discussed in the text. Blue points in addition satisfy the lower bound.

Gray points are excluded by one of the constraints listed in the text.

2.1 Constraints and viable parameter space

Here we present the results of a random scan of our four parameters within the follow-

ing ranges:

20 GeV ≤M1 ≤ 80 GeV, 100 GeV ≤M2 ≤ 1 TeV,

100 GeV ≤ |µ| ≤ 1 TeV, 5 ≤ tanβ ≤ 50. (2.10)

Notice that we scan both signs of µ while we take Mi > 0 with no loss of generality:

observable effects depend in fact on the relative sign sgn(µMi). Furthermore we vary the

soft parameters of the stop sector in the following ranges:

2 TeV < mt̃L
,mt̃R

≤ 5 TeV GeV, − 4 TeV ≤ At < 4 TeV . (2.11)

Together with the ones in eq. (2.10) these parameters determine the value of the physical

Higgs mass mh and thus of the position of the resonance in eq. (2.9). The other SUSY soft

parameters were set to the following constant values:

m
f̃

= M3 = mA = 4 TeV, Af = 0 , (2.12)

where m
f̃

represents the remaining sfermion masses, M3 is the gluino mass, mA the CP-odd

Higgs mass, Af the remaining trilinear couplings. The spectrum has been computed by

means of the routine SuSpect [39], the branching fractions by the SUSY-HIT package [40]

and micrOMEGAs [41–44] has been used to calculate the neutralino relic density, as well as

the scattering cross section with nuclei and the present thermally-averaged annihilation

cross section.

The constraints we impose on our parameter space are presented in the following.

• DM relic density. We assume a standard thermal history of the universe and take

this conservative range from ref. [45]:

0.10 ≤ ΩDMh
2 ≤ 0.13. (2.13)

– 5 –
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• Direct SUSY searches at LEP. The 95% CL bound on the lightest chargino mass is

mχ̃±
1
≥ 94 GeV. (2.14)

Searches for χ̃0
1χ̃

0
2,3 associated production at LEP, followed by the decay χ̃0

2,3 →
χ̃0
1Z

(∗), set a constraint for mχ̃0
1

+mχ̃0
2,3
≥
√
s = 208 GeV. This conservatively reads:∑

k=2,3

σ(e+e− → χ̃0
1χ̃

0
k)× BR(χ̃0

k → χ̃0
1Z

(∗)) < 100 fb. (2.15)

We estimated the production cross sections at LEP using the leading order formulae

reported in refs. [46, 47].

• Z invisible width. As discussed above, the relic density constraint require sizeable

χ̃0
1χ̃

0
1Z and χ̃0

1χ̃
0
1h couplings. As a consequence, the invisible decays Z → χ̃0

1χ̃
0
1 and

h → χ̃0
1χ̃

0
1 can occur at relevant rates if kinematically allowed. The decay width of

the Z boson into a neutralino pair is given by [48]:

Γ(Z → χ̃0
1χ̃

0
1) =

GFm
3
Z

12
√

2π

(
1−

4m2
χ̃0
1

m2
Z

) 3
2 ∣∣N2

13 −N2
14

∣∣2 , (2.16)

This has to be compared to the LEP bound on the new physics contribution to

Γ(Z → invisible) [49]:

∆Γinv
Z < 3 MeV (95% CL). (2.17)

• Higgs mass and rates. Applying the tools HiggsBounds [50–52] and HiggsSignals [53]

we calculate a χ2 measure for the predictions of the model and the measured Higgs

rates and mass. We ensure an agreement between the predicted light Higgs mass

and production rates and the current experimental measurements at the 95% CL

requiring a p-value below 0.002.

• Invisible Higgs decays. The light Higgs decay width into χ̃0
1χ̃

0
1 is given by [54]:

Γ(h→ χ̃0
1χ̃

0
1) =

√
2GFm

2
Wmh

π

(
1−

4m2
χ̃0
1

m2
h

) 3
2 ∣∣Ch11∣∣2 , (2.18)

where from eq. (2.6) one finds in the decoupling regime mA � mh:

Ch11 =
1

2

(
N12 − tan θW N11

)(
sinβ N14 − cosβ N13

)
. (2.19)

Since a sizeable Γ(h → invisible) would reduce by the same amount the branching

fractions of all visible channels, it can be constrained by fits to the observed Higgs

decay rates. In this work we adopt the limit reported in [37]:

BR(h→ invisible) . 26% (95% CL). (2.20)

– 6 –



J
H
E
P
1
1
(
2
0
1
4
)
1
0
6

Figure 2. Predictions for the invisible branching ratio of the Higgs BR(h→ χ̃0
1χ̃

0
1) in the paramter

scan defined in eqs. (2.10)–(2.12) for µ > 0 (left panel), µ < 0 (right panel). Red points satisfy the

relic density upper bound of eq. (2.13) and all other constraints discussed in the text. Blue points

in addition satisfy the lower bound.

Possible further constraints from electroweak precision observables or the flavour sector

can be circumvented adjusting the parameters in eq. (2.12).

In figure 1 we show the results of the parameter scan in the plane of mχ̃0
1

against

the Higgsino mass parameter µ for both signs of µ. The red points only fulfill the upper

bound of eq. (2.13), while the blue ones fulfill the lower bound too. Thus the blue points

correspond to models where χ̃0
1 can account for 100% of the observed Dark Matter. Points

excluded by any of the constraints explained above but the relic density constraint are

shown in grey and — marginalizing over all other parameters — they affect the parameter

space only for µ > 0 at small values of µ.

As argued already in the previous section, if mχ̃0
1

is slightly away from the resonances,

eq. (2.13) tightly constrains µ. On the other hand, Higgsinos can be as heavy as ≈ 450 GeV

close to the Z-pole and as heavy as ≈ 1200 (900) GeV close to the h resonance for µ > 0

(µ < 0). The width and shape of the Higgs resonance is determined by the possible spread

in the Higgs mass. Clearly, the parameter region very close to the h resonance is difficult

to cover entirely at the LHC.

For illustration in figure 2, we explicitly show the invisible branching ratio of the Higgs

BR(h → χ̃0
1χ̃

0
1) for both signs of µ obtained in our parameter scan. All constraints but

the one from the invisible width of the Higgs itself are applied and the color-coding is as

in figure 1. As we can see, eq. (2.20) excludes points for mχ̃0
1
. 35 GeV if µ > 0. For

µ < 0 no such limit can be obtained. In fact, as one can see from eq. (2.8), a partial

cancellation in the χ̃0
1χ̃

0
1h vertex decreases the coupling if there is a relative sign between

µ and M1. This is also the reason why smaller values of |µ| are required close to the h

resonance for µ < 0, see figure 1. We want to note that for the considered parameter space,

regions excluded from the invisible width of the Higgs encompass exclusions from all other

constraints considered here.

2.2 Direct and indirect DM searches

As sketched in the introduction, direct and indirect DM searches can loose their sensitivity

in the vicinity of the resonant annihilation regimes, eq. (2.9). We quantify this behaviour in

– 7 –
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Figure 3. Predictions for the spin-independent DM-nucleon scattering cross section σSI (left panel)

and the present thermally-averaged annihilation cross section 〈σannv〉 (right panel) in the paramter

scan defined in eqs. (2.10)–(2.12). All points satisfy the upper and lower bound of eq. (2.13) and

all other constraints discussed in section 2.1. The gray shaded area in the left plot is excluded from

direct DM searches with LUX.

figure 3, where the spin-independent DM-nucleon scattering cross section σSI (left panel)

and the present thermally-averaged annihilation cross section 〈σannv〉 (right panel) are

plotted as a function of the lightest neutralino mass for the points of our parameter scan

defined in eqs. (2.10)–(2.12). All shown points account for the observed DM abundance, i.e.

they satisfy the upper and lower bound of eq. (2.13) besides all other constraints discussed

in section 2.1. Red (purple) points correspond to µ > 0 (µ < 0).

In the left panel, we show as a reference the current limit set by the direct search

experiment LUX [55], which for the considered mass range is almost independent of the

neutralino mass at σSI . 8 × 10−46 cm2. Close to the resonances the predicted σSI is

suppressed by several orders of magnitude and tests of such scenarios even in future direct

DM search experiments seems to be very challenging. The neutralino elastic scattering with

nuclei is mediated by the exchange of CP-even Higgs states or squarks (which we assume

to be decoupled). Thus, the shown suppression originates from small Higgs-Higgsino-

bino couplings, as given in eq. (2.6), close to the resonances (due to large µ as required

by the relic abundance). Larger values of this coupling, i.e. a smaller µ parameter would

reduce the neutralino density Ωχ̃0 below the observed value, which would require extra DM

components and, more importantly for us, anyway would reduce the sensitivity of direct

detection by a factor Ωχ̃0/Ωobs
DM. However, we have to keep in mind that the theoretical

prediction for σSI suffers from large uncertainties: variations of light quark masses and

hadronic form factors, as well as heavier values of mH ≈ mA (here we took mA = 4 TeV)

can further reduce the predicted σSI by a factor of few. On the other hand, lighter heavy

Higgs states, i.e. smaller values of mA could in principle increase the spin-independent

cross section without altering much the relic density prediction. Therefore, we refrain from

setting any conservative constraints on our parameter space from direct detection.

Similarly to the discussion above, we observe in the right panel of figure 3 that the

predicted 〈σannv〉 is well below the sensitivity of indirect detection experiments — which

are currently at the level of 10−26 cm3/s [56] — and further drops in the vicinity of the

– 8 –
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resonances. The reason why the present 〈σannv〉 is much lower than the value required by a

thermal WIMP at the freeze-out can be understood by the following: at high temperatures

the annihilation is dominated by resonant p-wave contributions which become irrelevant

as the temperature drops. In the present universe, the annihilation occurs through a Z-

mediated s-wave amplitude. The corresponding cross section is suppressed by a factor

m2
f/m

2
Z . Furthermore, as above, close to the resonances a small Higgsino component in

χ̃0
1 further suppresses the χ̃0

1χ̃
0
1Z coupling. Again an additional possible contribution to

〈σannv〉 is expected to be provided by an s-channel exchange of a CP-odd Higgs A. We

checked that even for masses at the border of the present LHC exclusion, e.g.mA ' 500 GeV

for tanβ = 20 [36], 〈σannv〉 can not increase by more than one order of magnitude with

respect to the values shown in figure 3.

3 LHC phenomenology

The spectrum we consider solely involves the neutralino/chargino sector of the MSSM. As

discussed above, the relic density constraint translates into an upper bound on the Higgsino

mass parameter µ, while the wino mass parameter M2 does hardly play a role satisfying

those bounds. Thus, the minimal particle content are just the mostly bino-like neutralino

LSP and the Higgsino states: two heavier neutralinos and the lightest charginos. Later

we will demonstrate that additional light winos just increase the LHC sensitivity. Hence,

taking M2 to be large is a conservative assumption and will be assumed if not otherwise

stated. All other SUSY particles are assumed to be decoupled.

For the described spectrum possible tests at the LHC rely on electroweak Drell-Yan

production of the Higgsino-like states:2

pp → χ̃0
kχ̃

0
l , pp → χ̃+

1 χ̃
−
1 , pp → χ̃±1 χ̃

0
k, (k, l = 2, 3). (3.1)

The produced charginos can only decay into the LSP and (on- or off-shell) W bosons:

χ̃±1 → W±(∗)χ̃0
1, (3.2)

whereas the neutralinos have two competing decay modes, Z or h:

χ̃0
2,3 → Z(∗)χ̃0

1, χ̃0
2,3 → h(∗)χ̃0

1 (3.3)

with relevance depending on the model parameters as discussed in the following.

The most relevant searches for neutralino/chargino production performed by the LHC

collaborations are based on leptonic decays of the gauge bosons, i.e. on events with multiple

leptons plus missing transverse momentum. For the parameter space we consider by far the

highest sensitivity is reached in the WZ-channel [28] (from associated neutralino-chargino

production, χ̃±1 χ̃
0
2,3) with three reconstructed leptons in the final state [2, 3]. In this channel

the search performed by ATLAS [3] sets the most stringent limits. Searches for the Higgs

decay have been performed in the Wh-channel with h → bb̄ [2], see also [24, 59]. The

2Monojet searches for direct production of a pair of neutralino LSPs in association with a jet can in

principle also test the given spectrum but will only become sensitive in the future [57, 58].

– 9 –
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Figure 4. Branching ratios for the decay χ̃0
2,3 → χ̃0

1Z/h as function of tanβ. Parameters are

chosen to be M1 = 40 GeV,M2 = 500 GeV and µ = ±250 GeV for the left/right plot.

complementary h → τ+τ− channel might yield a similar sensitivity [60]. However, the

overall sensitivity in the Wh-channel is considerably weaker compared to the WZ-channel.

Still, it is in order to investigate in detail the rates of the competing decay modes shown

in eq. (3.3). The decay rates of χ̃0
2,3 → Zχ̃0

1 are controlled by the couplings defined in

eq. (2.5). Using the approximate expressions for the neutralino mixing in the Higgsino-like

χ̃0
2,3 limit M2 � |µ|, as reported in the appendix eq. (A.7), we find:

µ > 0 : OZL21 '
mZsW
2
√

2µ
(sβ − cβ)

(
1 +

M1

µ

)
, OZL31 '

mZsW
2
√

2µ
(sβ + cβ)

(
1 +

M1

µ

)
;

(3.4)

µ < 0 : OZL21 ' −
mZsW
2
√

2µ
(sβ + cβ)

(
1 +

M1

µ

)
, OZL31 '

mZsW
2
√

2µ
(cβ − sβ)

(
1 +

M1

µ

)
,

(3.5)

Analogous expressions for the coupling χ̃0
2,3χ̃

0
1h can be obtained from eqs. (2.6), (A.7):

µ > 0 : Ch21 ' −
1

2
√

2
(cβ + sβ), Ch31 ' −

1

2
√

2
(cβ − sβ); (3.6)

µ < 0 : Ch21 ' −
1

2
√

2
(cβ − sβ), Ch31 ' −

1

2
√

2
(cβ + sβ). (3.7)

From these expressions we expect that for µ > 0 the branching ratio BR(χ̃0
2 → Zχ̃0

1)

decreases for small values of tanβ, and vanishes in the limit tanβ → 1. Whereas the

branching ratio BR(χ̃0
3 → Zχ̃0

1) is maximized in the low tanβ regime. This behaviour is

depicted in the left panel of figure 4, where for illustration we choose M1 = 40 GeV,M2 =

500 GeV and µ = 250 GeV. The behaviour described above is reversed for µ < 0, as

shown in the right panel of figure 4. Clearly, the WZ channel is expected to suffer a

loss of sensitivity in the low (large) tanβ regime for µ > 0 (µ < 0). However, as the

– 10 –
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Figure 5. Comparison among the simplified wino model with BR(χ̃0
2 → Zχ̃0

1)=100%, a realistic

wino model with M2 � µ and an Higgsino model with µ�M2. Shown is the summed neutralino-

chargino production cross section times branching ratios into W (→ `±ν)Z(→ `+`−) as defined in

eq. (3.8).

behavior of the two Higgsino-like neutralinos χ̃0
2,3 is antipodal3 and their mass splitting

is in general small, the tanβ dependence in the total sensitivity of the WZ channel is

moderate. In our numerical analysis in section 4 we consider the two example values

tanβ = 5, 40. Furthermore, as the summed contribution only mildly depend on tanβ even

for small values of tanβ the WZ-channel is expected to remain more sensitive than the

Wh-channel.

Searching for neutralino and chargino production in the three leptons plus missing

energy final state performed by ATLAS [3] the strongest available limits for theWZ channel

have been obtained. These limits have been interpreted in the M2−µ plane of the pMSSM

for fixed values of M1 and in terms of constraints on the mass of purely wino-like charginos

and neutralinos with BR(χ̃0
2 → χ̃0

1Z) = 100 %. Clearly, the latter is only a simplified

model as for a pure wino-like χ̃0
2 state the coupling χ̃0

1χ̃
0
2Z vanishes. The corresponding

limits for a realistic scenario with Higgsino-like neutralinos and charginos might be much

weaker due to changes in the cross section and possible competing decay modes as discussed

above. Therefore, in section 4 we will reinterpret those limits for Higgsino-like neutralinos

in a detailed analysis including detector effects. Here, we already want to anticipate those

results qualitatively. To this end we compare the production cross section times branching

ratio for the WZ channel defined as

σ3`+ 6ET =
∑
k=1,2
l=2,3,4

σ(χ̃±k χ̃
0
l ) BR(χ̃±k →W±χ̃0

1) BR(χ̃0
l → Zχ̃0

1)× (3.8)

× BR(W± → `±ν) BR(Z → `+`−),

3Also the production cross sections depend on tanβ via the χ̃0
2,3χ̃

±
1 Z couplings. For fixed physical masses

the dependence is very mild and again antipodal to the corresponding dependence in the branching ratios.
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Figure 6. Impact of M2 on the summed neutralino-chargino production cross section times branch-

ing ratios into W (→ `±ν)Z(→ `+`−) as defined in eq. (3.8) for different values of µ.

for the cases of (i) the simplified model, (ii) realistic wino-like χ̃0
2 case, and (iii) Higgsino-like

χ̃0
2,3 case. The corresponding estimated rates are shown in figure 5 as a function of the mass

of χ̃±1 , where (leading order) production cross sections are calculated with Prospino 2 [61]

and BRs with SUSY-HIT [40]. In the Higgsino-like χ̃0
2,3 case, we set M2 = 1 TeV and, vice

versa, we set µ = 1 TeV in the wino-like χ̃0
2 cases. For all scenarios we additionally set for

illustration M1 = 40 GeV and tanβ = 5. Clearly, for realistic values of BR(χ̃0
2 → Zχ̃0

1)

compared to the simplified model the sensitivity is strongly reduced in the wino-like χ̃0
2

case. Resulting rates are here also considerably smaller than in the Higgsino-like χ̃0
2,3 case

— despite the fact that the production cross section for wino states is typically larger than

the one for Higgsinos. In [3] ATLAS obtains (approximately) the limit mχ̃±
1
& 350 GeV for

mχ̃0
1
. 100 GeV under the assumption of BR(χ̃0

2 → Zχ̃0
1)=100%. Comparing such a limit

in figure 5 to the Higgsino-like χ̃0
2,3 case we expect an exclusion on mχ̃±

1
≈ mχ̃0

2
≈ mχ̃0

3

weaker by about 100 GeV. Still, this represents a non-negligible constraint on the neutralino

DM parameter space.

Finally, let us turn to a short discussion of the possible impact of the wino mass M2 on

the signal rates in the WZ channel. For M2 . |µ|, the full set of neutralinos and charginos

contributes to the production cross section, providing additional modes to those shown in

eq. (3.1). Hence it is natural to expect an increase in sensitivity. This is confirmed and

quantified in figure 6, where we plot again cross section times branching ratio, as defined

in eq. (3.8), now as a function of M2 for different choices of µ. In figure 6 we see that the

number of expected leptonic events generically increases for low values of M2, whereas it

becomes approximately flat for M2 > µ. As a consequence, fixing M2 at some value larger

than µ can be regarded as a conservative choice. We are going to adopt this choice in the

numerical simulation of the next section.

Let us note here that further MSSM parameters, besides those of the neu-

tralino/chargino sector, cf. eq. (2.1), have in general little impact on the searches based
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Figure 7. Reinterpreted ATLAS limit [3] for the Higgsino-like χ̃0
2,3 case, displayed in the mχ̃0

2
-mχ̃0

1
)

plane for different values of tanβ, sgn(µ). See the text for details.

on electroweak production of Higgsinos and their decay. In particular, the production

cross sections have no dependence on any squark masses, in contrast to the wino case,

for which t-channel squark exchange decouples only very slowly and can be relevant even

for very heavy squarks [60]. In contrast to the wino case the Higgsinos have only small

couplings with first and second generation quarks and squarks rendering such contributions

negligible.

4 LHC limits

As discussed in the last section, the scenario under consideration can best be searched for

at the LHC in the WZ channel, where both CMS and ATLAS have performed different

searches using the full dataset available at 8 TeV [1–3]. The most stringent limit available

is deduced from the three-leptons plus missing energy search performed by ATLAS [3]. In

the relevant signal region three leptons have to be identified, where two of them have to

be of the same flavour and of different sign (SF-OS). The resulting event sample is further

divided into 16 bins with different invariant mass cuts for the SF-OS pair, different cuts

on the transverse mass mT and/or different cuts on the transverse missing energy 6ET .

Final event numbers are found to be in good agreement with Standard Model predictions.

Interpreting the resulting limits in a pure wino scenario4 with BR(χ̃0
2 → Zχ̃0

1) = 100%

(as explained above) ATLAS sets bounds up to mχ̃±
1

= mχ̃0
2
& 350 GeV for a massless

neutralino. Furthermore, the ATLAS collaboration interprets the search in the M2-µ-plane

of a pMSSM scenario with decoupled sfermions, a bino of M1 = 50 GeV and tanβ = 10.

Here, for M2 � µ a limit of µ & 230 GeV is derived. We want to reinterpret this limit in

the light neutralino scenario discussed above, where we vary both M1 and tanβ (besides

µ and M2).

4In this scenario the sfermions are decoupled at mf̃ = 5 TeV as listed on HepData [62].
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In our Monte Carlo study we use Herwig++ [63] for event simulation and rescale the

obtained LO rates with NLO K-factors obtained from Prospino 2 [61]. Furthermore,

we use the powerful CheckMate [64] framework for detector simulation (where a tuned

version of Delphes 3 [65] is used internally), analysis and statistical evaluation. First,

we carefully verified that the three-leptons plus missing energy analysis implemented in

CheckMate yields limits for the pure-wino scenario and the pMSSM scenario which are in

good agreement with the ones published by ATLAS. Second, we evaluate those limits in

the benchmark scenarios motivated in section 3, i.e. we translate the ATLAS limits into the

M1 − µ plane for tanβ = 5, 40 and µ ≷ 0. As discussed in section 3, for µ > 0, tanβ = 5

gives a conservative limit while tanβ = 40 gives a limit in the plateau shown in figure 4.

On the contrary, for µ < 0, the large tanβ case corresponds to a conservative scenario.

As also discussed in section 3 decoupling M2 yields a conservative bound and thus we set

M2 = 1 TeV.

Resulting limits are shown in figure 7 projected on the plane of the physical masses

mχ̃0
1

vs. mχ̃0
2
. For a lightest neutralino of mass mχ̃0

1
= 35 GeV, tanβ = 5 and µ > 0

we find a limit of mχ̃0
2
. 120, mχ̃0

2
& 260 GeV. The lower limit is a consequence of the

kinematic boundary between on- and off-shell decays at mχ̃0
2
−mχ̃0

1
= mZ . In the regime

of purely off-shell decays of the χ̃0
2 various decay modes compete and the ATLAS limit

vanishes. Furthermore, as discussed in [22], in this regime branching ratios can still strongly

depend on the scale and details of the “decoupled” sfermions, thus conservative exclusion

limits are difficult to deduce. For tanβ = 40 and µ < 0 the upper limits extends up to

mχ̃0
2
& 280 GeV. At the same time in this case larger values of mχ̃0

1
can be excluded. For all

scenarios studied exclusion limits drop sharply at the kinematical threshold mχ̃0
2
−mχ̃0

1
=

mh. In this small corner of the parameter space limits from Wh searches might become

relevant [24, 59, 60].

Finally we present the limits of our reinterpretation in the phenomenologically inter-

esting χ̃0
1 vs. |µ| plane, i.e. in the plane where constraints from the thermal relic abundance

were discussed in figure 1. Results are shown in the upper/lower panel of figure 8 for

tanβ = 5/40; on the left and right for µ > 0 and µ < 0 respectively. Regions excluded

by LHC searches are shaded in yellow and as in figure 1 regions yielding the correct relic

abundance just from neutralino DM are shown in blue, while regions where the abundance

of the χ̃0
1 could contribute to the overall DM abundance are shown in red. For all choices of

tanβ and sgn(µ) large parts of the Z-resonance regions are excluded. More precisely, at the

Z-resonance we find µ & 250 GeV, apart from a small strip around (|µ| ≈ mχ̃0
2
)−mχ̃0

1
= mh

for µ > 0 and in general for very small values of µ (below the χ̃0
2 → Zχ̃0

1 threshold). How-

ever, at least for µ > 0, here the limit from BR(h→ invisible) shown in eq. (2.20) become

relevant, excluding the points shown in grey. Combining these limits for tanβ = 40 we find

mχ̃0
1
& 40 GeV [µ > 0, tanβ = 40] . (4.1)

In the more conservative scenario with tanβ = 5 the bound is somewhat weaker and we find

mχ̃0
1
& 37 GeV [µ > 0, tanβ = 5] . (4.2)
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Figure 8. Reinterpreted ATLAS limit, displayed in the mχ̃0
1
− |µ| plane of figure 1 for different

values of tanβ, sgn(µ). Color code as in figure 1. The yellow regions are excluded by ATLAS three

leptons plus missing energy search [3].

For µ < 0 the constraint from the relic abundance combined with the LEP limit on

charginos still yields the strongest bound as very small values of µ cannot be excluded.

As we have already seen in section 2.1 here,

mχ̃0
1
& 30 GeV [µ < 0] . (4.3)

Also the h-resonance region can partly be excluded already. Precise limits can be read

of figure 8. Noteworthy, this region extents to very large values of µ, beyond the scope of

even the high energy LHC.

5 Conclusions

In this work, we have studied light neutralino Dark Matter in the MSSM within frame-

works where all sfermions are heavy. Interestingly, this feature of the spectrum is shared

by both ‘natural SUSY’ and ‘mini split’ scenarios. Under the assumption that the neu-

tralino is a standard thermal relic, CMB measurements of the DM abundance translate

into specific requirements the spectrum must fulfill. Since, in our case, sfermions play no

role in the computation of the DM relic density, these bounds must be satisfied by the

neutralino/chargino sector of the MSSM alone. The generic requirement is that Higgsinos

are relatively light, such that the lightest neutralino can couple to Z or h through a non-

negligible Higgsino component and thus efficiently annihilates. This condition is strongly
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relaxed if the neutralino mass approaches the conditions for a resonant enhancement of

the annihilation cross section: mχ̃0
1
' mZ/2 or mχ̃0

1
' mh/2. In such a case, Higgsinos

can be as heavy as 450 GeV and 1.2 TeV respectively. This parameter space, depicted in

figure 1, can be hardly tested by direct and indirect DM search experiments because of a

suppression of the relevant cross sections in correspondence of the resonances, as shown

in figure 3. In contrast, LHC experiments have the potential to partly test our scenario

searching for production of Higgsino-like charginos and neutralinos, followed by decays to

WZ and the LSP. In fact, the remarkable sensitivity reached by the LHC experiments

in the search for purely electroweakly interacting new particles allows us to directly test

the electroweak sector of supersymmetric models without the need of assumptions on the

strongly-interacting superpartners.

In section 4, we have presented the results of our reinterpretation of an ATLAS three

leptons plus missing energy search. In figure 8, we have shown that LHC experiments can

set non-trivial constraints on the light neutralino parameter space already with the data

collected at
√
s = 8 TeV. In particular, we have seen that the current limit only leaves

uncovered the case of a neutralino mass lying close to the resonances (at about 5 GeV or

less), as well as the corners of the parameter space corresponding to the kinematical thresh-

olds |µ| −mχ̃0
1

= mZ , mh, where the three leptons searches loose sensitivity. Combining

with further channels, such as di-leptons plus missing energies, as well as searches for Wh

events, could further reduce the uncovered corners.

The exercise we have performed demonstrates once more that LHC searches for elec-

troweakly interacting SUSY particles can be successfully interpreted as indirect searches

for supersymmetric Dark Matter at collider (especially in combination with the relic den-

sity constraints), often resulting in more stringent limits than those set by Dark Matter

experiments themselves.
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A Neutralino masses and mixing

The neutralino mass term in the MSSM Lagrangian

L =− 1

2
(ψc)α(Mχ̃0)αβψβ, (A.1)
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is given with the following symmetric matrix,

(Mχ̃0)αβ =


M1 0 −mZsW cβ mZsW sβ
0 M2 mZcW cβ −mZcW sβ

−mZsW cβ mZcW cβ 0 −µ
mZsW sβ −mZcW sβ −µ 0

 , (A.2)

in the gauge-interaction basis ψα = (B̃, W̃ 0, H̃0
d , H̃

0
u), where sW = sin θW , cW = cos θW ,

sβ = sinβ, and cβ = cosβ. Although we diagonalize this mass matrix (including additional

higher order radiative corrections) numerically to obtain the mass eigenvalues mχ̃0
i

and

the mass eigenstates χ̃0
i = Niαψα with the mixing matrix Niα, we derive analytic and

approximated expressions to grasp the trend of the numerical results.

First, we separate Mχ̃0 into the zero-th order part M0 and the perturbation δM as

Mχ̃0 =M0 + δM. They are defined as

(M0)αβ =


M1 0 0 0

0 M2 0 0

0 0 0 −µ
0 0 −µ 0

 , (A.3)

(δM)αβ =


0 0 −mZsW cβ mZsW sβ
0 0 mZcW cβ −mZcW sβ

−mZsW cβ mZcW cβ 0 0

mZsW sβ −mZcW sβ 0 0

 . (A.4)

The zero-th order partM0 can be diagonalized with the zero-th order mixing matrix N
(0)
iα

N
(0)
iα =


1 0 0 0

0 0 − 1√
2

1√
2

0 0 − 1√
2
− 1√

2

0 −1 0 0

 , (A.5)

and the mass eigenvalues at the zero-th order are given as5

m
(0)

χ̃0
1

= M1, m
(0)

χ̃0
2

= µ, m
(0)

χ̃0
3

= −µ, m
(0)

χ̃0
4

= M2. (A.6)

Since we assume M1 � |µ| �M2 in our scenario, here we arrange the ordering of the mass

eigenstates as described with eq. (A.5).

Next, we take into account the effect from the perturbation part δM. This pertur-

bation is valid, if the condition (δM)ij �
∣∣∣m(0)

χ̃0
i
− m(0)

χ̃0
j

∣∣∣ is fulfilled, where (δM)ij is the

5At the zero-th order, χ̃0
2 and χ̃0

3 are degenerate in physical mass. The second lightest state and the

third lightest state can be identified only after taking the radiative corrections (and the perturbation) into

account. In the case of µ > 0, we identify the state with a mass of µ as a would-be χ̃0
2, and that with

−µ as a would-be χ̃0
3. In the case of µ < 0, the ordering becomes opposite, i.e., m

(0)

χ̃0
2

= −µ(> 0) and

m
(0)

χ̃0
3

= µ(< 0). Therefore, the mixing matrix for the µ < 0 case can be obtained by exchanging N2α and

N3α in eq. (A.7).
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perturbation part in the zero-th order mass eigenbasis, i.e., (δM)ij = N
(0)
iα (δM)αβN

(0)T
βj .

In the M2 decoupling limit, the perturbation terms are proportional to mZsW , which is

sufficiently smaller than the difference between two mass eigenvalues, which is typically

|µ|. After including the first order perturbation, the neutralino mixings Niα result in

the following:

N
(0+1)
iα =


1 0

mZsW
µ

(
sβ + cβ

M1
µ

)
−mZsW

µ

(
cβ + sβ

M1
µ

)
mZsW (sβ+cβ)√

2µ

(
1 + M1

µ

)
0 − 1√

2
1√
2

mZsW (sβ−cβ)√
2µ

(
1− M1

µ

)
0 − 1√

2
− 1√

2

0 −1 0 0

 ,

(A.7)

Here, we expand the matrix elements in powers of M1/µ and keep the terms up to the first

order. The approximate results fit well with the numerical results evaluated by SuSpect.

Although the mass eigenvalues do not get the correction at the first order of this per-

turbation, they are affected by the radiative corrections [66], which are larger than the

perturbations. For the analytic expressions of the neutralino masses and mixings in vari-

ous cases, see e.g. ref. [67].
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