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Abstract: For fluid analysis applications, such as oil con-
dition monitoring, fuel quality, or gas concentration mea-
surements, resonant sensors deliver an outstanding perfor-
mance when signal processing is optimized and the fluid-
mechanical model of the electromechanical resonator is
suitable and accurate for the particular resonator. By com-
bining recent advancements, significant improvements in
accuracy, measurement speed, dynamic range, and sup-
pression of cross-sensitivities could be achieved. These
features enable the development of new solutions for a va-
riety of measurementissuesinindustry and bio technology.
In this contribution the performance of a highly universal
evaluation system is demonstrated using a commercially
available quartz crystal tuning fork resonator as sensing el-
ement for liquid viscosity and mass density. The obtained
results are quantified with respect to an accurate lab bench
viscosity and mass density meter. A significant advantage
ofthis systemisthatitoperatesreliably and accurately even
for strongly damped resonators. Therefore, the sensor el-
ements can be used in a larger viscosity range than with
alternative evaluation methods.

Keywords: Fuel analysis, Oil condition monitoring, High
accuracy, Micro acoustic liquid sensor, Low cross-
sensitivity, Mass density, Viscosity

Uberwachung physikalischer Fluidparameter mit einer
piezoelektrischen Stimmgabel als resonantem Sensor

Zusammenfassung: Die Bestimmung von Fluidparame-
tern, beispielsweise in der Olzustandsiiberwachung, zur
Messung der Treibstoffqualitdt oder von Gaskonzentratio-
nen ist ein Anwendungsgebiet, in dem resonante Sensoren
vielfaltige Vorteile aufweisen. In den letzten Jahren konnten
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durch verschiedene Entwicklungen im Zusammenhang mit
der Auswertung solcher Sensoren signifikante Verbesse-
rungen in Messgeschwindigkeit und Messgenauigkeit und
eine deutliche Reduktion von potentiellen Querempfind-
lichkeiten erzielt werden. Besonders bei der Auswertung
stark gedampfter Resonatoren, wie bei der Messung von
Flissigkeitseigenschaften, ergeben sich dadurch neue An-
wendungsfelder fiir diese Sensorfamilie. In diesem Beitrag
wird die Leistungsfahigkeit dieser Technologie am Beispiel
eines miniaturisierten Quarz-Resonators gezeigt und mit
einem hochwertigen kommerziellen Analysegerat vergli-
chen.

Schliisselworter: Resonante Sensoren,
Zustandsliberwachung, Akustische Sensoren,
Massendichte, Viskositat

1. Introduction

Resonant sensors can be used in a wide range of applica-
tions, e.g. as microbalances, chemical sensors in liquid and
gaseous environments, and for physical property sensing
of liquid and viscoelastic media [1]. Sensor elements with
direct linear relation between the measured quantity and
a processable output signal are desired in measurement
practice but are often not available, especially when high
accuracy and suppression of cross influences are required.
For a viscosity and mass density sensor, the utilization of a
measurement principle which evaluates the frequency re-
sponse of an electroacoustic resonator in contact with the
fluid under test is advantageous. The frequency response
of such a resonant sensor is related to the fluid properties
by a nonlinear function but is also affected by several other
—in most cases spurious — influences [2].

The most commonly known example for such an in-
fluence is the electrode capacitance of quartz crystal res-
onators (QCR). An established electrical model for this res-
onator type is the Butterworth - Van Dyke (BVD) circuit as
shown in Fig. 1, comprising a series resonant RLC circuit,
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Fig. 1: Left: Butterworth-Van
Dyke model for QCR. The sim-
pledamped resonantcircuitis
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Fig. 22 Commercial off-the-shelf 32.768 kHz clock crystal with removed
housing. With the electrodes on the tines of the tuning fork a low voltage
signal can be used to excite the oscillation

representing the electromechanical (motional) properties
of the resonator. An extension to this simple second or-
der resonant system has to be considered in form of the
capacitance Cp between the electrodes.

For alternative sensor concepts, e.g. using Lorentz-force
excitation and inductive readout [3], similar extensions to
a resonant circuit are required to model inductive crosstalk
or wire resistances, for instance. It can be shown that
these sensors can be described by circuits similar to the
BVD model [4], and thus the approach described here is
also applicable to a wider class of sensors. For the sake
of convenience, this contribution focuses on piezoelectric
resonators as an illustrative example.

2. Readout of Resonant Sensors

The use of oscillator circuits detuned by the measurement
parameters is one of the most common approaches for
the readout of resonant sensors and is particularly suitable
for sensors with high quality factors or when the damp-
ing of the resonance remains constant. This is the case
for, e.g. quartz crystal microbalances (QCM) monitoring
the deposed metal layer in vapor deposition lines. One of
the major advantages of oscillators is that this approach
allows for very cost-efficient implementations yielding a
frequency as output parameter which, in principle, can be
measured very accurately.

For operating conditions where increased damping of
the resonator is expected, e.g. when electromechanical
resonators are exposed to liquid environments, additional
effort has to be made to separate the behavior of the mo-
tional branch from parasitic effects like the parallel capaci-
tance and the fluid’s permittivity and conductivity (Fig. 1).

Several variations of locked loop circuits were reported
to consider these influences (e.g. [5],[6]), but, with this ap-

Electrical fluid loading  ‘\ I—|C /
~ i

e

proach, spurious influences that are changing during oper-
ation can be addressed only to a very limited extent (e.g.
compensation of changes in parallel capacitance as shown
in [5]). With increasing demands for measurement accu-
racy or with higher damping of the resonator (viscous lig-
uids), the only practicable solution is to record the behavior
of the resonator in vicinity of the resonance and to shift the
extraction of desired parameters to a post processing step
in the digital domain. In this context several dedicated an-
alyzer systems based on measurement methods like those
implemented in gain-phase/network/impedance analyzers
were reported (e.g. [7]1,[8]).

In our previous work, we addressed numerous details
in order to improve the performance of these compact an-
alyzer systems. This concerns data acquisition concepts
for minimal signal processing effort [8], approaches to re-
duce parasitic signal components [9], numerical methods
for separating motional from parasitic behavior [10], and
improvements in sensor modeling [11].

The latest development in this respect is a highly uni-
versal evaluation system for interfacing resonant sensors,
which utilizes and combines various approaches that are
required or simply beneficial for a high performance mea-
surement system. This system is developed by the uni-
versity spin-off Micro Resonant Technologies and tested in
collaboration with the Institute for Microelectronics and Mi-
crosensors at the Johannes Kepler University Linz.

3. Tuning Fork Resonator as Sensor
for Viscosity and Density of Fluids

Various publications address the use of tuning fork res-
onators for determination of physical fluid properties such
as viscosity and mass density (e.g. [12],[13]). In contrast to
resonators with dominant shear oscillation (like torsional
resonators or thickness shear mode QCR), the tuning fork
resonator allows better separation of mass density and vis-
cosity [4],[11],[13].

For the experiments presented below, a commercial off-
the-shelf 32.768 kHz clock crystal with removed housing
was used (Fig. 2). No electrical insulation of the resonator
against the fluid is required due to the implemented com-
pensation of spurious effects, which efficiently eliminates
cross-sensitivity to liquid permittivity and conductivity (see
Fig. 1 right) as well as spurious phase shifts and propaga-
tion delays.
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Fig. 3: Theliquid sample (1 ml)iscontainedin asmall glass bottle con-
nected to a circulating bath for temperature stabilization (right). The sen-
sorisimmersed into this bottle and connected to an amplifiercircuitin or-
derto achieve low noise signals. For the evaluation of the sensor signal, a
signal processorbased universal evaluation system for resonantsensors
(left) is used. The acquired results are sentto a PC via USB connection
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Fig. 4. Measurementin Diesel fuel after stabilization of temperature.

With ameasurement rate of about one measurement per second, 300
data points were acquired in approximately 5 minutes
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4. Experimental Setup

The tuning fork is connected to a low noise amplification
stage and is mounted on the cap of a small glass bottle
(as used for gas chromatography) and immersed in about
1 ml of the sample liquid (Fig. 3). The bottle is inserted in
a holder connected to a refrigerated and heated circulating
bath system in order to accurately set the temperature of
the sample within an accuracy of +0.01°C.

The evaluation system is based on a digital signal pro-
cessor (DSP) generating the excitation signal for the res-
onator and calculating the resonance frequency f; and the
quality factor Q from the recorded response signals. This

is achieved by compensating for parasitic influences and
fitting the admittance Y of a series resonant circuit

V() - n
+]O(?r—?r
to the remaining data [10]. From these parameters viscos-
ity and density of the sample are determined by applying
a fluid-mechanical sensor model of the tuning fork [11]. Fi-
nally the results are transferred to a host PC via USB port.
Reference measurements for comparison purposes as
well as for calibration of the resonator model were per-
formed with a Stabinger Viscometer (SVM3000), which
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TABLE 1
Measured values for viscosity and mass density compared to reference data (obtained with an Anton Paar
SVM3000)

sample reference (SVM3000) tuning fork sensor
viscosity density viscosity density
mPa s kg/m3 mPa s kg/m3
Ethanol 1.0330 784.8 1.0328 784.43
2-Propanol 2.0531 780.4 2.05M1 781.03
1-Octanol 7.6530 821.2 7.6517 821.39
RT5 silicone oil 5.0336 911.8 5.0316 911.77
Diesel 3.3740 831.6 3.3792 830.99
TEOS 0.6022 9277 0.6023 927.90
(Tetraethylorthosilicate)
From the acquired sequences, mean values and stan-
12.1 0.0%  dard deviations were derived and compared to the refer-
02% ence measurements. The standard deviations of frequency
12 and quality factor and subsequently of viscosity and den-
§ 0.5% sity results are in close agreement with the theoretically
€ predicted error propagation [14].
i 1.9 A comparison of reference data and the mean values
3 of the measurement results obtained with the tuning fork
é 11.8 are shown in Tab. 1. As depicted in Fig. 5, these results
1.0%  deviate from the reference measurements less than 0.2 %
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Timeins
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Fig. 6: Measurements of 5\WW30engine oil with differentcontents of
Diesel fuel at 90°C. The sampling rate was 1/s, for each dilution ratio a
series of one hour duration (3600 samples) was acquired. For this mea-
surementrate the noise level is about the same as achange of 0.1 % fuel
content, for slower data acquisition a much lower noise level can be
achieved

nominally provides an accuracy of +0.35% for viscosity and
+0.5 kg/m3 for mass density.

5. Results

For demonstration purposes, two experiments are shown
below: one to determine the achievable accuracy when
monitoring liquid properties of fuels (Diesel) and a second
one on the condition monitoring of engine oil, where the di-
lution with fuel is a severe issue for engine manufactures.
Previous results of similar experiments were reported in
[15] and [16].

5.1 Fuel Analysis

In the first experiment, various test liquids with viscosi-
ties and densities similar to Diesel were measured with the
reference instrument and the resonant sensor setup. The
resonator was immersed in the sample and placed in the
holder sufficiently long (for temperature stabilization) be-
fore a sequence of 300 measurement points was acquired
in about 5 minutes, exemplarily shown in Fig. 4.

for viscosity and less than 0.1 % for density.

5.2 Fuel Dilution of Engine Oil

The second experiment was conducted to demonstrate the
measurement of fuel dilution by means of viscosity change
of engine oil. For this test a series of various dilutions (0,
0.2, 0.5, and 1 % mass fraction of Diesel in 5W30 oil) was
prepared and measured with the resonant sensor system.
For each liquid sample, data were recorded for one hour
after temperature stabilization at 90 °C (Fig. 6).

The results show that a change of fuel content in the
range of 0.1 % can be reliably determined within seconds
even at elevated temperatures as expected in a running
engine. In order to obtain a high absolute accuracy of the
diesel content ratio, the implementation of a mixing model
for the specific oil is recommended.

6. Conclusions

A viscosity and density measurement system based on a
resonant sensor has been presented. For demonstration
purposes, the system was evaluated using a commercial
off-the-shelf resonator as sensor. The signal processor
based system for evaluating the resonant behavior of the
sensor can be used with virtually any kind of resonator from
small quartz crystal tuning forks up to rugged resonators
made from stainless steel.

The results obtained with this setup have been com-
pared to an accurate top-grade lab bench viscosity and
density meter and show outstanding trueness and preci-
sion at a significantly higher measurement speed, ideally
suited for a large range of applications, such as online
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process monitoring, condition monitoring of lubricants,
low fluid volume measurements, hand-held devices, labo-
ratory use, and more.
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