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Abstract Machine vision has been successfully used for mechanical destruction of weeds

between rows of crops. Knowledge of the position of the rows where crops should be

growing and the assumption that plants growing outside such positions are weeds may be

used in such systems. However for many horticultural crops, the automatic removal of

weeds from inside a row or bands of crops in which the weeds are mixed with plants in a

random manner is not solved. The aim of this study was to verify that plant height is a

discriminating parameter between crop and weed at early growth stages, as weeds and

crops grow at different speeds. Plant height was determined by using an active stereoscopy

technique, based on a time multiplexing coded structured light developed to take into

account the specificities of the small scale scene, namely occlusion and thin objects,

internal reflections and high dynamic range. The study was conducted on two carrot

varieties sown at commercial density. Different weed species were present at the time of

data acquisition. To accurately represent plant height taking into account the ground

irregularities, a new parameter called ‘corrected plant height’ was computed. This

parameter was the distance between plant pixels and the actual ground level under them

obtained by fitting a surface and seen from a reconstructed point of view corresponding to a

camera’s optical axis perpendicular to the ridge plane. The overall classification accuracy

without correction was 66% whereas it reached 83% by using the corrected plant height.
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Introduction

Autonomous robotic weed control systems may provide a means of reducing agriculture’s

current dependency on herbicides, improving its sustainability and reducing its environ-

mental impact. In the design of a robotic system, detection and identification of weeds

under the highly variable conditions usually found in agricultural fields remains the

greatest challenge (Slaughter et al. 2008). Two problems have to be considered. The first

one is the detection of weeds from soil with the goal of eliminating weeds between the

rows or between widely spaced individual crop plants. The second problem aims to rec-

ognize weeds mixed with plants in random positions. This is a complex task as the scenes

are unstructured, the distribution of the crop in the rows is irregular and there is no a priori

knowledge concerning the weeds present.

Several attributes, such as topological properties (area, invariant moments and curvature

features), are found useful in weed identification. To detect weeds from corn plants,

Tellaeche et al. (2008) extracted cells from RGB images, each cell being described by two

area-based measuring relationships. Søgaard (2005) developed a method for machine

classification of weed species based on active shape models. Berge et al. (2008) used shape

parameters to detect broad-leaved patches in cereal crop. Success rate was between 84 and

90%. These shape-based methods generally achieve high recognition rates under ideal

conditions, i.e. when the shape of the entire leaf is well displayed (no occlusion) (Slaughter

et al. 2008). A large number of studies have investigated the use of colour or spectral

reflectance techniques for species identification. Feyaerts and van Gool (2001) developed a

spectrograph with a low spectral resolution (35 nm) and used it to discriminate beets from

five weed species. Classification accuracy was good (up to 86%), however, six narrow

spectral bands were necessary which is impractical for in-field work. Vrindts et al. (2002)

used a hyperspectral machine vision system with very narrow spectral bands to classify

sugar beet and weed plants in the field with similar limitations. Nieuwenhuizen et al.

(2007) used color information to detect volunteer potatoes in sugar beet fields. The results

were very variable with classification rates ranging from 49 to 97% in different fields.

Piron et al. (2008) used a combination of three wide-band interference filters to detect

weeds located within carrot rows and found a classification accuracy of only 72%. To

obtain robust and more accurate classification, knowledge about leaf orientation and their

relative heights is necessary, to get more complete visual information available to the

recognition process (Lee and Slaughter 2004). 3D information about the leaves is useful to

separate overlapping objects and to analyze spectral anomalies in relation to their location

in the canopies (Lee et al. 1999). Sanchez and Marchant (2000) described the possibility of

detecting weeds by a fixed threshold on plant height on stereoscopic images of plants in

laboratory conditions. Nielsen et al. (2004) studied the detection of weeds among tomato

plants by analyzing stereoscopic images acquired in the field by a trinocular camera. The

distinction between crop and weeds was based on three different methods: simple per-pixel

threshold on distance from camera to plant pixels, analysis of connected blobs’ height

histograms and analysis of those same blobs after watershed segmentation. The Authors

acknowledged the negative effect of ground irregularity on classification. Other plant

properties have also been studied with stereoscopic images. He et al. (2003) used ste-

reoscopic images acquired by a binocular camera to evaluate average plant height and leaf

area (other parameters were evaluated too but are not relevant to this review), on potted

transplants. Andersen et al. (2005) studied the possibility of computing plant geometric

properties such as plant height and leaf area on stereoscopic images acquired with a

binocular camera, on isolated potted plants. They showed that those characteristics can be
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determined using stereovision but specify that the acquisition method needs to be validated

for in-field conditions and for more complex plant structures. Plant height could thus

possibly be used for weed detection among young carrots but this hypothesis must be

tested for in-field conditions.

The most well-known method to acquire 3D information is passive stereovision; it was

for example used in the studies reported above. This method is based on viewing the scene

from two or more points of view and then finding correspondences between the different

images in order to triangulate the 3D position. When the scene does not contain singular

points such as corners, or when it presents discontinuities or thin structures (which is the

case for in-field weed detection), correspondences are difficult to find. With regards to the

difficulty of acquiring good quality stereoscopic data of plants by stereovision, Nielsen

et al. (2007) developed a framework to compare and tune stereoscopic algorithms on

virtual images of various plants.

To acquire 3D information, other imaging methods are available such as active ste-

reoscopic methods based on structured light projection (Pagès et al. 2005). In this case, a

camera is used to image the projection of a given pattern (for example a laser plane) on the

scene. 3D information manifests itself in the deformations of the imaged pattern compared

to the projected one (Salvi et al. 2004). Coded structured light can be considered as an

evolution of structured light techniques and is based on the projection of bi-dimensional

patterns by using light projectors, the patterns containing a form of encoding of spatial

information. Those methods improve the reliability and quality of the 3D information

compared to passive stereovision techniques. For this study, coded structured light was

chosen because it is better suited to scenes with holes, occlusions and quick depth changes

compared to non-coded structured light.

The objective of this paper was to verify that plant height is a discriminating parameter

between young carrot crop and weeds, as weeds and crops grow at different speeds. To

achieve this goal, a stereoscopic acquisition method based on coded structured light was

developed taking into account scene specificities. A ‘‘corrected plant height’’ parameter

was computed from the acquired stereoscopic images and used for classification of weed

and crop.

The structure of the paper is as follows: first, the acquisition, coding and decoding

strategies are given and justified with regard to the scene and acquisition device speci-

ficities. Second, actual implementation and measurements description are outlined. Finally,

plant classification based on the ‘‘corrected plant height’’ parameter is described.

Materials and methods

Acquisition, coding and decoding strategies

For coded structured light, which uses light projectors such as in this case a video pro-

jector, several patterns have been proposed to realize the correspondence between the

image plane and the projected image with accuracy. Pattern projection techniques are

classified according to their coding strategies: direct codification, neighborhood codifica-

tion and time-multiplexing (Salvi et al. 2004). In direct codification, where the gray or

color value of each pixel contains all the information necessary to retrieve its spatial

position in the pattern, the sensitivity to noise is very high and it is necessary to perceive

and identify the whole spectrum of projected colors. Furthermore, those techniques are not

particularly well suited for non-uniformly colored objects. In spatial neighborhood
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techniques, the codeword that labels a certain point of the pattern is obtained from a

neighborhood of the points around it. In our scene, numerous occlusions and discontinu-

ities are present which prevent the identification of neighborhood information. A time-

multiplexing technique was thus chosen. It consists in projecting successively a set of

patterns onto the scene. The codeword for a given pixel is thus formed by the sequence of

illumination values for that pixel across the projected patterns.

The stereoscopic imaging system was to be combined with a color acquisition device

using artificial lighting designed to select optimal spectral bands for weed detection (Piron

et al. 2008). This system was composed of a black and white camera and a filter wheel that

dictated the use of monochromatic patterns. A binary code was chosen, which meant that

only two illumination levels were used, which were coded as 0 (black intensity) and 1 (full

illumination). This small codeword basis allowed more robust decoding (Salvi et al. 2004).

Overview of scene and acquisition material-related problems and existing solutions

The small-scale agronomic scenes presented several characteristics that influenced the

techniques used. However, for each characteristic no single solution existed, and recip-

rocally, each solution did not apply to a single problem. This is summarized in Table 1.

The scene presented a high dynamic range, i.e. it had regions high in reflectance and

others low in reflectance (Robertson et al. 1999): the soil, particularly when it was wet, had

a considerably lower reflectance than the plants (Fig. 1). In this case, when projecting

patterns at low illumination intensities, the signal-to-noise ratio of the system in the soil

areas decreased and therefore depth from low reflective regions could not be obtained. On

the other hand, when projecting high illumination intensity patterns, depth from regions

with high reflectance could not be recovered, due to pixel saturation (Salvi et al. 2004).

Furthermore, internal reflections were present, i.e. a certain, high reflectance part of the

Table 1 Presentation of scene specificities relevant to coded structured light and associated solutions
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scene illuminated another, low reflectance one, being a possible source of noise in the

signals. This phenomenon was worsened by the high dynamic range of the scene.

To solve the variation of reflectance problem, in scenes with no internal reflections,

existing solutions consist in varying the intensity distribution of the projection patterns. Lu

and Cho (2005) proposed a pattern intensity control based on acquiring a fully illuminated

image of the scene to adjust automatically to surface reflectance. Wu et al. (2006) used

reflectance ratios from two patterns and high dynamic range imaging.

In the presence of high dynamic range scenes with internal reflections, Scharstein and

Szeliski (2003) found that a reliable way of thresholding pixels was to project both the

code pattern and its inverse. Each pixel can be labeled according to whether the pattern or

its inverse appears brighter. This technique has to be completed by selecting the exposure

setting that yields the largest absolute difference between two illuminations.

The second problematic peculiarity of the canopy concerned the numerous depth dis-

continuities within plant layers and between plants and ground, leading to numerous

occlusions (part of the scene either invisible to the camera or not illuminated by the

projector). To solve occlusion problems in binary stripe patterns, Scharstein and Szeliski

(2003) used per pixel segmentation as described above in the previous section.

The third problem related to the scene concerned the very thin structures exhibited by

the plants. In some cases, the leaves are barely larger than either the camera or video

projector pixel size. Gorpas et al. (2007) noted the lack of works in the 3D optical

measurement field dealing with small objects (\1 cm diameter).

Besides these problems related to the scene, peculiarities of the equipment could

influence the coding and decoding strategy. In our application, the depth of field of the

projector was inferior to the measurement volume (120 mm). This problem is not spe-

cifically addressed in the literature but, as the blurry pattern could be interpreted as noise in

the signal, it could be argued that coding schemes aimed at improving signal robustness

Fig. 1 Detail of a scene with a
projected pattern
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were relevant. According to Salvi et al. (2004), solutions comprised error code inclusion in

the patterns, redundant codes or spatio-temporal analysis.

Implemented solutions

Coding: long binary codes, lowly correlated, decoded by correlation

The nature of the code was chosen to give robust results. Weakly correlated codes with a

minimum Hamming distance1 of 8 (empirically determined) between any pair of codes were

used. The codes were decoded by correlating the signal received by a single camera pixel

over time with all possible signals. As correlation also gave a measure of the reliability of

the decoding, it could be used to remove spurious measurements by applying a threshold.

The length of the code had to satisfy three conditions: to be adapted to the minimum

Hamming distance requirement, to allow the encoding of full projector resolution (768

lines) and to give good decoding results. The third criterion was decisive. The length of the

code used was 22 bits. Hamming code error correction was not used. The small codeword

basis (binary) also allowed more robust decoding as stated earlier. Those characteristics are

meant to deal with the limited projector depth of field and internal reflections since both

problems could be considered as noise in the signals perceived by the camera.

Coding: per-pixel decoding

The signals received at each pixel were decoded without taking into account neighboring

pixels, since there were a large number of discontinuities. This also allowed obtaining

depth information for fine plant leaves and bracts structures that could be of a size similar

to camera or projector pixel size.

Patterns: pseudo random patterns

Usually, in time-multiplexing, binary code techniques, the projected images are comprised

of black and white bands of large then finer width. The wider bands cause problems when

the scene is prone to internal reflections because the large areas illuminated by a white

band of the pattern reflect on areas illuminated by a dark area of the pattern.

To avoid this problem, the patterns used were pseudo-random (e.g. without apparent

structure). Such patterns are usually associated in structured light techniques that use

spatial neighborhood coding techniques to spatially encode information (e.g. Spoelder

et al. 2000). In this case, however, the more homogeneous illumination given by a pseudo-

random pattern is used to minimize the effects of internal reflections. Figure 2 presents the

link from the codes to the pattern.

Acquisition: exposure fusion

On the basis of work of Scharstein and Szeliski (2003), several exposures were used to

acquire a single image of each pattern. However, the implementation of the high dynamic

range imaging was different and based on exposure fusion (Robertson et al. 1999). Four

exposures of each pattern were taken at different exposure times and ‘‘blended’’ using the

following process.

1 The Hamming distance between two codes is the number of corresponding bits that are different.
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On each image, it was determined which pixel was neither under- or overexposed (two

thresholds). The first image in descending exposure time order was used as the base image

onto which information from all the other images were added, in descending exposure time

order. After this step, the information from the next ones were added to the first image, one

by one, for corresponding pixels that satisfied the exposure condition, by scaling it for the

second image exposure time. Pixels that did not appear correctly exposed in at least two

images were not taken into account. This last step allowed the detection of occlusions and

specular reflections. The high dynamic range acquisition also allowed to have a strong

signal to noise ratio for all pixels of the image.

The exposure times and the total number of exposures were determined empirically on

potted plants. It was found by trial and error that four exposure times (0.6, 0.3, 0.07 and

0.01 s) were necessary because of the large variations of soil reflectance and of certain

plant species.

Stereoscopic acquisition implementation

Image acquisition

The stereoscopic device was combined with an existing camera used in a previous study to

allow measurement of depth over multi-spectral images. The multi-spectral acquisition was

based on a black and white camera (Vector International C-cam BCI 5 1.3 megapixels,

Leuven, Belgium) coupled with a filter wheel (Figs. 3, 4). The spectral bands of interest for

weed detection were centered at 450, 550 and 700 nm. For plant-ground segmentation,

only the first and last ones were used. The coded structured light patterns were acquired

without a filter in front of the camera.

Fig. 2 Principle of the transposition of coded structured light codes to patterns
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Fig. 3 Schematic view of the acquisition device (natural light shielding and artificial lighting parts not
represented)

Fig. 4 Lateral schematic view of the projector/camera system showing the respective fields of view (FOV)
and approximate relative positions of the elements. The trapezoidal element under the projector/camera
system corresponds to the natural light shielding and artificial lighting parts that are omitted for clarity’s
sake in Fig. 3
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The video projector (OPTOMA EP719, 1024 9 768 resolution) was chosen for its

ability to be focused on very close objects.

A mobile support frame (Fig. 3) was designed to allow acquisition of top-down images

of the field scene (approximately 200 by 250 mm). The scenes were shielded from natural

light. The study was conducted on two carrot varieties without distinction, Nerac F1 and

Namur F1. Approximately 200 linear metres of rows were mechanically sown at a density

of 10–15 seeds per 100 linear mm over a 50 mm width which is a common commercial

planting density. Several species of weeds were naturally present in the field and others

were manually introduced. The main species were the following at the time of data

acquisition: Sonchus asper L., Chenopodium sp., Cirsium sp., Merurialis M. perennis,

Brassica sp. and Matricaria maritima. Images of carrot-sown ridges were taken over a

period of 19 days during which soil moisture varied from dry to wet according to the

weather (see Table 2). This timeframe is typical for manual weeding for carrots. Indeed,

early weed detection can increase yields and weed elimination becomes increasingly

difficult with plant growth. A total of 51 multi-spectral images were acquired at random

locations in the parcel. The number of images acquired per day varied according to

meteorological conditions: strong winds made the acquisition of images difficult because

of the movement of plants and/or camera.

Projector and camera calibration

The calibration of the camera-projector system was done using the Zhang technique from

the Intel OpenCV library. This model is physics-based and uses several parameters to

describe the camera-projector system: focal lengths, pixel sizes, lenses principal points and

four distortion parameters per lens. As it is a widespread method, we will only describe the

specific adaptations performed.

A chessboard pattern was used for calibration. The camera lens user-defined parameters

(focal distance and diaphragm opening) were set for multi-spectral and coded structured

light patterns acquisition. Those settings limited the depth of field of the camera for

acquisition of calibration images to barely more than the measurement volume but this did

not pose any apparent calibration problem. A first attempt to illuminate the chessboard

pattern using the projector for camera calibration resulted in very short exposure times for

the camera. Due to the nature of the projection technique (DLP), short exposure times gave

images with varying intensity over time. The DLP projection technique is based on an

array of movable micro mirrors, each corresponding to a pixel of the projected image that

are used to reflect (or not) light through the projector’s lens. The fast movement of those

mirrors provides a gray scale image.

In the projector used, the color is produced by a color filter wheel placed between the

lamp of the projector and the micro-mirror array. The wheel has three filters (red, green,

Table 2 Summary of
acquired data

Date of data
acquisition

Days after
sowing

Soil surface
state

Acquired
stereoscopic images

22 May 2006 21 Wet 4

29 May 2006 28 Wet 4

31 May 2006 30 Wet 9

07 June 2006 37 Dry 7

09 June 2006 39 Dry 4
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blue). To create the illusion of a color image, three successive images corresponding to the

three-color channels are projected successively. The relatively low speed of the wheel

creates the intensity fluctuations in the images captured by the camera. This problem also

appeared when calibrating the projector by projecting a chessboard pattern on a flat cal-

ibration surface. The solution used was to average a certain number of exposures until the

grey levels stopped varying significantly. When calibrating the projector by projecting a

chessboard pattern on a flat calibration surface, the limited depth of field of the projector

did not interfere with the chessboard corner detection algorithm.

Since we use per-pixel decoding, there was no need for following the epi-polar con-

straint or rectifying the images prior to decoding.

Plant classification

Computing of plant height parameter

The distance of the plants relative to the measurement device is not a good indicator of

their actual heights if the position from the device to the ground varies or if the ground

presents high roughness, especially if the plants are young and therefore of small size

(Nielsen et al. 2004). This is schematically illustrated in Fig. 5.

Accurate 3D information about the soil was obtained by coded structured light imaging.

A corrected plant height parameter expressed as the distance between plant pixels and

the actual ground level was computed. It was obtained by fitting a surface through ground

pixels in order to interpolate 3D information missing due to either camera, projector or

scene occlusions, and computing a new point of view corresponding to the optical axis

perpendicular to the ridge plane of the camera.

The process is described in Fig. 6. In the first stage, plant and ground pixels were

segmented by performing quadratic discriminant analysis on two spectral bands (1, 2). In

the second stage, two surfaces were fitted through the soil pixels. First, one plane (3) was

adjusted using a RANSAC (RANdom SAmple Consensus) algorithm (Fischler and Bolles

1981). The distance threshold parameter to determine whether a data point was an inlier or

not was manually adjusted from terrain observations. Second, a triangle-based cubic

interpolated surface (4) was fitted, using the grid-data function of Matlab. Because this

function produced a surface that passed through all specified points, it was very sensitive to

spurious pixels resulting from the imperfect segmentation between plants and ground.

Furthermore, those pixels were frequently present at the limit between plants and ground,

3Fig. 5 Left: distance measured
during 3D acquisition. Right:
plant height required for plant
classification
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which was the border of the regions that were of interest for the plant height determination.

To avoid this problem, the borders of those regions were eroded by a round structuring

element of diameter 3 pixels. The plant and soil pixels (the latter with the interpolated

pixels obtained in operation 4 since the ground under the plants was not visible from the

camera, and not all points seen by the camera were illuminated by the projector) were then

put back together (5, 6). Finally, the orientation of the fitted plane was used to rotate the

data in space so as to align the plane normal with a virtual camera (k) optical axis. This is

done to allow correction for measurement device placement.

Classification

The objectives of the classification were to classify weeds from crop and to analyze the

value of introducing height information concerning the ground. Two parameters were used

Fig. 6 Plant height parameter determination process. a Multispectral stereoscopic image, b soil image,
c plant image, d plane fitted through soil, e surface fitted through soil, f final image for height determination
with reconstructed soil and ridge and camera plane aligned, b position of real camera relative to scene,
k position of virtual camera corresponding to the viewpoint where ridge and camera plane are aligned
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in the classification. The first one was for each plant pixel either the distance between the

plant pixel and the reconstructed soil surface underneath (plant height parameter) or the

distance from the plant pixel to the camera. The second was, in both cases, the number of

days after sowing, which allowed to adapt the threshold height level to the rapid growth of

the young plants over the data acquisition period.

Quadratic discriminant analysis (QDA) was used for data classification.

Manually segmented data (crop and weed classes) were used as a training set for the

classifier. To ensure equal representation of both classes in the classification process, the

number of points in the training set had to be the same for each class. Since there were less

weed data points than plant points, we first applied a random sampling to the carrot data

points to have the same amount of data in each class. Due to the large amount of mea-

surement points, computations could be very long, so three subsequent random samplings

were applied to both classes to extract 10% (for each sampling) of the pixels of the carrot

leaves and the same amount of weeds, creating three new data subsets. Resubstitution

validation was used to verify that the three data subsets gave the same CA. Those random

samplings were also done as a precaution: resubstitution validation can be prone to over-

fitting but it is rarely an issue in the case of a large amount of measurement points (Michie

et al. 1994).

The criterion used to evaluate the efficiency of the feature combination was the clas-

sification accuracy. It is the percentage of observations correctly classified, whether for

each class or for both classes together.

QDA and resubstitution validation might not be the optimal methods, but the goal was

to compare feature sets and not to find the best classification method.

Results and discussion

Stereoscopic acquisition

The stereoscopic data acquisition gave highly detailed images with dense information and

few decoding errors, as can be seen in Fig. 7 and 8. After thresholding on the minimum

correlation value (visually determined), the amount of correctly decoded points over all

images was 95%, taking into account occlusions. The occlusions areas are visible as low

correlation in Fig. 8: they correspond to the areas not illuminated by the projector because

of shadows of other features. Decoding errors appeared to be randomly distributed over the

images. For both soil and plants, the correlation for the signal decoding was very high (see

Fig. 8), although better for plants than for soil.

The structures of plants with finely dissected leaves such as M. maritima (Fig. 7 top

right) were clearly visible. The great variability in height of the ground could also be seen

in those examples despite the high reflectance difference between plants and ground. Soil

moisture didn’t apparently influence decoding results.

Plant classification

The classification accuracy was compared when combining, on the one hand, non-cor-

rected plant height and number of days after sowing and, on the other hand, corrected plant

height parameter and number of days after sowing. It was found that the camera position

and the ground irregularities greatly influenced the classification accuracies: using the

corrected plant height parameter improved significantly the classification results (Table 3).
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The overall classification accuracy without correction was 66%. Taking into account the

corrected plant height parameter, the overall classification accuracy reached 83%. For the

carrot class, the improvement when going from the non-corrected height parameter to

the plant height parameter was smaller than for the weed class. This could be explained by

the central position of the carrot plants on the ridge and the smoother surface state of the

soil in that area, due to the sowing apparatus. Furthermore, since the camera was centered

Fig. 7 Crops of stereoscopic depth images showing the high variability in ground flatness and multiple
weed species. Lighter colors correspond to points closer to the camera

Fig. 8 Example crop of image
of maximum correlation for each
pixel
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on the carrot seed line, height variation of the camera relative to the ground due to

inclination of the supporting frame was of less importance for that part of the image, at

least laterally. The lower classification accuracy of weeds compared to carrots could be due

to the greater variability of this class (several species) and their presence anywhere on the

ridge.

As can be seen from Table 3, camera position correction only has a small positive effect

on classification accuracy for weeds. The low improvement is likely due to the mea-

surement conditions: the mobile frame was manually moved around the field and the field

was not disturbed by tractor use. Bigger improvements are expected if the measurement

equipment was mounted on a tractor and done in a field where the ground is more irregular

due to tractor use.

Conclusion

A coded, structured-light method tailored for acquiring high quality stereoscopic images of

small-scale field scenes was described. The method was compatible with an existing

camera based on a filter wheel and comprised a DLP video projector. The coded struc-

tured-light method was based on a time-multiplexing approach with a binary codeword

basis. The scenes studied had several specificities that had to be taken into account for the

acquisition method: presence of numerous occlusions and thin objects, high dynamic

range, internal reflections. In addition, the small scale of the scene meant that the depth of

field of the projector was insufficient. To solve those problems, several approaches were

used in the coding, patterns and acquisition methods: the codes were long binary codes,

lowly correlated and decoded by correlation. The decoding was done on a per-pixel basis.

Pseudo-random patterns were used and the acquisition used exposure fusion to deal with

the high dynamic range and internal reflections of the scene. Acquisition results were

qualitatively and quantitatively evaluated. It was found that the acquisition methods gave

dense stereoscopic data of ground and plants even when the latter exhibited fine structures.

This method is well suited for data acquisition for research purposes but is quite slow due

to the large amount of images to acquire. For inline acquisition other, faster, techniques

have to be considered.

The acquired stereoscopic data were classified to differentiate weeds from crop. This

was done by using quadratic discriminant analysis with two combinations of two param-

eters. The first parameter was, for each combination, the number of days after sowing. The

second parameter was, in one case, the distance from measurement device to plant pixels

and, in the other case, a corrected plant height parameter that took into account camera

placement and ground irregularities. The classification accuracy was only 66% in the

first case while it reached 83% in the second case. This result showed the importance

Table 3 Classification accuracy
(%) for each height parameter

Plant-camera
distance

Parameter

Plant-camera distance
corrected for camera position

Plant height
parameter

Overall 66 67 83

Carrots 75 75 85

Weeds 57 59 80

620 Precision Agric (2011) 12:607–622

123



determining a parameter describing plant height by acquiring stereoscopic information

about the ground as well as the plants in order to differentiate plants from weeds and not to

only base the discrimination on measurement device-plant distance. For this to be efficient

however there has to be a difference of height between crop and weed species.
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