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1 Introduction

Vasiliev’s higher spin theories in four dimensions [1, 2] are relatively simple theories involv-

ing infinitely many fields, all with integer spin. The full non-linear equations of motion

are known, and the simplest solution to them is AdS4. Some additional solutions of the

equations (2.2) are known: see for example [3–5]. Finding exact solutions is challenging

because the equations of motion are non-linear and involve a non-local star product in

the oscillator variables. But a broader set of exact solutions is highly desirable in order

to advance our understanding of classical higher spin theory beyond perturbation theory.

The aim of this paper is to introduce a new class of exact solutions. In one subcase of our

construction, the solutions are parametrized by an arbitrary function of three variables,

making it a remarkably large class of solutions.

Vasiliev’s equations involve auxiliary, bosonic, spinorial variables zα, and one of the

equations of motion takes the form fz1z2 = −p(b ∗K), where fz1z2 is like a Yang-Mills field

strength, b∗K is covariantly constant in the adjoint representation, and p is a phase — for

our purposes, either 1 or i. The equation fz1z2 = −p(b ∗K) is formally similar to having a

magnetic field in two dimensions: ∂1A2−∂2A1 = B12. A standard strategy is to set A1 = 0

as a gauge choice and then solve for A2 in terms of B12. This is axial gauge. We are going

to make an analogous ansatz, namely s1 = 0 = s̄1̇ where sα is the spinorial part of the

gauge potential with field strength fz1z2 , and s̄α̇ corresponds to a conjugate field strength

f
z̄1̇z̄2̇

. This choice appears to be as innocuous as the choice of axial gauge; however, our

overall ansatz is more restrictive than just a gauge choice.

Setting s1 = s̄1̇ = 0 removes some star-(anti)-commutators from the equations of mo-

tion, so that some components of these equations become linear. After solving these linear

equations (in a gauge where the spacetime components of the higher spin connection van-

ish), we find that the non-linear equations reduce to quadratic constraints on the ansatz.
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These quadratic constraints have many solutions, especially in a particular case where a

principle of superposition operates, allowing us to construct solutions labeled by the afore-

mentioned arbitrary function of three variables. Related strategies have been pursued in

previous work [4, 6]; a common thread is rendering the equation for fz1z2 effectively linear.

The structure of the rest of the paper is as follows. For the sake of a self-contained

presentation, we review in section 2 the equations of motion of the higher-spin theories

that we are going to solve. In section 3 we explain in detail the ansatz and show some

examples of solutions. The treatment of this section relies entirely on a gauge where the

spacetime components of the connection vanish, also described as the Z-space approach

in [3]. In section 4 we discuss how solutions of the type obtained in the previous section can

be lifted via a gauge transformation to full spacetime solutions. We focus on a particular

route to the Poincaré patch of AdS4, but a different gauge transformation would lead to

global AdS4. An example presented in section 4.2 leads to an exact solution of the Vasiliev

equations in which the spatial part of the higher spin connection is the same as in AdS4

and the scalar takes a form which, in the linearized theory, is associated with a massive

deformation of the O(N) model. It is tempting to identify the exact solution as dual to the

massive O(N) model; however, we caution that the explicit breaking of Lorentz symmetry

inherent in our ansatz complicates this interpretation.

2 The equations of motion

The equations of motion of Vasiliev’s higher spin theories in four dimensions [1, 2] can be

stated in terms of a gauge field

A = Wµdx
µ + Sαdz

α + S̄α̇dz̄
α̇ (2.1)

and a scalar field B: following the conventions of [7], one writes

F ≡ dA+A ∗A = p(B ∗K)dz2 + p̄(B ∗ K̄)dz̄2

DB ≡ dB +A ∗B −B ∗ π(A) = 0 , (2.2)

where K, K̄, π, dz2, dz̄2, and ∗ are defined in the paragraphs below. The phase p is 1

for the so-called type A theory, dual to the O(N) model [8] and i for type B, dual to the

Gross-Neveu model [9]; correspondingly, p̄ = 1 or −i.

The components of A, and also B, are functions of the usual four bosonic coordinates

xµ together with spinorial oscillator coordinates (also bosonic) Y A = (yα, ȳα̇) and ZA =

(zα, z̄α̇), where α and α̇ are doublet indices for the irreducible spinor representations of

SO(3, 1). The coordinates Y A do not participate in the differential structure of the theory:

in other words, the exterior derivative d acts only on xµ and ZA, and we never encounter

one-forms dY A. A and B admit series expansions in Y A and ZA. Roughly speaking,

the metric and spin connection come from the terms in A that are quadratic in the Y A

coordinates, while the part of B which depends only on the xµ is identified as a scalar field.

To formulate the equations, one uses an associative star product, defined by

f(Y, Z) ∗ g(Y, Z) = N

∫

d4u d4v f(Y + U,Z + U)g(Y + V, Z − V )eU
AVA , (2.3)
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where the normalization factor N is such that f ∗ 1 = f . Indices are raised and lowered

according to

UA = ΩABUB UA = UBΩBA . (2.4)

Here

ΩAB = ΩAB =

(

ǫαβ 0

0 ǫα̇β̇

)

(2.5)

and

ǫαβ = ǫαβ = ǫα̇β̇ = ǫα̇β̇ =

(

0 1

−1 0

)

. (2.6)

The star product is associative, and

Y A ∗ Y B = Y AY B +ΩAB ZA ∗ ZB = ZAZB − ΩAB

Y A ∗ ZB = Y AZB − ΩAB ZA ∗ Y B = ZAY B +ΩAB . (2.7)

The Kleinians

K ≡ ez
αyα K̄ ≡ ez̄

α̇ȳα̇ (2.8)

satisfy K ∗K = K̄ ∗ K̄ = 1, and also

f(y, ȳ; z, z̄) ∗K = Kf(−z, ȳ;−y, z̄) K ∗ f(y, ȳ; z, z̄) = Kf(z, ȳ; y, z̄) . (2.9)

The map π, and a closely related map π̄, are defined by

π(f(y, ȳ; z, z̄; dz, dz̄)) = f(−y, ȳ;−z, z̄;−dz, dz̄)

π̄(f(y, ȳ; z, z̄; dz, dz̄)) = f(y,−ȳ; z,−z̄; dz,−dz̄) . (2.10)

For zero-forms (i.e. cases where f doesn’t depend on dz or dz̄), we have π(f) = K ∗ f ∗K

as a consequence of (2.9). We also define

dz2 =
1

2
dzα ∧ dzα = −dz1 ∧ dz2 dz̄2 =

1

2
dz̄α̇ ∧ dz̄α̇ = −dz̄1̇ ∧ dz̄2̇ . (2.11)

All definitions needed in (2.2) are now explicit.

Passing locally to a gauge where the higher spin spacetime connection w vanishes, the

higher spin equations take the form

dZs+ s ∗ s = p(b ∗K)dz2 + p̄(b ∗ K̄)dz̄2

dZb+ s ∗ b− b ∗ π(s) = 0 (2.12)

where s = sαdz
α+ s̄α̇dz̄

α̇ is the spinorial part of the gauge field, and b, sα, and s̄α̇ are now

functions only of Y A and ZA. Dependence on xµ is prevented by the xµ components of the

full equations of motion (2.2) in the w = 0 gauge. By dZ we mean the exterior derivative

with respect to only the ZA variables; likewise, dx refers to the exterior derivative with

respect to only the xµ variables. We use lowercase b and s in w = 0 gauge so as to

distinguish these quantities from their images in a more general gauge.

– 3 –
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3 The ansatz

In components, the equations (2.12) read

∂s2
∂z1

−
∂s1
∂z2

+ [s1, s2]∗ = −p(b ∗K)

∂b

∂zα
+ sα ∗ b+ b ∗ π(sα) = 0

∂s̄2̇
∂z̄1̇

−
∂s̄1̇
∂z̄2̇

+ [s̄1̇, s̄2̇]∗ = −p̄(b ∗ K̄)

∂b

∂z̄α̇
+ s̄α̇ ∗ b− b ∗ π(s̄α̇) = 0

∂s̄β̇
∂zα

−
∂sα

∂z̄β̇
+ [sα, s̄β̇ ]∗ = 0 , (3.1)

where [f, g]∗ = f ∗ g − g ∗ f . Let’s assume

s1 = 0 = s̄1̇
∂s2

∂z̄2̇
= 0 =

∂s̄2̇
∂z2

∂b

∂ZA
= 0 . (3.2)

These choices are convenient because the equations (3.1) reduce to

∂s2
∂z1

= −p(b ∗K)
∂s̄2̇
∂z̄1̇

= −p̄(b ∗ K̄)

{s2, b ∗K}∗ = 0 [s̄2̇, b ∗K]∗ = 0 [s2, s̄2̇]∗ = 0 , (3.3)

where {f, g}∗ = f ∗ g + g ∗ f . Given b = b(Y A), we can immediately solve the first two

equations in (3.3):

s2 =

∫ 1

0
dt σ2(t) where σ2(t) = −pz1 [b ∗K]z1→tz1

s̄2̇ =

∫ 1

0
dt̃ σ̄2̇(t̃) where σ̄2̇(t̃) = −p̄z̄1̇

[

b ∗ K̄
]

z̄1̇→t̃z̄1̇
. (3.4)

Note that the holomorphy conditions ∂s2
∂z̄2̇

= 0 =
∂s̄

2̇

∂z2
which we assumed in (3.2) are automat-

ically satisfied by (3.4). Starting with b = b(Y A) and extracting S through an integration

similar to (3.4) is a standard beginning to the perturbative approach of solving (2.12): see

for example [3, 7]. The assumptions (3.2) make this perturbative approach exact. How-

ever, the quadratic constraints in the second line of (3.3) must still be checked, and they

do not hold for arbitrary functional forms b(Y A). Before we indicate some functional forms

b(Y A) for which the quadratic constraints do hold, let’s note two final points. First, by

design, the forms (3.4) are consistent with the requirement SA → 0 as ZA → 0, which is a

standard gauge choice. Second, we could generalize (3.4) without spoiling the holomorphy

conditions or this standard gauge choice by adding to s2 a function only of z2 and Y A

which vanishes as z2 → 0; and likewise we could add to s̄2̇ a function of z̄2̇ and Y A which

vanishes as z̄2̇ → 0. We will not consider such generalizations in this paper, but instead

restrict ourselves to (3.4) as written.

– 4 –
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The simplest non-trivial solution to (3.3)–(3.4) is

b = b0 σ2(t) = −pb0z
1e−tz1y2+z2y1 σ̄2̇(t̃) = −p̄b0z̄

1̇e−t̃z̄1̇ȳ2̇+z̄2̇ȳ1̇ , (3.5)

where b0 is a constant. A stronger, unintegrated form of the quadratic constraints in (3.3)

can be shown to hold for this case:

{σ2(t), b ∗K}∗ = 0 [σ̄2̇(t̃), b ∗K]∗ = 0 [σ2(t), σ̄2̇(t̃)]∗ = 0 (3.6)

for all t and t̃. The second and third of these equations are trivially satisfied because σ2(t)

and b ∗ K are fully holomorphic in Y and Z, while σ̄2̇(t̃) is fully anti-holomorphic. The

general result (2.9) implies in particular that K anti-commutes with yα and zα; so it is

easy to see that it anti-commutes with σ(t) as written in (3.5). The case of constant b case

studied previously in [3]. There however the authors imposed an SO(3, 1) symmetry, which

lead to the constraint sα = zαs(u) where u = yαzα and s(u) was expressed as an integral

transform of confluent hypergeometric functions. It is not clear to us that the solution

of [3] is gauge-equivalent to ours.

An interesting generalization of the constant b solution is

b = QeqABY AY B

+RerABY AY B

(3.7)

where the only non-vanishing components of qAB and rAB are those with A and B taking

values in {1, 1̇}. Q, R, and the non-zero components of qAB and rAB are parameters of the

solution. Straightforward but tedious computations suffice to show that the unintegrated

constraints (3.6) are satisfied. The importance of being able to take linear combinations

of these special Gaussian solutions is that we need not stop at two terms: we can take

arbitrarily many, or an integral of infinitely many. In short, any function

b = b((y1)2, y1ȳ1̇, (ȳ1̇)2) (3.8)

together with s2 and s̄2̇ as specified in (3.4), provides a solution of the equations (2.12).

A commonly imposed projection condition on field configurations restricts to functions B

which are invariant under sending y → iy and ȳ → −iȳ. In the presence of this requirement,

which is related to requiring only even integer spins in the full theory, B must be a function

of (y1)4, y1ȳ1̇, and (ȳ1̇)4.

Another interesting generalization of the constant b solution is

b = Qeqαβ̇
yαȳβ̇ , (3.9)

where Q and the qαβ̇ are parameters. As before, the unintegrated constraints (3.6) are

satisfied once one imposes (3.4). A caveat on solutions of the form (3.9) is that if det qαβ̇
is a real number less than or equal to −1 then some of the requisite star products are

ill-defined, so the status of the solution is less clear. There appears to be no general

superposition principle for solutions of the form (3.9) analogous to (3.7).

– 5 –
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4 Gauge transformations and a mass deformation

A trivial solution to Vasiliev’s equations is w = s = b = 0. The AdS4 solution, which we

review in section 4.1, is gauge equivalent to this trivial solution. We go on in section 4.1

to explain in how to apply the same gauge transformation to other solutions starting

in the w = 0 gauge. We then work out a particular example in section 4.2 in which

B ∝ ζey
1ȳ1̇−y2ȳ2̇ , where ζ is the radial coordinate in the Poincaré patch of AdS4. This

example is interesting because the B dependence just mentioned is, in the linearized theory,

associated with a massive deformation of the O(N) model.

4.1 The spacetime connection

Let’s review how the spacetime metric and spin connection are packaged into the spatial

components W of the higher spin gauge field A. Starting from the vierbein em = emµ dxµ

and spin connection ωmn = ωµmndx
µ, we define

eαβ̇ =
1

2L
emσmαβ̇ ωαβ =

1

2
ωmnσ

mn
αβ ω̄α̇β̇ = −

1

2
ωmnσ̄

mn
α̇β̇

(4.1)

and

e =
1

2
eαβ̇y

αȳβ̇ ω =
1

4
ωαβy

αyβ +
1

4
ω̄α̇β̇ ȳ

α̇ȳβ̇ . (4.2)

We have defined

σm
αβ̇

= (1, ~σ) σ̄mα̇β = (1,−~σ)

σmn
α
β =

1

4
(σm

αγ̇ σ̄
nγ̇β − σn

αγ̇ σ̄
mγ̇β) σ̄mnα̇

β̇ =
1

4
(σ̄mα̇γσn

γβ̇
− σ̄nα̇γσm

γβ̇
) , (4.3)

where ~σ are the usual Pauli matrices. We express AdS4 in Poincaré patch coordinates:

em(0) = δmµ
L

ζ
dxµ (4.4)

with

ω
(0)
tζ =

dt

ζ
ω
(0)
x1ζ

= −
dx1

ζ
ω
(0)
x2ζ

= −
dx2

ζ
(4.5)

and all other components of the spin connection vanishing except as required by the anti-

symmetry condition ωmn = −ωnm. It is straightforward to check that

W(0) = e(0) + ω(0) (4.6)

satisfies the higher spin equations of motion with S = B = 0: that is,

dW(0) +W(0) ∗W(0) = 0 . (4.7)

In order to produce a more interesting solution of the equations of motion (2.2), we

are going to to gauge transform one of our w = 0 solutions. Starting with a configuration

– 6 –
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(a, b) of higher spin fields, the general gauge transformation to another configuration (A,B)

takes the form

d+A = g−1 ∗ (d+ a) ∗ g B = g−1 ∗ b ∗ π(g) , (4.8)

where g is a function of xµ, Y A, and ZA. A more explicit form of the transformation of

the gauge fields is

W = g−1 ∗ dxg + g−1 ∗ w ∗ g S = g−1 ∗ dZg + g−1 ∗ s ∗ g . (4.9)

Our focus will be to set w = 0.

The flatness of W(0) indicates that the AdS4 solution is related to the trivial solution

w(0) = 0, s(0) = 0, b(0) = 0 by a gauge transformation. For (t, x1, x2) = (0, 0, 0), the gauge

function may be represented as

g±1 = L±1 ≡
4

√

ζ0/ζ + 2 +
√

ζ/ζ0
exp

{

∓
1−

√

ζ/ζ0

1 +
√

ζ/ζ0
σζ

αβ̇
yαȳβ̇

}

, (4.10)

where ζ0 is a parameter. For a more complete description of this gauge transformation,

including the full xµ dependence, see for example [7].

4.2 An example

As an example of the procedure outlined in the previous section, let’s consider the solution

b = b0e
−λ(y1ȳ1̇−y2ȳ2̇)

σ2(t) = −pb0z
1e(y

1−λȳ2̇)z2−t(y2−λȳ1̇)z1 σ̄2̇(t̃) = −p̄b0z̄
1̇e(ȳ

1̇−λy2)z̄2̇−t̃(ȳ2̇−λy1)z̄1̇ , (4.11)

where b0 and λ are real parameters.1 In making the gauge transformation, we choose

σζ = σ3 =
(

1 0

0 −1

)

, and this choice is in some sense “diagonal” with respect to our earlier

choice of s2 and s̄2̇ as the preferred components of the gauge field. Nothing prevents us from

making a different choice of σζ , but the resulting solution would then be more complicated.

The easiest field to pass through the gauge transformation is B, and one finds, at

(t, x1, x2) = (0, 0, 0), that

B =
4b0ζ0
λ2
+ζ

e
−(y1ȳ1̇−y2ȳ2̇)

λ−
λ+ , (4.12)

where we have defined combinations

λ± = 1 + λ± (1− λ)ζ0/ζ (4.13)

which come up repeatedly after the gauge transformation. We are interested in taking a

ζ0 → ∞ limit, because in this limit B becomes translationally invariant in the boundary

1The solution (4.11) obeys the projection conditions that complete the characterization of the minimal

higher spin theories, provided b0 and λ are real. In the notation of [10], these projections are π(π̄(X)) = X

for X = W , S, and B, together with ι+(W ) = −W , ι+(S) = −S, and ι−(B) = B, where ι± are linear maps

which reverse the order of star products and send (y, ȳ, z, z̄, dz, dz̄) → (iy,±iȳ,−iz,∓iz̄,−idz,∓idz̄).

– 7 –
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directions. (Another way to put this is that boundary variation of B takes place over a

length scale ∆x ∼ ζ0, and we are taking that length scale to infinity.) The specific limit

we will consider is ǫ → 0 where

λ = 1− 2ǫ ζ0 =
1

ǫ2
(4.14)

with b0 held constant. Passing (4.12) through this limit, we find

B = b0ζe
y1ȳ1̇−y2ȳ2̇ . (4.15)

The scalar field in the higher spin theory is

φ ≡ B
∣

∣

∣

Y A=0
= b0ζ . (4.16)

The spinor part of the gauge field may be expressed as

S2 =

∫ 1

0
duΣ2(u) (4.17)

where

Σ2(u) =
dt

du
L−1 ∗ σ2(t) ∗ L , (4.18)

and u = u(t) is a conveniently chosen integration variable, with u(0) = 0 and u(1) = 1. In

the present case, a convenient definition is

u =
tλ+

2(1− t)
√

ζ0/ζ + tλ+

, (4.19)

because then one finds

Σ2(u) = −
4pb0ζ0/ζ

λ2
+

z1 exp

{(

y1 −
λ−

λ+
ȳ2̇
)

z2 − u

(

y2 −
λ−

λ+
ȳ1̇
)

z1
}

. (4.20)

Similar expressions can be found for S̄2̇ =
∫ 1
0 dũ Σ̄2̇(ũ). As before, these expressions are

valid only at (t, x1, x2) = (0, 0, 0); however, we may impose (4.14) and pass to the ǫ → 0

limit to obtain the translationally invariant expressions

Σ2(u) = −pb0ζz
1e−u(y2+ȳ1̇)z1+(y1+ȳ2̇)z2 Σ̄2̇(ũ) = −p̄b0ζz̄

1̇e−ũ(ȳ2̇+y1)z̄1̇+(ȳ1̇+y2)z̄2̇ .

(4.21)

It is possible to check directly that the full equations of motion (2.2) are satisfied when

we set

B = b0ζe
y1ȳ1̇−y2ȳ2̇ W = W(0)

S1 = S̄1̇ = 0 S2 =

∫ 1

0
duΣ2(u) S̄2̇ =

∫ 1

0
dũ Σ̄2̇(ũ) (4.22)

with Σ2(u) and Σ̄2̇(ũ) as given in (4.21), and with the AdS4 connection W(0) as defined

in (4.6). However, there is an important subtlety: star products of Σ2(u) with B, which

– 8 –
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come up in the Dz2B = 0 component of the equations of motion, formally diverge once

one has passed to the translationally invariant limit; however, if one replaces Σ2(u) by

Σ2(t, u) ≡ Σ2(u)
∣

∣

z2→tz2
, then Dz2B is proportional to {Σ2(t, u), B ∗ K}∗, which vanishes

identically. A similar regulator is needed in order to check the equation D
z̄2̇
B = 0. The

other equations of motion can be handled without recourse to this type of regulator. We

caution that in other gauges, field configurations involving projectors such as ey
1ȳ1̇−y2ȳ2̇

often lead to divergences, for instance in Fz1z2 , which do not cancel. Thus it is challenging

to find a solution analogous to (4.22) in a covariant gauge.

The solution (4.22) is interesting because in a linearization around AdS4, the natural

interpretation of the scalar profile (4.15) and (4.16) is that one is deforming the dual

O(N) field theory by a constant mass term for the N -dimensional vector ~φ: to see this,

compare the scalar profile to the bulk-to-boundary propagators discussed, for example,

in [11–13]. Once we introduce the spinorial connection based on (4.21), we obtain an exact

generalization to the full non-linear equations of motion. It is tempting to characterize

this solution as a holographic dual of the massive O(N) model. However, caution is in

order, because we do not fully understand how the explicit breaking of Lorentz symmetry

inherent in our gauge choice S1 = S̄1̇ = 0 affects the holographic interpretation. Certainly

it complicates the usual method [14, 15] of extracting a privileged spacetime metric.2

5 Conclusions

The ansatz (3.2) in axial gauge significantly simplifies the equations of Vasiliev’s higher

spin theories in four dimensions, leading to a broad class of solutions for b depending only

on y1 and ȳ1̇. Privileging one component of a spinor over the other is in some settings

related to picking out a null direction. To see this, recall the equivalence of vectors and bi-

spinors: vαβ̇ = vmσm
αβ̇

. If we choose, for example, vm = (1, 0, 0, 1), then vαα̇y
αȳα̇ = 2y1ȳ1̇,

showing that y1 and ȳ1̇ have been privileged over y2 and ȳ2̇. Thus it is a reasonable guess

that the solutions where b = b((y1)2, y1ȳ1̇, (ȳ1̇)2) are related to shock waves, or to metrics

expressed in terms of an Eddington-Finkelstein coordinate. We hope to report further on

this class of solutions in the future.

In a more limited but interesting class of solutions, b depends on all four Y A variables,

but only through the Gaussian expression given in (3.9). We have explained how a simple

special case, b ∝ e−λ(y1ȳ1̇−y2ȳ2̇), can be endowed with spacetime dependence through a

gauge transformation. In a suitable limit, this special case provides an exact solution

improving upon the linearized description of a uniform mass deformation of the planar

O(N) model; note however that a cancellation of divergences is required in order to verify

the DB = 0 equation. It would clearly be of interest to compute two-point correlators

in this higher spin geometry. If indeed its interpretation as a dual of the massive O(N)

model is correct, then correlators should have a Lorentz invariant spectral weight with a

continuum of states above a gap. Additional solutions of the full Vasiliev equations (2.2)

might be constructed in a similar spirit; in particular, it is reasonable to suspect that an

2We thank S. Didenko for a discussion on this point.

– 9 –



J
H
E
P
1
1
(
2
0
1
4
)
0
3
6

exact axial gauge solution might be available in which the spatial part of the connection

W is the same as for AdS4, while the profile of the scalar master field B is the AdS4

bulk-to-boundary propagator.

Also important for future work is to generalize the Lorentz covariant treatment of

the background metric to situations where as a matter of gauge choice one introduces

parameters that break Lorentz symmetry. Our gauge choice is of this type since it can

be expressed as ℓαSα = 0 = ℓ̄α̇S̄α̇ where ℓα =
(

1

0

)

= ℓ̄α̇, contrasting with the Lorentz-

symmetric condition zαSα = 0 = z̄α̇S̄α̇ studied in previous works such as [14, 15].
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