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Abstract This paper studies the dynamics of the
vibro-impact capsule systems with one-sided and two-
sided soft constraints under variations of various sys-
tem and control parameters, including mass ratio, stiff-
ness ratio, gap of contact, and amplitude and frequency
of external excitation. The aim of this study is to opti-
mise the progression speed and energy consumption of
the capsule and minimise the required cabin length for
prototype design used for engineering pipeline inspec-
tion. Our studies focus on three systems: the cap-
sule with a right constraint, the capsule with a right
and a weak left constraints, and the capsule with a
right and a strong left constraints. Bifurcation analy-
ses show that the behaviour of the capsule with one-
sided constraint is mainly periodic, and the dynamic
responses of the other two capsuleswith two-sided con-
straints become complex when the stiffness of the left
constraint increases. Based on our extensive compar-
isons, the following optimisation strategies are recom-
mended. When the capsule speed is paramount, one
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can employ the two-sided capsule with a weak left
constraint under large amplitude of excitation. When
energy consumption is taken into account, the one-
sided capsule is preferable. When a miniaturized pro-
totype is needed, the two-sided capsule with a strong
left constraint is the best choice.

Keywords Vibro-impact · Non-smooth dynam-
ical system · Stick-slip · Optimisation · Energy
consumption

1 Introduction

Pipelines play an important role in a large number of
modern industries [1,2], transporting fluids from one
location to another, whether from one side of a fac-
tory to the other or across the breadth of entire conti-
nents. They are essential assets within water supplies,
oil and gas production, and many other vital industries
throughout the globe. Pipelines vary greatly in diam-
eter, length, construction material, and location. With
many pipelines being located in remote and harsh loca-
tions, such as being located underground or running
along the seabed, access for inspection, maintenance
and repair work could be extremely difficult. The chal-
lenges also include accurately locating leaks or block-
ages within operational pipelines, and monitoring cor-
rosion or deterioration on internal surfaces. It becomes
a particularly costly issue if the pipeline has to be
drained and production stoppedwhile repairwork takes
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place. Therefore, pipeline inspection devices capa-
ble of moving independently, with or against prod-
uct flow would yield significant advantages over tra-
ditional pressure driven inspection tool [3] in certain
situations. In recent years, investigation of the self-
propelled mechanismmoving rectilinearly under inter-
nal vibration force when overcoming medium resis-
tance has attracted great attention from researchers, e.g.
[4–8]. The principle of such mechanism is that the rec-
tilinear motion can be obtained by overcoming external
resistance described as dry friction using an additional
internal mass interacting with the main body of the
system. The ability to move independently without any
externalmoving partsmakes it ideally suited tomove in
harsh and complex environments, where external mov-
ing parts may either pose a hazard to the surroundings
or where they would be likely to be broken, corroded,
or blocked up by the working environment.

This paper studies the optimisation of the vibro-
impact capsule systems [8–10]with one-sided and two-
sided amplitude constraints for engineering pipeline
inspection in terms of its average speed of progression,
physical dimension, and energy consumption. Opti-
misation of motion of the self-propelled mechanism
regarding to average speed of progression has been
an active subject of scientific research. For example,
Chernousko [4] pioneeringly studied the optimum rec-
tilinear motion of a two-mass system and obtained the
optimum control parameters for the maximum mean
velocity of the system. In [6,11], optimisation of a
mobile system with an internal acceleration-controlled
mass was considered to obtain the maximum forward
mean speed. Later on, Fang and Xu [12] studied the
dynamics of a multibody system consisting of three
modules of such vibration-driven mobile system. Con-
sidering the controlled motion a rigid body in the
horizontal plane, Zhan and Xu [13] used three inter-
nal acceleration-controlled masses to drive the system.
Recently, optimisation of two-dimensional motion of
the vibration-driven system has been extensively stud-
ied, e.g. [14,15].However, these studies focusedon the-
oretical calculation of the maximum mean speed, and
fewworks concernedoptimisationof themobile system
from a practical design point of view, such as physical
dimension and energy consumption. Vetchanin et al.
[16] investigated the characteristics of motion of a rigid
body with variable internal mass distribution in a vis-
cous fluid, showing the possibility of self-propulsion of
the body in an arbitrary given direction. In [17], exper-

imental verification of the vibro-impact capsule sys-
tem was carried out. The conducted bifurcation anal-
yses indicated that a fine tuning of the control param-
eters, such as the stiffness of the support spring, and
the frequency and the amplitude of excitation, can sig-
nificantly improve the average rate of progression. In
[18], optimisation of the vibro-impact capsule system
for the best progression in fluid environment was stud-
ied, focusing on the choice of the excitation parame-
ters and the shape of the capsule. This paper will fur-
ther study the optimisation of the vibro-impact capsule
system regarding to its physical dimension and energy
consumption through bifurcation analysis. Three cap-
sule dynamics with one-sided and two-sided amplitude
constraints will be compared in order to obtain the best
design parameters for prototyping.

The dynamics of the vibro-impact capsule system,
which consists of a capsule main body interacting with
a harmonically driven internal mass, has been studied
extensively byLiu et al. [8–10,17–20]. In [8], themodel
of the vibro-impact capsule system was firstly studied
to provide a fundamental understanding of its dynam-
ics. Dynamics of the system in various frictional envi-
ronments was investigated in [9], and numerical results
show that the behaviour of the system becomes very
complex when the capsule is moving in fluid, but the
nature of the friction mechanism becomes less signifi-
cantwhen theweight of the internalmass is smaller than
the weight of the capsule. In [10], nonlinear dynam-
ics analysis has been conducted to identify the optimal
amplitude and frequency of the applied force to achieve
the required motion and the maximal speed. In [19],
Páez Chávez et al. studied two practical problems for
the capsule system, which were maximising the rate
of progression and directional control of the system
by following a typical period-1 trajectory by means of
path-following techniques. However, the above studies
were based on the dynamics of the capsule systemwith
one-sided constraint, and the performanceof the system
with two-sided constraints has not been investigated.
Thus, the contribution of this paper is to study the cap-
sule system with two-sided soft constraints and under-
stand how does the additional constraint affect the per-
formance of the capsule. There are some existing stud-
ies on the vibro-impact systems with two-sided con-
straints, but most of them focused on the systems with
bilateral rigid constraints. For example, Gutiérrez and
Arrowsmith [21] considered a representative model of
the doubly constrained impacting system, and studied
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Fig. 1 Physical models of
the vibro-impact capsule
systems, with
a double-sided constraints,
and b one-sided constraint.
c Free body diagrams of the
inner mass m1 and the
capsule m2

the control strategies for preservation and annihilation
of experimental and analytical resonant periodic orbits.
Lee and Yan [22] developed a position control method
for the impact oscillator with asymmetrical double-
sided endstops,which can keep the stable and the unsta-
ble oscillators in a desired position. Luo et al. [23]
studied the vibro-impact dynamics of a two-degree-
of-freedom periodically forced system with a bilateral
clearance. Response analysis for a vibro-impact Duff-
ing system with bilateral barriers under external and
parametric Gaussian white noises was carried out by
Yang et al. [24]. Very recently, Kumar et al. [25] anal-
ysed a stochastically excited vibro-impactDuffing–Van
der Pol oscillator with bilateral rigid barriers. However,
the literature on the vibro-impact systems with double-
sided soft constraints is rather limited. Andreaus and
Angelis [26] studied the dynamic response of a single-
degree-of-freedomoscillator constrainedby twounilat-
eral nonlinear bumpers.Hao et al. [27] developed a two-
sided damping constraint control strategy for the quasi-
zero stiffness isolator. The study by Ing [28] revealed
that, in a near symmetrical system, the degree of asym-
metry was found to have a vast effect on the response
of a double-sided constraint impact oscillator. In this
paper, we will investigate whether such asymmetry can
be used for optimising the physical performance of the
capsule system, e.g. progression rate, power efficiency,
and capsule dimension. In practice, the stroke length of
the internal mass, i.e. the maximum travel distance of
the mass in one period of motion, constrains the phys-
ical dimension and power consumption of the capsule
system, which in turn affects the performance of the
system. Thus, it is reasonable to carry out a compar-
ative study in this paper, which can provide a better

insight for the design of such system with considera-
tion of its physical performance, and this is the novelty
of this paper.

The rest of this paper is organised as follows. In
Sect. 2, mathematical modelling of the vibro-impact
capsule systems with one-sided and two-sided con-
straints is studied. In Sect. 3, bifurcation analysis of
the capsule system is conducted through varying var-
ious system and control parameters. Optimisation of
energy consumption and cabin length are considered
in Sect. 4, and finally, some concluding remarks are
drawn in Sect. 5.

2 Mathematical modelling

2.1 Description of the capsule system

Consider a two degrees-of-freedom system as shown in
Fig. 1a, which is composed of a movable internal mass
m1 interactingwith a rigid capsulem2 via a primary lin-
ear spring with stiffness k and a viscous damper with
damping coefficient c. The internal mass is driven by
an external harmonic force with amplitude Pd and fre-
quency �. In practice, this can be implemented using
a linear actuator (e.g. solenoid [29]). It is worth noting
that the interaction between the rod (m1) and the main
body (m2) of the actuator is approximated using a lin-
ear spring and a viscous damper in this paper, and the
verification of such assumption was carried out in [17].
On the right of the internal mass, a weightless plate is
connected to the capsule by a linear spring with stiff-
ness k1, and a secondary weightless plate is connected
to the capsule by a linear spring with stiffness k2 on
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the left of the internal mass. Here, X1 and X2 repre-
sent the absolute displacements of the internalmass and
the capsule, respectively. The internal mass will con-
tact with the right plate when the relative displacement
X1 − X2 is larger or equals to the gap G1, or con-
tact with the left plate when the relative displacement
X2−X1 is larger or equals to the gapG2.When the left
spring is removed (i.e. k2 = 0) as shown in Fig. 1b, the
system has only one-sided constraint which has been
thoroughly studied by Liu et al. [8–10].

2.2 Equations of motion

Due to the non-smoothness introduced by the gaps and
the friction, equations of motion of the capsule sys-
tem should be considered in different phases. For the
non-smoothness of gaps G1 and G2, mutual interac-
tion between m1 and m2 has three different cases: no
contact (X1 − G1 − X2 < 0 and X2 − G2 − X1 < 0),
right contact (X1 − G1 − X2 ≥ 0) and left contact
(X2 − G2 − X1 ≥ 0). Thus, the interactive force is
given as

Fi =

⎧
⎪⎨

⎪⎩

−c(Ẋ1 − Ẋ2) − k(X1 − X2), (no contact)

−c(Ẋ1 − Ẋ2) − k(X1 − X2) − k1(X1 − G1 − X2), (right contact)

−c(Ẋ1 − Ẋ2) − k(X1 − X2) − k2(X1 + G2 − X2), (left contact)

(1)

or written as

Fi = −c(Ẋ1 − Ẋ2) − k(X1 − X2)

−H1k1(X1 − G1 − X2)

−H2k2(X1 + G2 − X2), (2)

where H1 and H2 are the Heaviside functions given by

H1 = H(X1 − G1 − X2),

H2 = H(X2 − G2 − X1).
(3)

The second non-smoothness of the system is intro-
duced by the friction Fs between the capsule and its
supporting surface when the capsule moves horizon-
tally (Ẋ2 �= 0) as depicted in Fig. 1c. Here, the
Coulomb friction model is used to describe the fric-
tional force given by

Fs = −sign(Ẋ2)Pf , (4)

where Pf = μ(m1+m2)g, μ is the friction coefficient
between the capsule and the environmental surface, and
g is the acceleration due to gravity. When the capsule

is stationary (Ẋ2 = 0), two situations could happen. If
the elastic force acting on the capsule is greater than the
threshold of friction, i.e. |Fi | > Pf , the capsule begins
tomove and the direction of friction force is opposite to
the elastic force. At this moment, the dry friction force
is calculated as

Fs = −sign(Fi )Pf , (5)

When the force acting on the capsule from the inter-
nal mass is smaller than the threshold of friction, i.e.
|Fi | ≤ Pf , the friction force becomes static which is
calculated as

Fs = −Fi . (6)

Considering all the conditions above, the comprehen-
sive friction force can be written as

Fs = −(1 − �v)SvPf − �vH f S f Pf

−�v(1 − H f )Fi , (7)

where �v = δ(Ẋ2) is the Dirac Delta function, H f =
H(|Fi | − Pf ) is the Heaviside function, and Sv =
sign(Ẋ2) and S f = sign(Fi ) are the sign functions.

Based on the free diagram shown in Fig. 1c, the
equations of motion of the capsule system can be writ-
ten as

m1 Ẍ1(t) = Pd cos(�t) + Fi ,

m2 Ẍ2(t) = Fi − Fs .
(8)

For simplification, we introduce the following non-
dimensional parameters

�0 =
√

k

m1
, ω = �

�0
,

α = Pd
Pf

, ζ = c

2m1�0
,

γ = m2

m1
, δ1 = k

Pf
G1,

δ2 = k

Pf
G2, κ1 = k1

k
,

κ2 = k2
k

,

(9)
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Fig. 2 Runge–Kutta
method with a constant time
step and b the bisection
method for integration. The
critical points to be located
are marked by red triangles.
(Color figure online)

and variables

τ = �0t, x1 = k

Pf
X1, x2 = k

Pf
X2,

v1 = dx1
dτ

= k

�0Pf
Ẋ1,

v2 = dx2
dτ

= k

�0Pf
Ẋ2. (10)

Then the equations of motion are rewritten as

ẋ1(τ ) = v1(τ ),

v̇1(τ ) = α cos(ωτ) + fi ,

ẋ2(τ ) = v2(τ ),

v̇2(τ ) = 1

γ
( fi + (1 − δv)sv + δvhf sf

+ δv(1 − hf ) fi ),

(11)

where

fi = −2ζ(v1(τ ) − v2(τ )) − (x1(τ ) − x2(τ ))

−h1κ1(x1(τ ) − x2(τ ) − δ1) − h2κ2(x1(τ )

−x2(τ ) + δ2),

h1 = H(x1(τ ) − x2(τ ) − δ1),

h2 = H(x2(τ ) − x1(τ ) − δ2),

hf = H(| fi | − 1),

δv = δ(v2(τ )),

sv = sign(v2(τ )),

sf = sign( fi ).

It is worth noting that the non-smooth functions,
such as the Heaviside, the Dirac Delta, and the sign
functions, have significant influence on simulations. In

Fig. 3 Average progression velocity of the capsule vavg under
varying mass ratio γ and stiffness ratio κ2 calculated for ω =
1.1, α = 1.6, ζ = 0.05, δ1 = 0.02, δ2 = 0.02 and κ1 = 3. The
results of calculations are plotted using three-dimensional sur-

face in (a) with specific values of spring stiffness κ2 presented in
(b). Additional windows demonstrate the time histories of dis-
placements of the internal mass (black dash line) and the capsule
(red solid line). (Color figure online)
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order to obtain accurate results for numerical simula-
tions, it is important to locate the critical non-smooth
points precisely.Here,we adopted the bisectionmethod
[30] in the Runge–Kutta simulation, which automati-
cally varies time step to locate the non-smooth points.
A schematic illustration of the method is displayed in
Fig. 2, where C(τ ) represents the variable of the sign
function and C(τc) = 0 is the switching points (e.g.
C(τ ) = X1 − G1 − X2 = 0 represents the inner mass
just impacts the right plate). Figure 2a shows the tra-
ditional Runge-Kutta method with constant time step
�τ , which skips the critical time instant τc between
τi and τi+1. In order to accurately locate τc, the bisec-
tion algorithm was implemented to adjust the time step
once the program detected C(τi )C(τi+1) < 0. With
τ 0 = τi+1, τ

j is updated using

τ j = τ j−1 + sign(C(τi )C(τ j−1))
�τ

2 j
(12)

until C(τ j ) is sufficiently close to zero, i.e. |C(τ n)| <

ε, where ε is a small positive number given before the
simulation. Finally, one can obtain τc = τ n , which is
the critical non-smooth point.

3 Bifurcation analysis

In order to gain an understanding of the system dynam-
ics and optimise the progression speed of the capsule,

bifurcation analysis is carried out next using the bifur-
cation diagram where the relative velocity v∗

1 − v∗
2 ,

which is a projection of the Poincarémap on the v1−v2
axis, is plotted as a function of the control parameters,
including mass ratio, stiffness ratios, gaps of contact,
and frequency and amplitude of excitation. The calcu-
lations were run for 300 cycles of external excitation,
and the data for the first 280 cycles were omitted to
ensure steady state response, where the next 20 val-
ues of the velocity v∗

1 − v∗
2 were plotted. The average

progression of the capsule

vavg = 1

NT
[x2(NT ) − x2(0)],

where N is the number of cycles and T = 2π
ω

is one
period of external excitation, was monitored for the
purpose of optimisation.Here, the sign of vavg indicates
whether the capsule moves forward (positive vavg) or
backward (negative vavg). In addition, abbreviations are
used to describe periodicmotion of the system, e.g. P-1-
2-3 represents a period-1 motion with two left impacts
and three right impacts per periodof external excitation.

3.1 Influence of mass ratio

To investigate the influence of the mass ratio γ and
the spring stiffness κ2 on the average progression of

(a) (b)

Fig. 4 a Trajectories on the phase plane (x1 − x2, v1 − v2) and
b time histories of displacements of the capsule calculated for
ω = 1.1, α = 1.6, ζ = 0.05, δ1 = 0.02, δ2 = 0.02, κ1 = 3, and

κ2 = 0.8. The locations of the left and right impact surfaces are
shown by green and red lines, respectively. (Color figure online)
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Fig. 5 Average progression velocity of the capsule as a function
of mass ratio a γ ∈ [0.1, 1.0] and b γ ∈ [1.0, 10] calculated
for ω = 1.1, α = 1.6, ζ = 0.05, δ1 = 0.02, δ2 = 0.02, κ1 = 3
with κ2 = 0.0 (blue dots), 0.8 (orange dots), 3.0 (green dots)
and 5.0 (red dots). Critical bifurcation points for the capsule sys-

tem are marked and recorded in (c) and (d). Additional windows
e–u demonstrate the trajectories of the capsule system on the
phase plane. Locations of the left and the right impact surfaces
are shown by purple and black lines, respectively. (Color figure
online)
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the capsule, numerical simulations were carried out
for γ ∈ [0, 8] and κ2 ∈ [0, 8], and the calculated
results are presented in Fig. 3. It can be seen from
Fig. 3a that, the maximum velocity is achieved by the
capsule with one-sided constraint (κ2 = 0), and the
average velocity of the capsule decreases as the spring
stiffness κ2 increases. In Fig. 3b, specific values of
spring stiffness κ2 are shown, where the calculations
for κ2 = 0, 0.8, 3, 5 are denoted by red, black, green,
and blue, respectively. It can be observed that, except
the symmetrical condition (κ1 = κ2 = 3), there is
an immediate directional change of capsule progres-
sion from backward to forward as mass ratio increases,
which is due to the grazing when the inner mass con-
tacts with the two-sided constraints. Figure 4 demon-
strates the occurrence of such grazing when κ2 = 0.8.
It can be seen from Fig. 4a that, the system bifurcates
from P-1-1-1 (γ = 1) to P-1-2-2 (γ = 1.05), and then
from P-1-2-2 (γ = 1.06) to P-1-2-1 (γ = 1.07). Fig-
ure 4b presents the displacements of the capsule from
backward to forward progression owing to this grazing-
induced bifurcation.

A further investigation of influence of the mass ratio
γ and the spring stiffness κ2 on the average velocity of
the capsule was carried out, and the calculated results
are shown in Fig. 5. As can be seen from these figures,
at γ = 0.1, Fig. 5e–h correspond to κ2 = 0.0, 0.8, 3.0

and 5.0, respectively. The corresponding motions are
all P-1-1-1 and the capsule moves forward. Increasing
the mass ratio to 0.45, one obtains negative velocities
with the capsule motions becoming P-1-2-2, P-1-1-1,
P-1-3-3, and P-1-2-1 as illustrated in Fig. 5i–k and
(l), respectively. Here, although they are all period-1
motions, the number of impacts per period of exter-
nal excitation increases. For example, for κ2 = 3, the
capsule system bifurcates from P-1-1-1 to P-1-3-3 as
the mass ratio increases from 0.1 to 0.45. It can be
observed from Fig. 5a that, as the mass ratio further
increases, the average velocity of the capsule increases
drastically and achieves its maximum for the capsule
with one-sided constraint (κ2 = 0.0), while the aver-
age velocity of the capsule experiences a continuous
rise to a small positive value when the left spring is
stiffer (κ2 = 5.0). However, such phenomenon cannot
be observedwhen the stiffness of the left spring is weak
(κ2 = 0.8) or symmetrical (κ2 = 3.0). When κ2 = 0.8,
the drastic change of the average velocity from nega-
tive to positive is recorded at γ ≈ 1.06. By comparing
Fig. 5i with (m) and (r) with (v), one may notice that
both drastic changes are due to grazing bifurcations as
illustrated in Fig. 4. From Fig. 5t, we can observe a
period-2 motion (P-2-3-2) which indicates that stiffer
spring may induce period doubling of the capsule sys-
tem.As themass ratio increases, the innermass has less

Fig. 6 Average progression velocity of the capsule vavg under varying the stiffness ratios, κ1 and κ2 calculated for ω = 1.1, α =
1.6, ζ = 0.05, δ1 = 0.02, γ = 1, a δ2 = 0.02, and b δ2 = 1
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Fig. 7 aTime histories of the innermass x1 (black solid line), the
capsule x2 (red dash line), and the right plate xright (blue dash–
dot line), b a blow-up window showing the transition from the
phase of stationary capsule without contact of the right plate to
the phase of stationary capsule with contact, and c the trajectory

on the phase plane (x1 − x2, v1 − v2), corresponding to the max-
imum progression speed obtained for ω = 1.1, α = 1.6, ζ =
0.05, δ1 = 0.02, δ2 = 0.02, γ = 1, κ1 = 2.7, and κ2 = 0.0.
Locations of the left and the right impact surfaces are shown by
blue and red lines, respectively. (Color figure online)

Fig. 8 Time histories and
phase trajectories of the
capsule system computed
for ω = 1.1, α = 1.6, ζ =
0.05, δ1 = 0.02, δ2 =
1, γ = 1, κ1 = 2.7, (a, b)
κ2 = 0, (c, d) κ2 = 0.8, and
(e, f) κ2 = 5.0. Locations of
the left and the right impact
surfaces are shown by blue
and red lines, respectively.
(Color figure online)
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effect on the dynamics of the capsule, so all the veloc-
ities gradually decline to zero regardless of the values
of κ2. In addition, it is worth noting that, by comparing
all the trajectories on the phase plane in Fig. 5, the left
spring can effectively constrain the stroke length of the
inner mass when its stiffness is sufficiently large.

From a control point of view, it is more effective
to control the direction of capsule progression when
the weight of the capsule is less than or equal to the
weight of the internal mass (γ ≤ 1) providing that the
two-sided constraints are asymmetrical (κ1 �= κ2). The
control strategy for the capsule system could be to alter
its mass ratio slightly around γ = 1 for controlling its
progression direction by using a weak left constraint
(e.g. κ2 = 0.8), which offers both forward and back-
ward progressions at acceptable average speeds.

3.2 Influence of stiffness ratios

Average progression velocity of the capsule under vary-
ing the stiffness ratios, κ1 and κ2 are presented in
Fig. 6a, where the gaps of contact for both springs are
equal (δ1 = δ2 = 0.02).As canbe seen from this figure,
the best progression is achieved by the capsule system
with one-sided constraint (κ2 = 0), and the maximal
average velocity is recoded at κ1 = 2.7 and κ2 = 0.
Figure 7a shows the time histories of displacements of
the inner mass and the capsule, and Fig. 7c presents the
capsule trajectory on the phase plane (x1− x2, v1−v2)
for the maximal average velocity recorded in Fig. 6a.
A blow-up window in Fig. 7b clearly shows the dis-
placements of the mass, the capsule, and the right plate
transiting from the phase of stationary capsule without

(a)

(c) (d)

(b)

Fig. 9 a Bifurcation diagram and b average progression veloc-
ities under variation of gap δ2 calculated for ω = 1.1, α =
1.6, ζ = 0.05, κ1 = 2.7, κ2 = 0.8, δ1 = 0.02, γ = 1. c Bifur-
cation diagram and d average progression velocities under vari-
ation of gap δ2 calculated for ω = 1.1, α = 1.6, ζ = 0.05, κ1 =
2.7, κ2 = 5.0, δ1 = 0.02, γ = 1. Additional windows demon-

strate the trajectories on the phase plane (x1 − x2, v1 − v2)
and times histories of capsule displacements obtained for δ2 =
−1.3, δ2 = −0.7, δ2 = 0, δ2 = 0.8, and δ2 = 1.3. Locations
of the impact surfaces for the right and the left constraints are
shown by red and blue lines, respectively. (Color figure online)
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contact of the right plate to the one with contact. It can
be seen that the maximum speed is achieved by P-1-
1-1, and an entire time period (T ) of the motion has
been divided into six phases. The first phase begins at
Point A, where the inner mass just contacts with the
right plate, but the elastic forces on the capsule are too
small to overcome external frictional resistance until
Point B is reached. Thereafter, the capsule accelerates
to progress before Point C, where the mass is separated
from the right plate and the capsule is decelerated by
the friction. The velocity of the capsule reduces to zero
at Point D and the capsule is stationary until Point E.
At Point E, the elastic forces on the capsule exceed the
threshold of the static friction, and a slight backward
motion of the capsule is observed.At Point F, the veloc-
ity of the capsule becomes zero again, and the capsule
has a short period of sticking phase until Point A.

The capsule progression for unsymmetrical gaps of
contact (δ1 = 0.02 and δ2 = 1) was studied, and the
calculated result is presented in Fig. 6b. It can be seen
from the figure that one-sided constraint (i.e. κ2 = 0 or

κ1 = 0) is the best choice for both forward and back-
ward progressions. A detailed behaviour of the capsule
system are shown in Fig. 8, where the capsules with
one-sided constraint (κ2 = 0), two-sided constraints
with weak left spring (κ2 = 0.8), and two-sided con-
straints with strong left spring (κ2 = 5) are plotted
in Fig. 8. Comparing the cases for one-sided and two-
sided constraints with weak left spring, the trajecto-
ries in Fig. 8a–d are similar until Point F at where the
inner mass contacts with the left plate and the capsule
has a slightly larger backward displacement thereafter.
Therefore, the velocity of the capsule can be lowered by
inducing the left spring. Moreover, when the stiffness
of the left spring becomes greater (κ2 = 5.0), large
backward progression of the capsule encounters, and
the overall progression of the capsule becomes nega-
tive as shown in Fig. 8e, f.

An investigation on the gap of left constraint was
carried out, and the comparison between the weak left
constraint (κ2 = 0.8) and the strong one (κ2 = 5.0)
is shown in Fig. 9. Here, we calculated the gap of the

Fig. 10 a Bifurcation diagram under variation of amplitude of
excitation α calculated for ω = 1.1, ζ = 0.05, γ = 1, δ1 =
0.02, δ2 = 1.0, κ1 = 2, κ2 = 0. b–h Trajectories of the
system displayed on the phase plane (x1 − x2, v1 − v2) for

α = 0.10, 0.80, 1.50, 3.12, 3.37, 5.43 and 6.50. Locations of
the left and the right impact surfaces are shown by purple and
red lines, respectively. Poincaré sections are marked by blue dots
on the phase plane. (Color figure online)
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left constraint for δ2 ∈ [−1.5, 1.5], where the negative
value of the gap indicates a prestressed constraint. As
can be seen from the figure, when the gap decreases
from δ2 = 1.5, the internal mass begins to impact left
constraint at δ2 = 1.175. As shown in Fig. 9b, d, the
grazing of such impact alters the direction of capsule
progression from forward to backward for the capsule
with strong left constraint, while it only affects the for-
ward speed of the capsule with weak left constraint.
As the gap decreases, the capsule with weak left con-
straint encounters this sudden change of progression
direction owing to the grazing contact with the left con-

straint at δ2 ≈ 0. On the other hand, the capsule with
strong left constraint experiences a period and a reverse
period doubling at δ2 = 0.125 and −0.125, respec-
tively. When the left constraint is prestressed (δ2 < 0),
comparing Fig. 9a, c, the capsule with weak constraint
has period-1 motion, while the one with strong con-
straint experiences chaoticmotion. It can be found from
Fig. 9b ,d, both average progressions are slow. How-
ever, as presented in the additional windows of phase
trajectories, the stroke length of the internal mass under
prestressed condition is significantly reduced compar-
ing to the one with right constraint only.

Fig. 11 a Bifurcation diagram under variation of amplitude of
excitation α calculated for ω = 1.1, ζ = 0.05, γ = 1, δ1 =
0.02, δ2 = 1.0, κ1 = 2, κ2 = 5. b–i Trajectories of the sys-
tem displayed on the phase plane (x1 − x2, v1 − v2) for α =
0.10, 0.80, 1.50, 3.12, 3.37, 5.43 and 6.50. Coexisting attractors

are marked by red dots. Locations of the left and the right impact
surfaces are shownby purple and red lines, respectively. Poincaré
sections are marked by orange and red dots on the phase plane.
(Color figure online)
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Fig. 12 a Bifurcation diagram under variation of amplitude of
excitation α calculated for ω = 1.1, ζ = 0.05, γ = 1, δ1 =
0.02, δ2 = 1.0, κ1 = 2, κ2 = 20. b–h Trajectories of the
system displayed on the phase plane (x1 − x2, v1 − v2) for

α = 0.10, 0.80, 1.50, 3.12, 3.37, 5.43 and 6.50. Locations of
the left and the right impact surfaces are shown by purple and
red lines, respectively. Poincaré sections are marked by green
dots. (Color figure online)

Based on the discussions above, it can be drawn
that the maximum positive progression velocity can
be achieved by the capsule with one-sided right con-
straint, and the introduction of the left spring with any
value of stiffness may reduce its progression speed.
Nevertheless, if the miniaturization of the capsule is
required, the prestressed weak constraint could be a
viable option.

3.3 Influence of amplitude of excitation

Bifurcation diagrams of the capsule system with κ2 =
0, 5, 20 under variation of amplitude of excitation α

are presented inFigs. 10, 11, and12, respectively.Addi-
tionalwindows in these figures demonstrate the capsule
trajectories on the phase plane (x1 − x2, v1 − v2). One
can observe that the bifurcation diagram shown in Fig.
10 for the capsule with one-sided constraint (κ2 = 0) is
smooth, and all its corresponding phase trajectories are
P-1-1-1. For κ2 = 5 shown in Fig. 11, the bifurcation
curve is smooth until α = 2.86 at where an immedi-

ate increase in the relative velocity v1 − v2 due to the
grazing contact with the left spring is recorded, and
two P-1-1-1 presented in Fig. 11e, i coexist for α ∈
[2.86, 3.18]. As the amplitude of excitation increases,
a period doubling is observed at α = 4.35 and the cap-
sule bifurcates from P-1-1-1 to P-2-2-2. When the left
spring ismuch stiffer (κ2 = 20), the dynamic responses
of the system become more complicated. The grazing
event of the left plate is recorded at α = 1.76 followed
by a period doubling cascade, which is shown in Fig.
12. As the amplitude of excitation increases, a reverse
period doubling from P-2-4-2 to P-1-2-1 is observed
at α = 3.69. Thereafter, a period and a reverse period
doubling between P-2-4-2 and P-1-2-1 are recorded at
α = 4 and 5.87, respectively.

In order to obtain a better insight into the dynamic
responses of the stiffer left spring (κ2 = 20), Fig. 13
presents the bifurcations in the range marked by the
number “I” in Fig. 12. As can be seen from this figure,
the system starts with a quasi-periodic motion which
is followed by a period-3 and period-6 motions. As
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Fig. 13 a Bifurcation diagram in the range marked by the num-
ber “I” in Fig. 12, where coexisting attractors are marked by
red dots. b–n Additional windows demonstrate the trajecto-
ries on the phase plane (x1 − x2, v1 − v2) obtained for α =
1.763, 1.768, 1.780, 1.785, 1.8, 1.820, 2.0, 2.056, 2.056 (coex-

isting), 2.123, 2.312, 2.410, and 2.6. Locations of the left and
the right impact surfaces are shown by blue and red lines, respec-
tively. Poincaré sections are marked by green and red dots on the
phase plane. (Color figure online)

the amplitude of excitation increases, another quasi-
periodic motion followed by a period-2 and period-4
motions is observed. For a short range of amplitude
of excitation, the coexistence of a P-1-1-1 and a P-2-
2-2 motion is recorded where coexisting attractors are
marked by red dots. From this point onwards, the cap-
sule bifurcates from P-2-2-2 to P-4-6-4 and to P-8-8-8
both via a period doubling at α = 2.323 and 2.362,
respectively. Thereafter, the capsule experiences two
reverse period doublings at α = 2.323 and 2.362, con-
sequently, the dynamic response of the system bifur-
cates from P-8-8-8 to P-2-3-2, and then P-2-4-2 after-
wards.

The calculated average velocities of the capsulewith
κ2 = 0, 5, 20 under variation of amplitude of excita-

tion α are presented in Figs. 14, 15 and 16, respectively,
with additional windows demonstrating the time histo-
ries of displacements of the inner mass (black solid
line) and the capsule (red dash line). It can be seen
from these figures that, the average velocities vary with
respect to the increase of excitation amplitude. When
the excitation amplitude is small, the capsule is sta-
tionary owing to the static friction from the supporting
surface. As the excitation amplitude increases, all the
systems experience P-1-0-1 responses with the same
progression speeds until the inner mass firstly contacts
with the left constraint at α = 0.93. Due to the effect
of the left constraint, the capsule systems with two-
sided constraints (κ2 = 5 and 20) have lower average
speeds than the onewith one-sided constraint. Compar-
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Fig. 14 a Average progression velocities under variation of
amplitude of excitation α calculated for ω = 1.1, ζ = 0.05, γ =
1, δ1 = 0.02, δ2 = 1.0, κ1 = 2, κ2 = 0. b–h Additional win-
dows demonstrate the time histories of displacements of the inner

mass (black solid line) and the capsule (red dash line) obtained
for α = 0.10, 0.80, 1.50, 3.12, 3.37, 5.43 and 6.50. (Color fig-
ure online)

ing their displacements in Figs. 14d, 15d and 16d, it can
be noted that increase of stiffness of the left spring may
cause fluctuation of the inner mass leading to backward
motion of the capsule. It is worth noting that a forward
P-1-1-1 coexists with a backward P-1-1-1 for a short
range of amplitude of excitation for κ2 = 5 due to the
grazing contact with the left constraint. For one-sided
constraint (κ2 = 0), the maximum velocity of the cap-
sule is achieved by a P-1-1-1 motion at α = 3.37.
For κ2 = 20, the capsule with two-sided constraints
reaches its maximum velocity at α = 5.34 by a P-2-4-2
motion, which is higher than the systemwith one-sided
constraint. With a weak left spring (κ2 = 5), it can be
seen from Fig. 15h that, the maximal average speed
obtained by the capsule through a P-2-3-2 motion is
higher than the maximal speeds recorded for the other
two systems. Here, it can be concluded that the best
performance of the capsule system could be achieved
by using a weak left spring under a larger amplitude of
excitation.

Figure 17 shows an interesting grazing bifurcation
observed for κ2 = 20 when the phase trajectory of the
systemmakes grazing contact simultaneously with two
discontinuity boundaries, I1 := (x1−x2)+δ2 = 0 and
I2 := (x1−x2)+2ζ(v1−v2)+κ2(x1−x2+δ2)+1 = 0,
which define the impact of the left constraint and the
transition to backward drift, respectively. As can be
seen from Fig. 17a, the capsule has forward drift only
when its phase trajectory does not contact the discon-
tinuity boundaries at α = 0.91. As the amplitude of
excitation increases to α = 0.95, two grazing contacts
occur and the backward drift of the capsule appears
at every cycle. Another interesting bifurcation, namely
the boundary-intersection crossing bifurcation [19], is
observed for κ2 = 5 which is presented in Fig. 18. One
can observe from Fig. 18a that, when the capsule is
stationary I2 := v2 = 0, the trajectory of the capsule
on the phase plane (x1 − x2, v2) crosses the discon-
tinuity boundary, I0 := (x1 − x2) − δ1 = 0, which
defines the impact of the right constraint. As shown in
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Fig. 15 a Average progression velocities under variation of
amplitude of excitation α calculated for ω = 1.1, ζ = 0.05, γ =
1, δ1 = 0.02, δ2 = 1.0, κ1 = 2, κ2 = 5. b–i Additional win-
dows demonstrate the time histories of displacements of the inner

mass (black solid line) and the capsule (red dash line) obtained
for α = 0.10, 0.80, 1.50, 3.12, 3.37, 5.43 and 6.50. Coexisting
attractors are indicated by red dots. (Color figure online)

Fig. 18b, when the amplitude of excitation increases to
α = 1.5, the trajectory hits the discontinuity bound-
ary I0 at when the capsule has backward drift (i.e.
v2 < 0). Identification of both bifurcations are very
important for the capsule system, since avoidance of
such eventsmay reduce the energy loss caused by exter-
nal friction, so that improving energy efficiency of the
system.

3.4 Influence of frequency of excitation

The effect of frequency of excitation ω on capsule
dynamics is studied in this section. Bifurcation dia-
grams and average progressions of the capsule com-

puted for κ2 = 0, 5, and 20 are presented, respec-
tively, in Figs. 19, 20 and 21 with additional pan-
els illustrating phase trajectories and time histories
of displacements of the inner mass and the capsule.
In general, when the frequency of excitation is low
(ω < 0.5), the phase trajectories of the capsule sys-
tem are twisted and several impacts are encountered as
illustrated in Figs. 19c, d, 20c, d and 21c, d. When the
frequency is sufficiently large (ω > 1.5), the dynamic
responses of the capsule are mainly period-1 motions.
Comparing the bifurcation diagrams in Figs. 19a, 20a,
and 21a, one can see that, the response of the cap-
sule for κ2 = 0 is mainly period-1 motion, and an
immediate change of capsule direction due to graz-
ing contact is recorded. As κ2 increases, the dynamics
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Fig. 16 a Average progression velocities under variation of
amplitude of excitation α calculated for ω = 1.1, ζ = 0.05, γ =
1, δ1 = 0.02, δ2 = 1.0, κ1 = 2, κ2 = 20. b–h Additional win-
dows demonstrate the time histories of displacements of the inner

mass (black solid line) and the capsule (red dash line) obtained
for α = 0.10, 0.80, 1.50, 3.12, 3.37, 5.34 and 6.50. (Color fig-
ure online)

of the capsule system becomes complex. For exam-
ple, when κ2 = 5, a number of grazing bifurcations,
periodic doublings, and reverse period doublings are
recorded. These grazing singularities induce sudden
jumps of average progression velocities of the cap-
sule at ω = 0.384, 0.585, 1.036, 1.170, 1.197, and
1.244, and the jump at ω = 0.1169 yields the fastest
progression velocity for κ2 = 5, which is shown in
Fig. 20i. In addition, the period doubling leads to
period-2motion forω ∈ [0.525, 0.561], [0.616, 0.687]
and [0.834, 0.900]. Phase trajectories of three selected
periodic-2 responseswithin these parameter regions are
plotted in Fig. 20e–g. When κ2 = 20, the bifurcation
pattern shown in Fig. 21a becomes more complex. Two
blow-up windows were plotted to show more details of
these bifurcations. The firstwindow shows the switches
between period-1 and chaotic motions through several
grazing contacts, while the second one illustrates the
successive reverse period doublings from chaotic to
period-1 response.

Comparing the average velocities of the capsules
with different κ2, it can be found that, when the fre-

quency of excitation is low (ω < 0.5), any small
variations of excitation frequency may affect the aver-
age speed significantly. As can be seen from Fig. 19b,
two local peaks are recorded at ω = 0.479 and 0.986
for a P-1-2-3 and a P-1-2-1 motion, respectively. The
maximal average velocity for κ2 = 5 is achieved by
a P-1-1-1 motion at ω = 1.169. For κ2 = 20, the
maximal velocity is achieved by a P-1-1-2 motion at
ω = 1.226. Comparing these two motions presented in
Figs. 20o and 21l, both inner masses have two phases
of forward motion in each period of excitation, and
the backward motions of both capsules are stopped
by the second forward phase of the inner mass. As a
result, the progression velocities for both capsules are
improved.

4 Energy consumption and cabin length

In this section,wewill study the best control parameters
for capsule progression. In Fig. 15, the fastest speed of
the capsule is achieved by the system with two-sided
constraints (κ2 = 5). Therefore, as shown in Fig. 22c,
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Fig. 17 Trajectories on the
phase plane
(x1 − x2, v1 − v2) and time
histories of velocities of the
capsule, v2 obtained for
ω = 1.1, ζ = 0.05, γ =
1, δ1 = 0.02, δ2 =
1.0, κ1 = 2, κ2 = 20: a
α = 0.91 (before grazing)
and b α = 0.95 (after
grazing), where
I0 := (x1 − x2) − δ1 = 0
(red lines),
I1 := (x1 − x2) + δ2 = 0
(blue lines), and
I2 := (x1 − x2) + 2ζ(v1 −
v2)+κ2(x1−x2+δ2)+1 = 0
(green lines). (Color figure
online)

(a)

(b)

(a) (b)

Fig. 18 Trajectories on the phase plane (x1 − x2, v2) computed
for ω = 1.1, ζ = 0.05, γ = 1, δ1 = 0.02, δ2 = 1.0, κ1 =
2, κ2 = 5: a α = 1.2 (before the boundary-intersection cross-
ing bifurcation) and b α = 1.5 (after the boundary-intersection

crossing bifurcation), where I0 := (x1−x2)−δ1 = 0 (red lines),
I1 := (x1 − x2) + δ2 = 0 (blue lines), and I2 := v2 = 0 (green
lines). (Color figure online)

f, an optimum approach to control capsule progression
is to increase the amplitude of excitation as large as
possible. However, larger amplitude consumes more
energy, so that the control parameters for the fastest

progression are not the most efficient ones [8]. In order
to consider this, we introduce the normalised average
velocity of the capsule vE, which is given as
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Fig. 19 a Bifurcation diagram and b average progression veloc-
ities of the capsule system under variation of frequency of exci-
tation ω calculated for α = 3.37, ζ = 0.05, γ = 1, δ1 =
0.02, δ2 = 1.00, κ1 = 2, κ2 = 0. c–g Trajectories of the
system displayed on the phase plane (x1 − x2, v1 − v2), and
h–l time histories of displacements of the inner mass (black

solid lines) and the capsule (red dash line) obtained for ω =
0.284, 0.479, 0.986, 1.169, and 1.226. Locations of the left and
the right impact surfaces are shown by purple and red lines,
respectively. Poincaré sections are marked by blue dots on the
phase plane. (Color figure online)

vE = Nvavg
∫ NT
0 α cos(ωτ)v1(τ )dτ

. (13)

Based on Eq. (13), the results in Fig. 22 were recalcu-
lated and the new results are shown in Fig. 23. It is seen
that the maximal vE is achieved at α = 0.92 through
a P-1-0-1 motion. In other words, the capsule system
with one-sided constraint has the most energy-efficient
progression.As the amplitude of excitationα increases,
the normalised average velocity vE drops dramatically.

Another consideration of optimisation is space-
saving for the capsule cabin, i.e. to use the smallest
capsule to realise the fastest progression. Thus, our pur-

pose is to shorten the cabin length of the capsule system
as illustrated in Fig. 24, where the required cabin length
is determined by the relative displacement between the
inner mass and the capsule, x1 − x2. Specifically, the
shortest cabin length can be calculated as

L = max(x1 − x2) − min(x1 − x2), (14)

and we define the relative average progression velocity
as
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Fig. 20 a Bifurcation diagram and b average progression veloc-
ities of the capsule system under variation of frequency of exci-
tation ω calculated for α = 3.37, ζ = 0.05, γ = 1, δ1 =
0.02, δ2 = 1.00, κ1 = 2, κ2 = 5. c–k Trajectories of the sys-
tem displayed on the phase plane (x1 − x2, v1 − v2) obtained
for ω = 0.284, 0.479, 0.548, 0.629, 0.854, 0.986, 1.169, 1.226,

and 1.244. Locations of the left and the right impact surfaces are
shown by purple and red lines, respectively. l–pTime histories of
displacements of the inner mass (black solid lines) and the cap-
sule (red dash line) obtained forω = 0.284, 0.479, 0.986, 1.169,
and 1.226. Poincaré sections are marked by orange dots on the
phase plane. (Color figure online)

vL = vavg

L
. (15)

The calculations of the relative average progression
velocity were carried out, and the results are presented
in Fig. 25. As can be seen from the figure, the opti-
mum progression for the minimal requirement of cabin
length is obtained at α = 3.98, where a P-1-2-1 motion
is recorded. Comparing the capsules with different left
springs, the system with a strong left spring (κ2 = 20)
has the largest velocity and the minimal requirement of
cabin length as demonstrated in Fig. 25f, g.

5 Concluding remarks

Vibro-impact dynamics of the capsule systems with
one-sided and two-sided constraints were studied in
this paper. Our concern focused on optimising the con-
trol parameters of these system, i.e. mass ratio, stiff-
ness ratios, gaps of contact, frequency and amplitude
of excitation, in terms of average progression veloc-
ity, energy consumption, and cabin length. Bifurca-
tion analysis was conducted by monitoring the rela-
tive velocity between the inner mass and the capsule
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Fig. 21 a Bifurcation diagram and b average progression veloc-
ities of the capsule under variation of frequency of excitation ω

calculated for α = 3.37, ζ = 0.05, γ = 1, δ1 = 0.02, δ2 =
1.00, κ1 = 2, κ2 = 20. c–g Trajectories of the system displayed
on the phase plane (x1 − x2, v1 − v2), and h–l time histories of

displacements of the inner mass (black solid line) and the cap-
sule (red dash line) obtained forω = 0.284, 0.479, 0.986, 1.169,
and 1.226. Locations of the left and the right impact surfaces are
shown by purple and red lines, respectively. Poincaré sections are
marked by green dots on the phase plane. (Color figure online)

and the average progression of the capsule per period
of external excitation. Extensive comparative studies
were undertaken for three different capsule systems,
i.e. the capsule with a right constraint, the capsule with
a right and a weak left constraints, and the capsule with
a right and a strong left constraints. Our bifurcation
studies revealed that the behaviour of the capsule with

one-sided constraint was mainly periodic, and its aver-
age velocity was always faster than the capsule with
two-sided constraints. The dynamic responses of the
capsule with two-sided constraints may become very
complex when the stiffness of the left spring increases.

For the investigation of influence of mass ratio γ ,
it was found that for the considered set of parameters,

123



Y. Yan et al.

Fig. 22 a Average progression velocities of the capsule systems
with κ2 = 0 (blue dots), κ2 = 5 (orange dots), and κ2 = 20
(green dots) are plotted as functions of amplitude of excitation α

calculated for ω = 1.1, ζ = 0.05, γ = 1, δ1 = 0.02, δ2 = 1.0,
and κ1 = 2. Additional windows demonstrate the time histories
of displacements of the inner mass (black solid line) and the cap-

sule (red dash line) obtained for b κ2 = 0, c 5, d 20, and the
trajectories on the phase plane (x1 − x2, v1 − v2) obtained for
e κ2 = 0, f 5, g 20. Locations of the left and the right impact
surfaces are shown by blue and red lines, respectively. Poincaré
sections are marked by blue, orange, and green dots on the phase
plane. (Color figure online)

the systemexperienced period-1motion for all the stud-
ied values of mass ratio, and the direction of capsule
progression can be altered through the grazing contact
between the inner mass and the right constraint. As the
mass ratio increases, vibro-impact motion of the inner
mass becomes ineffective so that average progression
of the capsule decreases. For the scenario of the capsule
with two-sided symmetrical constraints, i.e. δ1 = δ2
and κ1 = κ2, the capsule cannot progress for any val-
ues of the mass ratio. By investigating the influence of
stiffness ratios κ1 and κ2, our studies indicated that the
maximal average speed can be achieved by the capsule
with one-sided constraint, and introduction of the sec-
ond constraint with any values of stiffness may reduce
the average speed of the capsule. Based on the bifurca-
tion study of amplitude of excitation, it was found that
the capsule with a right and a strong left constraints had
more complex responses than the other two capsules.

Furthermore, the capsule with a right and a weak left
constraints could move faster than the others provid-
ing that a sufficiently large amplitude of excitation is
applied. Our investigation on the frequency of excita-
tion shows that, when the frequency is low (ω < 0.5),
the dynamic responses of the capsule are complex, and
any small perturbation on the frequency may results
in a significant change of its average velocity. Once
the frequency is sufficiently large (ω > 1.5), the
dynamic responses of the system are mainly period-1
motions, and the grazing contact with the left constraint
could help to enhance the progression speed of the
capsule.

In addition, influence of gap of contact for the left
constraint was studied. We have conducted the inves-
tigation for both positive and negative gaps, which
the later one represents a prestressed internal mass.
Our investigation suggests that if the miniaturization
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Fig. 23 a Average progression velocities per energy consump-
tion with κ2 = 0 (blue dots), κ2 = 5 (orange dots), and κ2 = 20
(green dots) are plotted as functions of amplitude of excitation α

calculated for ω = 1.1, ζ = 0.05, γ = 1, δ1 = 0.02, δ2 = 1.0,
and κ1 = 2. Additional windows demonstrate b the time histo-
ries of displacements of the inner mass (black solid line) and the

capsule (red dash line) and c the trajectories on the phase plane
(x1 − x2, v1 − v2) obtained for α = 0.92, where the maximal vE
is achieved. Locations of the left and the right impact surfaces
are shown by blue and red lines, respectively. Poincaré sections
are marked by blue dots on the phase plane. (Color figure online)

v 1
-v

2

L

x1-x2

Fig. 24 Required cabin length of the capsule which is deter-
mined by the relative displacement between the inner mass and
the capsule, x1 − x2. Locations of the left and the right impact
surfaces are shown by blue and red lines, respectively. (Color
figure online)

of the capsule is required, the prestressed constraint
using a weak spring could be a viable option for pro-
totype design, although the introduction of the left

spring may affect the average speed of the capsule.
We have also observed two important bifurcations
which are the grazing bifurcation for the transition to
backward drift and the boundary-intersection cross-
ing bifurcation. They are important to be identified,
since avoidance of such bifurcations could significantly
reduce the energy loss caused by external friction so
that improving energy efficiency of the entire capsule
system.

Finally, calculations regarding to energy efficiency
and cabin length were carried out. Our calculated
results revealed that the capsule with a right con-
straint was the most energy-efficient, and the capsule
with a right and a strong left constraints required the
minimal cabin length. Based on the analyses above,
our strategy for optimisation can be summarised as
follows. When capsule speed is paramount, one can
employ the two-sided capsule with a weak left con-
straint and apply a large amplitude of excitation.
When energy consumption is taken into account, the
one-sided capsule is preferable. When a miniaturized
capsule prototype is needed, the two-sided capsule
with a strong left constraint is the best choice for
prototyping.

In conclusion, our motivation to investigate vari-
ous design aspects of the vibro-impact capsule system

123



Y. Yan et al.

Fig. 25 Relative average progression velocities with κ2 = 0
(blue dots), κ2 = 5 (orange dots), and κ2 = 20 (green dots) are
plotted as functions of amplitude of excitation α calculated for
ω = 1.1, ζ = 0.05, γ = 1, δ1 = 0.02, δ2 = 1.0, and κ1 = 2.
Additional windows demonstrate the time histories of displace-
ments of the innermass (black line) and the capsule (red line) and
the trajectories on the phase plane (x1 − x2, v1 − v2) obtained

for α = 3.98, b, c κ2 = 0, d, e κ2 = 5, and f, g κ2 = 20,
where the minimal requirement of cabin length vL is recorded.
Locations of the left and the right impact surfaces are shown by
blue and red lines, respectively. Poincaré sections are marked by
blue, orange, and green dots on the phase plane. (Color figure
online)

for pipeline inspection was achieved by taking a com-
parative study on the capsule systems with one-sided
and two-sided constraints. Optimumdesign parameters
(e.g. stiffness ratios, mass ratio) and control parame-
ters (e.g. frequency and amplitude of excitation) were
suggested for prototype design with regards to capsule
speed, energy efficiency, and capsule dimension, which
are the main contribution of this paper. Future works
will focus on implementation of the capsule prototype
and its experimental testing in a fluid pipeline. It is also
worth to develop a general controlmethod for such type
of nonlinear systems, e.g. [31,32], particularly when
the number of nonlinearities increases, the dynamics
of the system will become more complex from peri-
odic motion to chaos.
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