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Abstract
We shall consider the Sturm-Liouville boundary value problem
y(m)(t) + λF(t, y(t), y′(t), . . . , y(q)(t)) = 0, t ∈ (0, 1), y(k)(0) = 0, 0≤ k ≤m – 3,
ζ y(m–2)(0) – θy(m–1)(0) = 0, ρy(m–2)(1) + δy(m–1)(1) = 0 wherem ≥ 3, 1 ≤ q≤ m – 2, and
λ > 0. It is noted that the boundary value problem considered has a
derivative-dependent nonlinear term, which makes the investigation much more
challenging. In this paper we shall develop a new technique to characterize the
eigenvalues λ so that the boundary value problem has a positive solution. Explicit
eigenvalue intervals are also established. Some examples are included to dwell upon
the usefulness of the results obtained.
MSC: 34B15
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1 Introduction
In this paper we shall consider the higher order Sturm-Liouville boundary value problem

⎧
⎪⎨

⎪⎩

y(m)(t) + λF(t, y(t), y′(t), . . . , y(q)(t)) = , t ∈ (, ),
y(k)() = ,  ≤ k ≤ m – ,
ζy(m–)() – θy(m–)() = , ρy(m–)() + δy(m–)() = ,

(.)

where m ≥ ,  ≤ q ≤ m – , λ > , and F is continuous at least in the domain of interest.
The constants ζ , θ , ρ , and δ are such that

θ ≥ , δ ≥ , θ + ζ > , δ + ρ > , κ ≡ ζρ + ζ δ + θρ > . (.)

These assumptions allow ζ and ρ to be negative.
A vast amount of research has been done on the existence of positive solutions of

Sturm-Liouville boundary value problems. The general interest in (.) may stem from the
fact that the boundary value problem models a wide spectrum of nonlinear phenomena,
such as gas diffusion through porous media, nonlinear diffusion generated by nonlinear
sources, thermal self ignition of a chemically active mixture of gases in a vessel, catalysis
theory, chemically reacting systems, adiabatic tubular reactor processes, as well as con-
centration in chemical or biological problems; see [–]. For the special case λ = , (.)
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and its particular and related cases have been the subject matter of many publications on
singular boundary value problems, e.g., see [–]. For details of recent development in
(.) as well as in other types of boundary value problems, the reader is referred to the
monographs [, ] and the hundreds of references cited therein. It is noted that in most
of this research the nonlinear terms considered do not involve derivatives of the depen-
dent variable; only a comparatively small number of papers tackle nonlinear terms that
involve derivatives, and we mention some below.

Fink [] has discussed the radial symmetric form of the semilinear elliptic equation
�y + λq(|x|)f (y) =  in R

N , namely,

{
y′′ + N–

t y′ + λq(t)f (y) = , t ∈ (, ),
y′() = y() = ,

which is actually a second order Sturm-Liouville eigenvalue problem that has y′ in the
nonlinear term. Later, Wong [] has considered (.) when λ =  and q = m – , the exis-
tence of a solution (not necessarily positive) is obtained by assuming that (.) has lower
and upper solutions v and w such that v(m–)(t) ≤ w(m–)(t) on [, ], and

F
(
t, v(t), . . . , v(m–)(t), um–

) ≤ F(t, u, . . . , um–, um–) ≤ F
(
t, w(t), . . . , w(m–)(t), um–

)

for t ∈ [, ] and (v(t), . . . , v(m–)(t)) ≤ (u, . . . , um–) ≤ (w(t), . . . , w(m–)(t)). A few years later,
Grossinho and Minhós [] established the existence of a solution to a related problem of
(.) when λ =  and q = m – ; their method requires again the existence of lower and
upper solutions and F must satisfy a Nagumo-type condition on some set A ⊂ [, ] ×R

m,
viz.,

⎧
⎪⎨

⎪⎩

there exists a continuous function h : [,∞) → (,∞) such that
|F(t, u, . . . , um)| ≤ h(|um|), (t, u, . . . , um) ∈ A;
∫ ∞


s

h(s) ds = ∞.

The comparatively small number of papers on problems involving derivative-dependent
nonlinear terms shows that problems of this type are more difficult to tackle analytically,
we note, however, that numerical methods are more developed for this type of problems,
see for example [–].

We also mention some problems related to (.). Recently, Pei and Chang [] have stud-
ied a fourth order problem with focal-Sturm-Liouville type boundary conditions

{
y()(t) = F(t, y(t), y′(t), y′′(t), y()(t)), t ∈ [, ],
y() = y′() = ay′′() – by()() = ay′′() – by()() = .

Here, once again F should satisfy a Nagumo-type condition and also F is monotone in
certain arguments. For multi-point problems, Zhang et al. [, ] have discussed the
following using the Avery-Peterson fixed point theorem:

{
y′′(t) + h(t)f (t, y(t), y′(t)) = , t ∈ (, ),
ay() – by′() =

∑n–
i= aiy(ξi), cy() + dy′() =

∑n–
i= biy(ξi).
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For infinite interval problems, Lian et al. [, ] have investigated the following:

⎧
⎪⎨

⎪⎩

–y(m)(t) = h(t)f (t, y(t), y′(t), . . . , y(m–)(t)), t ∈ (,∞),
y(k)() = Ak ,  ≤ k ≤ m – ,
y(m–)() – ay(m–)() = B, y(m–)(∞) = C.

Here, once again the lower and upper solutions method is used and the Nagumo-type
condition plays an important role in handling the derivatives in the nonlinear term.

Motivated by the above research, in the present work we shall employ a different (and
new) technique to tackle the eigenvalue problem (.). It is noted that our technique neither
requires the existence of lower and upper solutions nor the assumption of a Nagumo-type
condition, both of these conditions are not easy to check in practical applications.

To specify some terminology used: if, for a particular λ, the boundary value problem (.)
has a positive solution y, then λ is called an eigenvalue and y a corresponding eigenfunction
of (.). We let E be the set of eigenvalues of (.), i.e.,

E =
{
λ >  | (.) has a positive solution

}
.

Here, by a positive solution y of (.), we mean a nontrivial y ∈ C(m)(, ) ∩ C(m–)[, ] sat-
isfying (.), y is nonnegative on [, ] and is positive on some subinterval of [, ]. The
first focus of this paper is the characterization of the set of eigenvalues E, specifically
we shall establish criteria for E to contain an interval, for E to be an interval, and for E
to be an open finite or half-closed finite or infinite interval. Our second focus is to de-
rive explicit subintervals of E. Due to the presence of derivatives in the nonlinear term,
our current work naturally generalizes and extends the known theorems for Sturm-Liou-
ville eigenvalue problems [, –] as well as complements the work of many authors
[, , –]. We remark that our conditions/assumptions, which do not involve lower
and upper solutions and a Nagumo-type condition, are comparatively easy to check - this
practical usefulness will be illustrated by examples with known eigenvalues and eigenfunc-
tions.

The plan of the paper is as follows. In Section  we shall state a fixed point theorem and
present some properties of a certain Green’s function which are needed later. The set E is
characterized in Section , while the eigenvalue subintervals are derived in Section .

2 Preliminaries
We shall state the Krasnosel’skii fixed point theorem in a cone which is used later and also
the properties of a certain Green’s function related to the boundary value problem (.).

Theorem . (Krasnosel’skii fixed point theorem in a cone) [] Let B be a Banach space,
and let C ⊂ B be a cone in B. Assume 
, 
 are open subsets of B with  ∈ 
, 
̄ ⊂ 
,
and let

S : C ∩ (
̄\
) → C

be a completely continuous operator such that either
(a) ‖Sy‖ ≤ ‖y‖, y ∈ C ∩ ∂
, and ‖Sy‖ ≥ ‖y‖, y ∈ C ∩ ∂
, or
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(b) ‖Sy‖ ≥ ‖y‖, y ∈ C ∩ ∂
, and ‖Sy‖ ≤ ‖y‖, y ∈ C ∩ ∂
.
Then S has a fixed point in C ∩ (
̄\
).

Let G(t, s) be the Green’s function of the second order Sturm-Liouville boundary value
problem

{
–w′′(t) = , t ∈ (, ),
ζw() – θw′() = , ρw() + δw′() = .

(.)

It is well known that [–]

G(t, s) =

κ

{
(θ + ζ s)[δ + ρ( – t)],  ≤ s ≤ t ≤ ,
(θ + ζ t)[δ + ρ( – s)],  ≤ t ≤ s ≤ .

(.)

Lemma . [–] The Green’s function G(t, s) has the following properties:
(a) G(t, s) ≥  for (t, s) ∈ [, ] × [, ] and G(t, s) >  for (t, s) ∈ (, ) × (, ).
(b) G(t, s) ≤ LG(s, s) for (t, s) ∈ [, ] × [, ] where

L = max

{

,
θ

θ + ζ
,

δ

δ + ρ

}

.

(c) G(t, s) ≥ KηG(s, s) for (t, s) ∈ [η,  – η] × [, ], where η ∈ (, 
 ) is fixed and

Kη = min

{
δ + ρη

δ + ρ
,
δ + ρ( – η)

δ + ρη
,
θ + ζη

θ + ζ
,
θ + ζ ( – η)

θ + ζη

}

.

(d) gn(t, s), defined by the relation ∂n–

∂tn– gn(t, s) = G(t, s), is the Green’s function of the nth
order Sturm-Liouville boundary value problem

⎧
⎪⎨

⎪⎩

–w(n)(t) = , t ∈ (, ),
w(k)() = ,  ≤ k ≤ n – ,
ζw(n–)() – θw(n–)() = , ρw(n–)() + δw(n–)() = .

(.)n

(e)  ≤ gn(t, s) ≤ L
(n–)! G(s, s) for (t, s) ∈ [, ] × [, ].

3 Eigenvalue characterization
Recall that E = {λ >  | (.) has a positive solution}. In this section, we shall establish cri-
teria for E to contain an interval (Theorem .), and for E to be an interval (Corollary .),
which may either be bounded or unbounded (Theorem .).

To begin, we consider the initial value problem

{
y(q)(t) = x(t), t ∈ (, ),
y() = y′() = y′′() = · · · = y(q–)() = .

(.)

Noting the initial conditions in (.), we have by repeated integration

y(k)(t) =
∫ t



∫ s



∫ s


· · ·

∫ sq–k–


x(sq–k) dsq–k · · · ds,  ≤ k ≤ q – . (.)
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Denote the integral

Jkx(t) =
∫ t



∫ s



∫ s


· · ·

∫ sk–


x(sk) dsk · · · ds, k ≥ . (.)

Then (.) is simply

y(k)(t) = Jq–kx(t),  ≤ k ≤ q – . (.)

In view of (.) and (.), we can rewrite (.) as the following (m – q)th order Sturm-
Liouville boundary value problem:

⎧
⎪⎨

⎪⎩

x(m–q)(t) + λF(t, J̃x(t)) = , t ∈ (, ),
x(k)() = ,  ≤ k ≤ m – q – ,
ζx(m–q–)() – θx(m–q–)() = , ρx(m–q–)() + δx(m–q–)() = ,

(.)

where we denote

J̃x(t) =
(
Jqx(t), Jq–x(t), . . . , Jx(t), x(t)

)
.

If (.) has a solution x∗, then the boundary value problem (.) has a solution y∗ given by

y∗(t) = Jqx∗(t) =
∫ t



∫ s



∫ s


· · ·

∫ sq–


x∗(sq) dsq · · · ds. (.)

Hence, the existence of a solution of (.) follows from the existence of a solution of (.).
Further, it is obvious from (.) that y∗ is positive if x∗ is. An eigenvalue of (.) is thus also
an eigenvalue of (.), i.e.,

E =
{
λ >  | (.) has a positive solution

}
=

{
λ >  | (.) has a positive solution

}
.

We shall study the eigenvalue problem (.) via (.) and a new technique will be developed
to handle the nonlinear term F .

For easy reference, the conditions that will be mentioned later are listed below.
(C) There exist continuous functions f : (,∞)q+ → (,∞) and a, b : (, ) → [,∞)

such that for t ∈ (, ) and uj ∈ (,∞),  ≤ j ≤ q + ,

a(t)f (u, . . . , uq+) ≤ F(t, u, . . . , uq+) ≤ b(t)f (u, . . . , uq+).

(C) a(t) is not identically zero on any nondegenerate subinterval of (, ) and there
exists r ∈ (, ] such that a(t) ≥ rb(t) for all t ∈ (, ).

(C)  <
∫ 

 (θ + ζ t)[δ + ρ( – t)]b(t) dt < ∞.
(C) f is nondecreasing in each of its arguments, i.e., for uj, v, w ∈ (,∞),  ≤ j ≤ q + 

with v ≤ w, we have

f (u, . . . , ui–, v, ui+, . . . , uq+) ≤ f (u, . . . , ui–, w, ui+, . . . , uq+),  ≤ i ≤ q + .
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(C) For t ∈ (, ) and uj, v, w ∈ (,∞),  ≤ j ≤ q +  with v ≤ w, we have

F(t, u, . . . , ui–, v, ui+, . . . , uq+) ≤ F(t, u, . . . , ui–, w, ui+, . . . , uq+),

 ≤ i ≤ q + .

Let the Banach space

B =
{

x ∈ C(m–q)(, ) ∩ C(m–q–)[, ] | x(k)() = ,  ≤ k ≤ m – q – 
}

be equipped with the norm

‖x‖ = sup
t∈[,]

∣
∣x(m–q–)(t)

∣
∣.

Throughout the paper, let η ∈ (, 
 ) be fixed. Define the cone C in B by

C =
{

x ∈ B
∣
∣ x(m–q–)(t) ≥ , t ∈ [, ]; min

t∈[η,–η]
x(m–q–)(t) ≥ γ ‖x‖

}
, (.)

where γ = rKη/L. For a constant M > , let

C(M) =
{

x ∈ C | ‖x‖ ≤ M
}

.

Lemma . [, ] Let x ∈ B. For  ≤ i ≤ m – q – , we have

∣
∣x(i)(t)

∣
∣ ≤ tm–q––i

(m – q –  – i)!
‖x‖, t ∈ [, ]. (.)

In particular,

∣
∣x(t)

∣
∣ ≤ 

(m – q – )!
‖x‖, t ∈ [, ]. (.)

Lemma . [, ] Let x ∈ C. For  ≤ i ≤ m – q – , we have

x(i)(t) ≥ , t ∈ [, ], (.)

and

x(i)(t) ≥ (t – η)m–q––i γ

(m – q –  – i)!
‖x‖, t ∈ [η,  – η]. (.)

In particular, we have, for fixed z ∈ (η,  – η),

x(t) ≥ (z – η)m–q– γ

(m – q – )!
‖x‖, t ∈ [z,  – η]. (.)

Remark . If x∗ ∈ C is a nontrivial solution of (.), then (.) and (.) imply that x∗

is a positive solution of (.). As noted earlier a positive solution y∗ of (.) can be obtained
via (.).

The next result is useful in handling the nonlinear term F .
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Lemma . Let x ∈ C and let z ∈ (η,  – η) be fixed. Then we have, for  ≤ k ≤ q,

Jkx(t) ≤ 
(m – q – )!

‖x‖, t ∈ [, ], (.)

and

Jkx(t) ≥ (z – η)m–q–+k γ

(m – q –  + k)!
‖x‖, t ∈ [z,  – η]. (.)

Proof Since x ∈ C ⊂ B, using (.) we obtain for  ≤ k ≤ q and t ∈ [, ],

Jkx(t) =
∫ t



∫ s



∫ s


· · ·

∫ sk–


x(sk) dsk · · · ds

≤
∫ 



∫ 



∫ 


· · ·

∫ 



‖x‖
(m – q – )!

dsk · · · ds =
‖x‖

(m – q – )!
.

Next, since x ∈ C, it follows from (.) that

x(t) ≥ (t – η)m–q– γ ‖x‖
(m – q – )!

, t ∈ [η,  – η]. (.)

Let t ∈ [z,  – η]. Using (.) we find, for  ≤ k ≤ q,

Jkx(t) =
∫ t



∫ s



∫ s


· · ·

∫ sk–


x(sk) dsk · · · ds ≥

∫ z

η

∫ s

η

∫ s

η

· · ·
∫ sk–

η

x(sk) dsk · · · ds

≥
∫ z

η

∫ s

η

∫ s

η

· · ·
∫ sk–

η

(sk – η)m–q– γ ‖x‖
(m – q – )!

dsk · · · ds

= (z – η)m–q–+k γ ‖x‖
(m – q –  + k)!

. �

In view of Remark ., to obtain a positive solution of (.), we shall seek a fixed point
of the operator S in the cone C, where S : C → B is defined by

Sx(t) = λ

∫ 


gm–q(t, s)F

(
s, J̃x(s)

)
ds, t ∈ [, ]. (.)

Recall that gm–q(t, s) (see Lemma .(d)) is the Green’s function of ((.)n)m–q, thus (.)
is equivalent to

(Sx)(m–q–)(t) = λ

∫ 


G(t, s)F

(
s, J̃x(s)

)
ds, t ∈ [, ], (.)

where G(t, s) is the Green’s function of (.).
We further define the operators U , V : C → B by

Ux(t) = λ

∫ 


gm–q(t, s)a(s)f

(
J̃x(s)

)
ds and Vx(t) = λ

∫ 


gm–q(t, s)b(s)f

(
J̃x(s)

)
ds.

As in (.), differentiating gives

(Ux)(m–q–)(t) = λ

∫ 


G(t, s)a(s)f

(
J̃x(s)

)
ds
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and

(Vx)(m–q–)(t) = λ

∫ 


G(t, s)b(s)f

(
J̃x(s)

)
ds.

If (C) is satisfied, then it is clear that

Ux(t) ≤ Sx(t) ≤ Vx(t), t ∈ [, ], (.)

and

(Ux)(m–q–)(t) ≤ (Sx)(m–q–)(t) ≤ (Vx)(m–q–)(t), t ∈ [, ]. (.)

Lemma . Let (C)-(C) hold. Then the operator S is compact on the cone C.

Proof Let us consider the case when a(t) is unbounded in a deleted right neighborhood
of  and also in a deleted left neighborhood of . Clearly, b(t) is also unbounded near 
and . For n ∈ {, , , . . .}, let an, bn : [, ] → [,∞) be defined by

an(t) =

⎧
⎪⎨

⎪⎩

a( 
n+ ),  ≤ t ≤ 

n+ ,
a(t), 

n+ ≤ t ≤ n
n+ ,

a( n
n+ ), n

n+ ≤ t ≤ ,

and

bn(t) =

⎧
⎪⎨

⎪⎩

b( 
n+ ),  ≤ t ≤ 

n+ ,
b(t), 

n+ ≤ t ≤ n
n+ ,

b( n
n+ ), n

n+ ≤ t ≤ .

Also, we define the operators Un, Vn : C → B by

Unx(t) = λ

∫ 


gm–q(t, s)an(s)f

(
J̃x(s)

)
ds

and

Vnx(t) = λ

∫ 


gm–q(t, s)bn(s)f

(
J̃x(s)

)
ds.

It is standard that, for each n, both Un and Vn are compact operators on C. Let M >  and
x ∈ C(M). For t ∈ [, ], we obtain

∣
∣Vnx(t) – Vx(t)

∣
∣ ≤ λ

∫ 


gm–q(t, s)

∣
∣bn(s) – b(s)

∣
∣f

(
J̃x(s)

)
ds

= λ

∫ 
n+


gm–q(t, s)

∣
∣bn(s) – b(s)

∣
∣f

(
J̃x(s)

)
ds

+ λ

∫ 

n
n+

gm–q(t, s)
∣
∣bn(s) – b(s)

∣
∣f

(
J̃x(s)

)
ds
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= λ

∫ 
n+


gm–q(t, s)

∣
∣
∣
∣bn

(


n + 

)

– b(s)
∣
∣
∣
∣f

(
J̃x(s)

)
ds

+ λ

∫ 

n
n+

gm–q(t, s)
∣
∣
∣
∣bn

(
n

n + 

)

– b(s)
∣
∣
∣
∣f

(
J̃x(s)

)
ds.

Since ‖x‖ ≤ M, from (.) we get

Jkx(s) ≤ M
(m – q – )!

, s ∈ [, ],  ≤ k ≤ q.

Hence, together with (.), it follows from the monotonicity of f (condition (C)) that

f
(
J̃x(s)

)
= f

(
Jqx(s), Jq–x(s), . . . , Jx(s), x(s)

)

≤ f
(

M
(m – q – )!

,
M

(m – q – )!
, . . . ,

M
(m – q – )!

)

≡ f̄M. (.)

Applying (.) and Lemma .(e), we obtain

∣
∣Vnx(t) – Vx(t)

∣
∣ ≤ λf̄M

[∫ 
n+



LG(s, s)
(m – q – )!

∣
∣
∣
∣b

(


n + 

)

– b(s)
∣
∣
∣
∣ds

+
∫ 

n
n+

LG(s, s)
(m – q – )!

∣
∣
∣
∣b

(
n

n + 

)

– b(s)
∣
∣
∣
∣ds

]

.

The integrability of G(s, s)b(s) (which is simply (C)) ensures that Vn converges uniformly
to V on C(M). Hence, V is compact on C. By a similar argument, we see that Un converges
uniformly to U on C(M) and therefore U is also compact on C. It follows immediately from
inequality (.) that the operator S is compact on C. �

Remark . From the proof of Lemma ., we see that if the functions a and b are con-
tinuous on the close interval [, ], then the conditions (C) and (C) are not needed in
Lemma ..

The first main result shows that E contains an interval.

Theorem . Let (C)-(C) hold. Then there exists � >  such that the interval (,�] ⊆ E.

Proof For a given M > , we define

� = M
[

f̄ML
∫ 


G(s, s)b(s) ds

]–

. (.)

Let λ ∈ (,�]. We shall prove that S(C(M)) ⊆ C(M). For this, let x ∈ C(M). First, we shall
show that Sx ∈ C. From (.), it is clear that

(Sx)(m–q–)(t) ≥ λ

∫ 


G(t, s)a(s)f

(
J̃x(s)

)
ds ≥ , t ∈ [, ]. (.)

Also, (.) and Lemma .(b) provide

(Sx)(m–q–)(t) ≤ λ

∫ 


G(t, s)b(s)f

(
J̃x(s)

)
ds ≤ λ

∫ 


LG(s, s)b(s)f

(
J̃x(s)

)
ds, t ∈ [, ],
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which immediately implies

‖Sx‖ ≤ λ

∫ 


LG(s, s)b(s)f

(
J̃x(s)

)
ds. (.)

Further, using (.), Lemma .(c), (C), and (.) successively, we find, for t ∈ [η,  – η],

(Sx)(m–q–)(t) ≥ λ

∫ 


G(t, s)a(s)f

(
J̃x(s)

)
ds

≥ λ

∫ 


KηG(s, s)a(s)f

(
J̃x(s)

)
ds

≥ λ

∫ 


KηG(s, s)rb(s)f

(
J̃x(s)

)
ds

≥ Kη

L
r‖Sx‖ = γ ‖Sx‖.

Hence,

min
t∈[η,–η]

(Sx)(m–q–)(t) ≥ γ ‖Sx‖. (.)

Inequalities (.) and (.) show that Sx ∈ C.
Next, we shall prove that ‖Sx‖ ≤ M. Noting that ‖x‖ ≤ M, we use (.), Lemma .(b),

and (.) to get

(Sx)(m–q–)(t) ≤ �

∫ 


G(t, s)b(s)f

(
J̃x(s)

)
ds

≤ �f̄M

∫ 


LG(s, s)b(s) ds = M, t ∈ [, ],

or equivalently

‖Sx‖ ≤ M.

Hence, S(C(M)) ⊆ C(M). Also, the standard arguments yield that S is completely contin-
uous. By Schauder’s fixed point theorem, S has a fixed point in C(M). Clearly, this fixed
point is a positive solution of (.) and therefore λ is an eigenvalue of (.). Noting that
λ ∈ (,�] is arbitrary, it follows immediately that the interval (,�] ⊆ E. �

Remark . From the proof of Theorem ., it is clear that conditions (C) and (C) en-
sure that S : C → C.

Theorem . Let (C)-(C) hold. Suppose that λ∗ ∈ E. For any λ ∈ (,λ∗), we have λ ∈ E,
i.e., (,λ∗] ⊆ E.

Proof Let x∗ be the eigenfunction corresponding to the eigenvalue λ∗. Then we have

x∗(t) = Sx∗(t) = λ∗
∫ 


gm–q(t, s)F

(
s, J̃x∗(s)

)
ds, t ∈ [, ]. (.)
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Define

A =
{

x ∈ B |  ≤ x(t) ≤ x∗(t), t ∈ [, ]
}

.

Let λ ∈ (,λ∗) and x ∈ A. It is obvious from definition (.) that

Jkx(t) ≤ Jkx∗(t), t ∈ [, ],  ≤ k ≤ q.

Now, applying (C) and noting (.), we obtain

 ≤ Sx(t) = λ

∫ 


gm–q(t, s)F

(
s, J̃x(s)

)
ds

≤ λ∗
∫ 


gm–q(t, s)F

(
s, J̃x∗(s)

)
ds

= Sx∗(t), t ∈ [, ].

This shows that the operator S maps A into A. Moreover, the operator S is continuous and
completely continuous. Schauder’s fixed point theorem guarantees that S has a fixed point
in A which is a positive solution of (.). Hence, λ is an eigenvalue of (.), i.e., λ ∈ E. �

The next result states that E is itself an interval.

Corollary . Let (C)-(C) hold. If E �= ∅, then E is an interval.

Proof Suppose E is not an interval. Then there exist λ,λ ∈ E (λ < λ), and τ ∈ (λ,λ)
with τ /∈ E. However, this is not possible as Theorem . guarantees that τ ∈ E. Hence, E
is an interval. �

The next result gives upper and lower bounds of an eigenvalue.

Theorem . Let (C)-(C) hold. Let λ be an eigenvalue of (.) and x ∈ C be a corre-
sponding eigenfunction. Further, let ‖x‖ = p and z ∈ (η,  – η) be fixed. Then

λ ≥ p
f ( p

(m–q–)! ,
p

(m–q–)! , . . . , p
(m–q–)! )

[∫ 


LG(s, s)b(s) ds

]–

, (.)

and

λ ≤ p
f ( γ p

(m–)! (z – η)m–, γ p
(m–)! (z – η)m–, . . . , γ p

(m–q–)! (z – η)m–q–, γ p
(m–q–)! (z – η)m–q–)

×
[∫ –η

z
G(t, s)a(s) ds

]–

, (.)

where t is any number in (, ) such that x(m–q–)(t) �= .

Proof Let t ∈ [, ] be such that

p = ‖x‖ = x(m–q–)(t).
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Then, applying (.), Lemma .(b), (.), and (C), we find

p = x(m–q–)(t) = (Sx)(m–q–)(t)

≤ λ

∫ 


G(t, s)b(s)f

(
J̃x(s)

)
ds

≤ λ

∫ 


LG(s, s)b(s)f̄p ds,

which gives (.) immediately.
Next, noting (.), (.), (.), and (C), we get

p ≥ x(m–q–)(t)

≥ λ

∫ 


G(t, s)a(s)f

(
J̃x(s)

)
ds

≥ λ

∫ –η

z
G(t, s)a(s)f

(
J̃x(s)

)
ds

≥ λ

∫ –η

z
G(t, s)a(s) ds

× f
(

γ p
(m – )!

(z – η)m–,
γ p

(m – )!
(z – η)m–, . . . ,

γ p
(m – q – )!

(z – η)m–q–,

γ p
(m – q – )!

(z – η)m–q–
)

,

from which (.) is immediate. �

The next result gives the criteria for E to be a bounded/unbounded interval.

Theorem . Define

PB =
{

f
∣
∣
∣

u
f (u, u, . . . , u)

is bounded for u ∈ (,∞)
}

,

P =
{

f
∣
∣
∣ lim

u→∞
u

f (u, u, . . . , u)
= 

}

,

P∞ =
{

f
∣
∣
∣ lim

u→∞
u

f (u, u, . . . , u)
= ∞

}

.

(a) Let (C)-(C) hold. If f ∈ PB, then E = (,�) or (,�] for some � ∈ (,∞).
(b) Let (C)-(C) hold. If f ∈ P, then E = (,�] for some � ∈ (,∞).
(c) Let (C)-(C) hold. If f ∈ P∞, then E = (,∞).

Proof (a) This follows from (.) and Corollary ..
(b) Since P ⊆ PB, we have from Case (a) that E = (,�) or (,�] for some � ∈ (,∞). In

particular,

� = sup E.
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Let {λn}∞n= be a monotonically increasing sequence in E which converges to �, and let
{xn}∞n= be a corresponding sequence of eigenfunctions in the context of (.). Further,
let pn = ‖xn‖. Then (.) together with f ∈ P implies that no subsequence of {pn}∞n=

can diverge to infinity. Thus, there exists M >  such that pn ≤ M for all n. So {xn}∞n=

is uniformly bounded. This implies that there is a subsequence of {xn}∞n=, relabeled as
the original sequence, which converges uniformly to some x, where x(t) ≥  for t ∈ [, ].
Clearly, we have Sxn = xn, i.e.,

xn(t) = λn

∫ 


gm–q(t, s)F

(
s, J̃xn(s)

)
ds, t ∈ [, ]. (.)

Since xn converges to x and λn converges to �, letting n → ∞ in (.) leads to

x(t) = �

∫ 


gm–q(t, s)F

(
s, J̃x(s)

)
ds, t ∈ [, ].

Hence, � is an eigenvalue with corresponding eigenfunction x, i.e., � = sup E ∈ E. This
completes the proof for Case (b).

(c) Let λ >  be fixed. Choose ε >  so that

λ
L

(m – q – )!

∫ 


G(s, s)b(s) ds ≤ 

ε
. (.)

If f ∈ P∞, then there exists M = M(ε) >  such that

f (u, u, . . . , u) < εu, u ≥ M
(m – q – )!

. (.)

We shall show that S(C(M)) ⊆ C(M). Let x ∈ C(M). From the proof of Theorem ., we
have (.) and (.) and so Sx ∈ C. It remains to show that ‖Sx‖ ≤ M. Applying (.),
Lemma .(b), (.), (.), and (.), we find, for t ∈ [, ],

(Sx)(m–q–)(t) ≤ λ

∫ 


G(t, s)b(s)f

(
J̃x(s)

)
ds

≤ λ

∫ 


LG(s, s)b(s)f

(
M

(m – q – )!
,

M
(m – q – )!

, . . . ,
M

(m – q – )!

)

ds

≤ λε
M

(m – q – )!

∫ 


LG(s, s)b(s) ds ≤ M.

It follows that ‖Sx‖ ≤ M and hence S(C(M)) ⊆ C(M). Also, S is continuous and completely
continuous. Schauder’s fixed point theorem guarantees that S has a fixed point in C(M).
Clearly, this fixed point is a positive solution of (.) and therefore λ is an eigenvalue of
(.). Since λ >  is arbitrary, it shows that E = (,∞). �

Example . Consider the Sturm-Liouville boundary value problem

{
y()(t) + λF(t, y(t), y′(t), y′′(t), y′′′(t)) = , t ∈ (, ),
y() = y′() = y′′() = , y()() – y()() = , –y()() + y()() = ,

(.)
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where λ >  and

F
(
t, y, y′, y′′, y′′′) =

[
 + t + t + t + t – t


+ 

]–/

×
(

y + y′ + y′′ + y′′′


+ 

)/

.

Here, m = , q = , ζ = , θ = , ρ = –, and δ = . Clearly, (C)-(C) are satisfied with

a(t) = b(t) =
[

 + t + t + t + t – t


+ 

]–/

and

f (u, u, u, u) =
(

u + u + u + u


+ 

)/

.

It is obvious that f ∈ P∞. Hence, by Theorem .(c) we have E = (,∞). In fact, when
λ = 

 ∈ (,∞), (.) has a positive solution y(t) = t + 
 t – 

 t.

4 Explicit eigenvalue intervals
In this section, the functions a and b appearing in (C)-(C) are assumed to be continuous
on the closed interval [, ]. Hence, noting Remark ., we shall not require conditions
(C) and (C) to show the compactness of the operator S. With respect to the function f
in (C), we define

f  = lim sup
ui→,≤i≤q+

f (u, u, . . . , uq+)
uq+

, f


= lim inf
ui→,≤i≤q+

f (u, u, . . . , uq+)
uq+

,

f ∞ = lim sup
ui→∞,≤i≤q+

f (u, u, . . . , uq+)
uq+

, f ∞ = lim inf
ui→∞,≤i≤q+

f (u, u, . . . , uq+)
uq+

.

Our main tool in this section is the Krasnosel’skii fixed point theorem in a cone (Theo-
rem .) which we shall apply with the operator S and the cone C defined in (.) and
(.), respectively. Recall that η ∈ (, 

 ) is fixed. Throughout this section, we further let
z ∈ [η,  – η] be fixed. Define tz, t∗ ∈ [, ] by

∫ –η

z
G(tz, s)a(s)(s – η)m–q– ds = sup

t∈[,]

∫ –η

z
G(t, s)a(s)(s – η)m–q– ds,

∫ –η

η

G
(
t∗, s

)
a(s)(s – η)m–q– ds = sup

t∈[,]

∫ –η

η

G(t, s)a(s)(s – η)m–q– ds.
(.)

Theorem . Let (C)-(C) hold. Then λ ∈ E if λ satisfies


f ∞

[
γ

(m – q – )!

∫ –η

z
G(tz, s)a(s)(s – η)m–q– ds

]–

< λ <

f 

[
L

(m – q – )!

∫ 


G(s, s)b(s)sm–q– ds

]–

. (.)
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Proof Let λ satisfy (.) and let ε >  be such that


f ∞ – ε

[
γ

(m – q – )!

∫ –η

z
G(tz, s)a(s)(s – η)m–q– ds

]–

< λ <


f  + ε

[
L

(m – q – )!

∫ 


G(s, s)b(s)sm–q– ds

]–

. (.)

First, we choose w >  so that

f (u, u, . . . , uq+) ≤ (f  + ε)uq+,  < ui ≤ w,  ≤ i ≤ q + . (.)

Let x ∈ C be such that ‖x‖ = w(m – q – )!. By (.) and (.), we get

{
x(s) ≤ ‖x‖

(m–q–)! = w, s ∈ [, ],
Jkx(s) ≤ ‖x‖

(m–q–)! = w, s ∈ [, ],  ≤ k ≤ q.
(.)

Thus, together with (.), Lemma .(b), (.), (.), (.), and (.), we find, for t ∈ [, ],

(Sx)(m–q–)(t) ≤ λ

∫ 


LG(s, s)b(s)f

(
J̃x(s)

)
ds

≤ λ

∫ 


LG(s, s)b(s)(f  + ε)x(s) ds

≤ λ

∫ 


LG(s, s)b(s)(f  + ε)

sm–q–

(m – q – )!
‖x‖ds ≤ ‖x‖.

It follows that

‖Sx‖ ≤ ‖x‖. (.)

If we set 
 = {x ∈ B | ‖x‖ < w(m – q – )!}, then (.) holds for x ∈ C ∩ ∂
.
Next, let d >  be such that

f (u, u, . . . , uq+) ≥ (f ∞ – ε)uq+, ui ≥ d,  ≤ i ≤ q + . (.)

Let x ∈ C be such that

‖x‖ = max

{

w(m – q – )! + ,
d(m – q – )!
γ (z – η)m–q– ,

d(m – q –  + k)!
γ (z – η)m–q–+k ,  ≤ k ≤ q

}

= max

{

w(m – q – )! + ,
d(m – )!

γ (z – η)m–

}

≡ D. (.)

Using (.), (.), and (.), we have

{
x(s) ≥ (z–η)m–q–

(m–q–)! γ ‖x‖ ≥ d, s ∈ [z,  – η],
Jkx(s) ≥ (z–η)m–q–+k

(m–q–+k)! γ ‖x‖ ≥ d, s ∈ [z,  – η],  ≤ k ≤ q.
(.)
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Now, applying (.), (.), (.), and (.), we find, for t ∈ [, ],

(Sx)(m–q–)(t) ≥ λ

∫ –η

z
G(t, s)a(s)f

(
J̃x(s)

)
ds

≥ λ

∫ –η

z
G(t, s)a(s)(f ∞ – ε)x(s) ds

≥ λ

∫ –η

z
G(t, s)a(s)(f ∞ – ε)(s – η)m–q– γ ‖x‖

(m – q – )!
ds.

Taking the supremum on both sides leads to

‖Sx‖ ≥ λ

∫ –η

z
G(tz, s)a(s)(s – η)m–q– ds · (f ∞ – ε)

γ ‖x‖
(m – q – )!

≥ ‖x‖,

where tz is defined in (.), and (.) has been used in the last inequality. If we set 
 =
{x ∈ B | ‖x‖ < D}, then for x ∈ C ∩ ∂
 we have

‖Sx‖ ≥ ‖x‖. (.)

With (.) and (.) established and also noting that S maps C into C (Remark .),
by Theorem . S has a fixed point x ∈ C ∩ (
̄\
) such that w(m – q – )! ≤ ‖x‖ ≤ D.
Obviously, this x is a positive solution of (.) and hence λ ∈ E. �

Theorem . Let (C)-(C) hold. Then λ ∈ E if λ satisfies


f



[
γ

(m – q – )!

∫ –η

η

G
(
t∗, s

)
a(s)(s – η)m–q– ds

]–

< λ <


f ∞

[
L

(m – q – )!

∫ 


G(s, s)b(s) ds

]–

. (.)

Proof Let λ satisfy (.) and let ε >  be such that


f


– ε

[
γ

(m – q – )!

∫ –η

η

G
(
t∗, s

)
a(s)(s – η)m–q– ds

]–

< λ <


f ∞ + ε

[
L

(m – q – )!

∫ 


G(s, s)b(s) ds

]–

. (.)

First, we pick w >  so that

f (u, u, . . . , uq+) ≥ (f


– ε)uq+,  < ui ≤ w,  ≤ i ≤ q + . (.)

Let x ∈ C be such that ‖x‖ = w(m – q – )!. As in (.), we have x(s) ≤ w and Jkx(s) ≤ w,
 ≤ k ≤ q for s ∈ [, ]. Hence, applying (.), (.), and (.), we find, for t ∈ [, ],

(Sx)(m–q–)(t) ≥ λ

∫ 


G(t, s)a(s)f

(
J̃x(s)

)
ds ≥ λ

∫ 


G(t, s)a(s)(f


– ε)x(s) ds

≥ λ

∫ –η

η

G(t, s)a(s)(f


– ε)(s – η)m–q– γ ‖x‖
(m – q – )!

ds.
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Taking the supremum on both sides and using (.) lead to

‖Sx‖ ≥ λ

∫ –η

η

G
(
t∗, s

)
a(s)(s – η)m–q– ds · (f


– ε)

γ ‖x‖
(m – q – )!

≥ ‖x‖,

where t∗ is defined in (.). Hence, if we set 
 = {x ∈ B | ‖x‖ < w(m – q – )!}, then ‖Sx‖ ≥
‖x‖ holds for x ∈ C ∩ ∂
.

Next, let d >  be such that

f (u, u, . . . , uq+) ≤ (f ∞ + ε)uq+, ui ≥ d,  ≤ i ≤ q + . (.)

We shall consider two cases - when f is bounded and when f is unbounded.
Case . Suppose that f is bounded. Then there exists a positive constant M such that

f (u, u, . . . , uq+) ≤ M, ui ∈ (,∞),  ≤ i ≤ q + . (.)

Let

D = max

{

w + ,
λM

(m – q – )!

∫ 


LG(s, s)b(s) ds

}

and let x ∈ C be such that ‖x‖ = D(m – q – )!. Using (.), Lemma .(b), and (.), we
have, for t ∈ [, ],

(Sx)(m–q–)(t) ≤ λ

∫ 


LG(s, s)b(s)f

(
J̃x(s)

)
ds

≤ λ

∫ 


LG(s, s)b(s)M ds ≤ D(m – q – )! = ‖x‖.

Hence, ‖Sx‖ ≤ ‖x‖ holds.
Case . Suppose that f is unbounded. Then there exists D > max{w + , d} such that

f (u, u, . . . , uq+) ≤ f (D, D, . . . , D),  < ui ≤ D,  ≤ i ≤ q + . (.)

Let x ∈ C be such that ‖x‖ = D(m – q – )!. As in (.), we have x(s) ≤ D and Jkx(s) ≤ D,
 ≤ k ≤ q for s ∈ [, ]. Now, using (.), Lemma .(b), (.), (.), and (.), we get,
for t ∈ [, ],

(Sx)(m–q–)(t) ≤ λ

∫ 


LG(s, s)b(s)f

(
J̃x(s)

)
ds

≤ λ

∫ 


LG(s, s)b(s)f (D, D, . . . , D) ds

≤ λ

∫ 


LG(s, s)b(s)(f ∞ + ε)D ds

= λ

∫ 


LG(s, s)b(s)(f ∞ + ε)

‖x‖
(m – q – )!

ds ≤ ‖x‖.

Hence, immediately we have ‖Sx‖ ≤ ‖x‖.
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In both Case  and , if we set 
 = {x ∈ B | ‖x‖ < D(m – q – )!}, then ‖Sx‖ ≤ ‖x‖ holds
for x ∈ C ∩ ∂
.

With (.) and (.) established and also noting that S maps C into C (Remark .), it
follows from Theorem . that S has a fixed point x ∈ C ∩ (
̄\
) such that w(m–q–)! ≤
‖x‖ ≤ D(m – q – )!. Clearly, this x is a positive solution of (.) and hence λ ∈ E. �

Theorems . and . provide explicit eigenvalue intervals as follows.

Corollary . Let (C)-(C) hold. Then

E ⊇
(


f ∞

[
γ

(m – q – )!

∫ –η

z
G(tz, s)a(s)(s – η)m–q– ds

]–

,


f 

[
L

(m – q – )!

∫ 


G(s, s)b(s)sm–q– ds

]–)

⊇
(


f ∞

[
γ

(m – q – )!

∫ –η

z
KηG(s, s)a(s)(s – η)m–q– ds

]–

,


f 

[
L

(m – q – )!

∫ 


G(s, s)b(s)sm–q– ds

]–)

and

E ⊇
(


f



[
γ

(m – q – )!

∫ –η

η

G
(
t∗, s

)
a(s)(s – η)m–q– ds

]–

,


f ∞

[
L

(m – q – )!

∫ 


G(s, s)b(s) ds

]–)

⊇
(


f



[
γ

(m – q – )!

∫ –η

η

KηG(s, s)a(s)(s – η)m–q– ds
]–

,


f ∞

[
L

(m – q – )!

∫ 


G(s, s)b(s) ds

]–)

.

Proof We apply Theorems . and .. Moreover, using Lemma .(c) we have

∫ –η

z
G(tz, s)a(s)(s – η)m–q– ds ≥ sup

t∈[η,–η]

∫ –η

z
G(t, s)a(s)(s – η)m–q– ds

≥
∫ –η

z
KηG(s, s)a(s)(s – η)m–q– ds

and
∫ –η

η

G
(
t∗, s

)
a(s)(s – η)m–q– ds ≥ sup

t∈[η,–η]

∫ –η

η

G(t, s)a(s)(s – η)m–q– ds

≥
∫ –η

η

KηG(s, s)a(s)(s – η)m–q– ds,

from which we are able to avoid the calculations of tz and t∗, amid getting smaller inter-
vals. �
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The function f is said to be superlinear if f  =  and f ∞ = ∞; and f is said to be sublinear
if f


= ∞ and f ∞ = . The next result is immediate from Corollary ..

Corollary . Let (C)-(C) hold. If f is superlinear or sublinear, then E = (,∞), i.e., the
boundary value problem (.) (or (.)) has a positive solution for any λ > .

Example . Consider the Sturm-Liouville boundary value problem

{
y()(t) + λF(t, y(t), y′(t), y′′(t)) = , t ∈ (, ),
y() = y′() = , y′′() = , –y′′() – y()() = ,

(.)

where λ > . Here, m = , q = , ζ = –, θ = , ρ = , and δ = . Let η = 
 . By direct compu-

tation, we have

L =



, K 


=



, γ =



, G(s, s) =



( – s)( – s).

Below we shall consider three different F ’s.
Case .

F
(
t, y, y′, y′′) =

{
 – t – t – t – t


+  – exp

[
–

(
t – t – t)]

}–

×
(

y


+
y′′


+  – e–y′

)

. (.)

Clearly, (C)-(C) are satisfied with

a(t) = b(t) =
{

 – t – t – t – t


+  – exp

[
–

(
t – t – t)]

}–

and

f (u, u, u) =
u


+

u


+  – e–u .

By direct computation, we have

f


=
,


, f ∞ =




.

It follows from Corollary . that

E ⊇
(


f



[

γ K 


∫ 





G(s, s)a(s) ds
]–

,


f ∞

[

L
∫ 


G(s, s)b(s) ds

]–)

= (., .).

In fact, we note that when λ =  ∈ (., .), the problem (.), (.) has a positive
solution given by y(t) = t – t – t.

Case .

F
(
t, y, y′, y′′) =

(
 + t – t – t – t



)–(y + y′ + y′′


+ 

)

. (.)
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Here, (C)-(C) are satisfied with

a(t) = b(t) =
(

 + t – t – t – t



)–

and

f (u, u, u) =
u + u + u


+ .

Direct computation also provides

f


= ∞, f ∞ =



.

By Corollary ., we have

E ⊇
(

,


f ∞

[

L
∫ 


G(s, s)b(s) ds

]–)

= (, .).

Indeed, when λ =  ∈ (, .), the problem (.), (.) has a positive solution given
by y(t) = t – t – t.

Case .

F
(
t, y, y′, y′′) =

[
exp

(
– – t + t + t + t) + 

]–[
exp

(
–y – y′ – y′′) + 

]
. (.)

In this case, (C)-(C) are satisfied with

a(t) = b(t) =
[
exp

(
– – t + t + t + t) + 

]–

and

f (u, u, u) = exp(–u – u – u) + .

We check that f is sublinear, i.e., f


= ∞ and f ∞ = . By Corollary ., the set E = (,∞).
As an example, when λ =  ∈ (,∞), the problem (.), (.) has a positive solution
given by y(t) = t – t – t.
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