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Abstract
In studying the enumerative theory of super characters of the group of upper
triangular matrices over a finite field, we found that the moments (mean, variance, and
higher moments) of novel statistics on set partitions of [ n]= {1, 2, · · · , n} have simple
closed expressions as linear combinations of shifted bell numbers. It is shown here that
families of other statistics have similar moments. The coefficients in the linear
combinations are polynomials in n. This allows exact enumeration of the moments for
small n to determine exact formulae for all n.

Background
The set partitions of [n]= {1, 2, · · · , n} (denoted �(n)) are a classical object of com-
binatorics. In studying the character theory of upper triangular matrices (see section
‘Set partitions, enumerative group theory, and super characters’ for background) we were
led to some unusual statistics on set partitions. For a set partition λ of n, consider the
dimension exponent (Table 1).

d(λ) :=
�∑

i=1
(Mi − mi + 1) − n

where λ has � blocks,Mi andmi are the largest and smallest elements of the ith block. How
does d(λ) vary with λ? As shown below, its mean and second moment are determined in
terms of the Bell numbers Bn∑

λ∈�(n)

d(λ) = − 2Bn+2 + (n + 4)Bn+1∑
λ∈�(n)

d2(λ) =4Bn+4 − (4n + 15)Bn+3 + (n2 + 8n + 9)Bn+2 − (4n + 3)Bn+1 + nBn.

The right hand sides of these formulae are linear combinations of Bell numbers with
polynomial coefficients. Dividing by Bn and using asymptotics for Bell numbers (see
section ‘Asymptotic analysis’) in terms of αn, the positive real solution of ueu = n + 1 (so
αn = log(n) − log log(n) + · · · ) gives

E(d(λ)) =
(

αn − 2
α2
n

)
n2 + O

(
n
αn

)
VAR(d(λ)) =

(
α2
n − 7αn + 17
α3
n(αn + 1)

)2
n3 + O

(
n2

αn

)
.
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Table 1 A table of the dimension exponent f(n, 0,d)

n\d 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1

1 1

2 2

3 4 1

4 8 4 3

5 16 12 13 9 2

6 32 32 42 42 35 12 8

7 64 80 120 145 159 133 86 52 32 6

8 128 192 320 440 559 600 591 440 380 248 164 48 30

This paper gives a large family of statistics that admit similar formulae for all moments.
These include classical statistics such as the number of blocks and number of blocks
of size i. It also includes many novel statistics such as d(λ) and ck(λ), the number of k
crossings. The number of two crossings appears as the intertwining exponent of super
characters.
Careful definitions and statements of our main results are in section ‘Statement of the

main results’. Section ‘Set partitions, enumerative group theory, and super characters’
reviews the enumerative and probabilistic theory of set partitions, finite groups, and super
characters. Section ‘Computational results’ gives computational results; determining the
coefficients in shifted Bell expressions involves summing over all set partitions for small n.
For some statistics, a fast new algorithm speeds things up. Proofs of themain theorems are
in sections ‘Proofs of recursions, asymptotics, and Theorem 3’ and ‘Proofs of Theorems
1 and 2’. Section ‘More data’ gives a collection of examples - moments of order up to six
for d(λ) and further numerical data. In a companion paper [1], the asymptotic limiting
normality of d(λ), c2(λ), and some other statistics is shown.

Statement of themain results
Let�(n) be the set partitions of [ n]= {1, 2, · · · , n} (so |�(n)| = Bn, the nth Bell number).
A variety of codings are described in section ‘Set partitions, enumerative group theory,
and super characters’. In this section, λ ∈ �(n) is described as λ = B1|B2| · · · |B� with
Bi∩Bj = ∅,∪�

i=1Bi =[ n]. Write i ∼λ j if i and j are in the same block of λ. It is notationally
convenient to think of each block as being ordered. Let First(λ) be the set of elements of
[ n] which appear first in their block and Last(λ) be the set of elements of [ n] which occur
last in their block. Finally, let Arc(λ) be the set of distinct pairs of integers (i, j) which
occur in the same block of λ such that j is the smallest element of the block greater than i.
As usual, λ may be pictured as a graph with vertex set [ n] and edge set Arc(λ).
For example, the partition λ = 1356|27|4, represented in Figure 1, has First(λ) =

{1, 2, 4}, Last(λ) = {6, 7, 4}, and Arc(λ) = {(1, 3), (3, 5), (5, 6), (2, 7)}.
A statistic on λ is defined by counting the number of occurrences of patterns. This

requires some notation.

Definition 1. (i) A pattern P of length k is defined by a set partition P of [ k] and
subsets F(P),L(P) ⊂[ k], and A(P),C(P) ⊂ {[ k]×[ k] : i < j}. Let
P = (P,F,L,A,C).
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Figure 1 An example partition λ = 1356|27|4.

(ii) An occurrence of a pattern P of length k in λ ∈ �(n) is s = (x1, · · · , xk) with
xi ∈[n] such that

1. x1 < x2 < · · · < xk .

2. xi ∼λ xj if and only if i ∼P j.

3. xi ∈ First(λ) if i ∈ F(P).

4. xi ∈ Last(λ) if i ∈ L(P).

5. (xi, xj) ∈ Arc(λ) if (i, j) ∈ A(P).

6. xj − xi = 1 if (i, j) ∈ C(P).

Write s ∈P λ if s is an occurrence of P in λ.

(iii) A simple statistic is defined by a pattern P of length k and Q ∈ Z[ y1, · · · , yk ,m]. If
λ ∈ �(n) and s = (x1, · · · , xk) ∈P λ, write Q(s) = Q |yi=xi,m=n. Let

f (λ) = fP,Q(λ) :=
∑
s∈Pλ

Q(s).

Let the degree of a simple statistic fP,Q be the sum of the length of P and the degree
of Q.

(iv) A statistic is a finite Q-linear combination of simple statistics. The degree of a
statistic is defined to be the minimum over such representations of the maximum
degree of any appearing simple statistic.

Remark 1. In the notation above, F(P) is the set of firsts elements, L(P) is the set of lasts,
A is the arc set of the pattern, and C(P) is the set of consecutive elements.

Examples

1. Number of blocks in λ:

�(λ) =
∑

1≤x≤n
x is smallest element in its block

1.

Here, P is a pattern of length 1, F(P) = {1}, L(P) = A(P) = C(P) = ∅, and
Q(y,m) = 1. Similarly, the nth moment of �(λ) can be computed using(

�(λ)

k

)
= fPk ,1(λ)

where Pk is the pattern of length k corresponding to P, the partition of [ k] into
blocks of size 1, with F(Pk) = {1, 2, · · · , k}, and L(Pk) = A(Pk) = C(Pk) = ∅.
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2. Number of blocks of size i : define a pattern Pi of length i by: (1) all elements of [ i]
are equivalent, (2) F(Pi) = {1}, (3) L(Pi) = {i}, (4) A(Pi) = {(1, 2), · · · , (i − 1, i)},
and (5) C(Pi) = ∅. Then,

Xi(λ) := fPi,1(λ) (1)

is the number of i blocks in λ (if i = 1, A(P1) = ∅). Similarly, the moments of the
number of blocks of size i is a statistic. See Theorem 1.

3. k crossings: a k crossing [2] of a λ ∈ �(n) is a sequence of arcs
(it , jt)1≤t≤k ∈ Arc(λ) with

i1 < i2 < · · · < ik < j1 < j2 < · · · < jk .

The statistic crk(λ) which counts the number of k crossings of λ can be represented
by a pattern P = (P,F,L,A,C) of length 2k with (1) i ∼P k + i for i = 1, · · · , k, (2)
F(P) = L(P) = ∅, (3) A(P) = {(1, k + 1), (2, k + 2), · · · , (k, 2k)}, and (4) C(P) = ∅.
Partitions with cr2(λ) = 0 are in bijection with Dyck paths and so are counted by
the Catalan numbers Cn = 1

n+1
(2n
n
)
(see Stanley’s second volume on enumerative

combinatorics [3]). Partitions without crossings have proved themselves to be very
interesting.
Crossing seems to have been introduced by Krewaras [4]. See Simion’s [5] for an
extensive survey and Chen et al. [2] and Marberg [6] for more recent appearances
of this statistic. The statistic cr2(λ) appears as the intersection exponent in
section ‘Super character theory’.

4. Dimension exponent: the dimension exponent described in the introduction is a
linear combination of the number of blocks (a simple statistic of degree 1), the last
elements of the blocks (a simple statistic of degree 2), and the first elements of the
blocks (a simple statistic of degree 2). Precisely, define ffirsts(λ) := fP,Q(λ) where P
is the pattern of length 1, with F(P) = {1}, L(P) = A(P) = C(P) = ∅, and
Q(y,m) = y. Similarly, let flasts(λ) := fP,Q(λ) where P is the pattern of length 1,
with L(P) = {1}, F(P) = A(P) = C(P) = ∅, and Q(y,m) = y. Then,

d(λ) = flasts(λ) − ffirsts(λ) + �(λ) − n.

5. Levels: the number of levels in λ , denoted flevels(λ), (see page 383 of [7] or Shattuck
[8]) is the number of i such that i and i + 1 appear in the same block of λ. We have

flevels(λ) = fP,Q(λ)

where P is a pattern of length 2 with C(P) = A(P) = {(1, 2)}, L(P) = F(P) = ∅,
and Q = 1.

6. The maximum block size of a partition is not a statistic in this notation.

The set of all statistics on ∪∞
n=0�(n) → Q is a filtered algebra.

Theorem 1. Let S be the set of all set partition statistics thought of as functions
f :
⋃

n �(n) → Q. Then S is closed under the operations of pointwise scaling, addition and
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multiplication. In particular, if f1, f2 ∈ S and a ∈ Q, then there exist partition statistics
ga, g+, g∗ so that for all set partitions λ,

af1(λ) = ga(λ)

f1(λ) + f2(λ) = g+(λ)

f1(λ) · f2(λ) = g∗(λ).

Furthermore, deg(ga) ≤ deg(f1), deg(g+) ≤ max(deg(f1), deg(f2)), and deg(g∗) ≤
deg(f1) + deg(f2). In particular, S is a filtered Q-algebra under these operations.

Remark 2. Properties of this algebra remain to be discovered.

Definition 2. A shifted Bell polynomial is any function R : N → Q that is zero or can be
expressed in the form

R(n) =
∑

I≤j≤K
Qj(n)Bn+j

where I,K ∈ Z and each Qj(x) ∈ Q[x] such that QI(x) �= 0 and QK (x) �= 0. i.e., it is a
finite sum of polynomials multiplied by shifted Bell numbers. Call K the upper shift degree
of R and I the lower shift degree of R.

Remark 3. The representation of a shifted Bell polynomial is unique. This can be
understood by considering the asymptotics of each individual term as n → ∞.

Our first main theorem shows that the aggregate of a statistic is a shifted Bell
polynomial.

Theorem 2. For any statistic, f of degree N, there exists a shifted Bell polynomial R such
that for all n ≥ 1

M(f ; n) :=
∑

λ∈�(n)

f (λ) = R(n).

Moreover,

1. the upper shift index of R is at most N and the lower shift index is bounded below
by −k, where k is the length of the pattern associated f.

2. the degree of the polynomial coefficient of Bn+N−j in R is bounded by j for j ≤ N
and by j − 1 for j > N .

The following collects the shifted Bell polynomials for the aggregates of the statistics
given previously.
Examples

1. Number of blocks in λ:

M(�; n) = Bn+1 − Bn.

This is elementary and is established in Proposition 1.
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2. Number of blocks of size i :

M(Xi; n) =
(
n
i

)
Bn−i.

This is also elementary and is established in Proposition 1.
3. Two crossings: Kasraoui [9] established

M(cr2; n) = 1
4

(−5Bn+2 + (2n + 9)Bn+1 + (2n + 1)Bn) .

4. Dimension exponent:

M(d; n) = −2Bn+2 + (n + 4)Bn+1.

This is given in Theorem 3.
5. Levels: Shattuck [8] showed that

M(flevels; n) = 1
2
(Bn+1 − Bn − Bn−1).

It is amusing that this implies that B3n ≡ B3n+1 ≡ 1 (mod 2) and B3n+2 ≡ 0
(mod 2) for all n ≥ 0.

Remark 4. Chapter 8 of Mansour’s book [7] and the research papers [9-11] contain
many other examples of statistics which have shifted Bell polynomial aggregates. We
believe that each of these statistics is covered by our class of statistics.

Set partitions, enumerative group theory, and super characters
This section presents background and a literature review of set partitions, probabilistic
and enumerative group theory, and super character theory for the upper triangular group
over a finite field. Some sharpenings of our general theory are given.

Set partitions

Let �(n, k) denote the set partitions of n labeled objects with k blocks and �(n) =
∪k�(n, k); so |�(n, k)| = S(n, k) is the Stirling number of the second kind and |�(n)| =
Bn is the nth Bell number. The enumerative theory and applications of these basic objects
is developed in the studies of Graham et al. [12], Knuth [13], Mansour [7], and Stanley
[14]. There are many familiar equivalent codings.

• Equivalence relations on n objects

1|2|3 , 12|3 , 13|2 , 1|23 , 123
• Binary, strictly upper triangular zero-one matrices with no two ones in the same row

or column (equivalently, rook placements on a triangular Ferris board (Riordan [15]).⎛⎜⎝ 0 0 0
0 0 0
0 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 1 0
0 0 0
0 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 0 1
0 0 0
0 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 0 0
0 0 1
0 0 0

⎞⎟⎠ ,

⎛⎜⎝ 0 1 0
0 0 1
0 0 0

⎞⎟⎠
• Arcs on n points
• Restricted growth sequences a1, a2, . . . , an; a1 = 0, aj+1 ≤ 1 + max(a1, . . . , aj) for

1 ≤ j < n (Knuth [13], p. 416)

012 , 001 , 010 , 011 , 000
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• Semi-labeled trees on n + 1 vertices
• Vacillating tableau: a sequence of partitions λ0, λ1, · · · , λ2n with λ0 = λ2n = ∅ and

λ2i+1 is obtained from λ2i by doing nothing or deleting a square and λ2i is obtained
from λ2i−1 by doing nothing or adding a square (see [2]).

The enumerative theory of set partitions begins with Bell polynomials. Let
Bn,k(w1, · · · ,wn) = ∑

λ∈�(n,k)
∏

wXi(λ)
i with Xi(λ) the number of blocks in λ of size i; so

set Bn(w1, · · · ,wn) =∑k Bn,k(w1, · · · ,wn) and B(t) =∑∞
n=0 Bn(w) t

n

n! . A classical version
of the exponential formula gives

B(t) = e
∑∞

n=1 wn
tn
n! . (2)

These elegant formulae have been used by physicists and chemists to understand
fragmentation processes ([16] for extensive references). They also underlie the the-
ory of polynomials of binomial type [17,18], that is, families Pn(x) of polynomials
satisfying

Pn(x + y) =
∑

Pk(x)Pn−k(y).

These unify many combinatorial identities, going back to Faa de Bruno’s formula for the
Taylor series of the composition of two power series.
There is a healthy algebraic theory of set partitions. The partition algebra of [19] is

based on a natural product on �(n) which first arose in diagonalizing the transfer matrix
for the Potts model of statistical physics. The set of all set partitions

⋃
n �(n) has a Hopf

algebra structure which is a general object of study in [20].
Crossings and nestings of set partitions is an emerging topic, see [2,21,22] and their

references. Given λ ∈ �(n) two arcs (i1, j1) and (i2, j2) are said to cross if i1 < i2 < j1 < j2
and nest if i1 < i2 < j2 < j1. Let cr(λ) and ne(λ) be the number of crossings and nestings.
One striking result: the crossings and nestings are equi-distributed ([21] Corollary 1.5),
they show∑

λ∈�(n)

xcr(λ)yne(λ) =
∑

λ∈�(n)

xne(λ)ycr(λ).

As explained in section ‘Super character theory’, crossings arise in a group theoretic
context and are covered by our main theorem. Nestings are also a statistic.
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This crossing and nesting literature develops a parallel theory for crossings and nestings
of perfect matchings (set partitions with all blocks of size 2). Preliminary works suggest
that our main theorem carry over to matchings with Bn reduced to (2n)! /2nn!.
Turn next to the probabilistic side: what does a ‘typical’ set partition ‘look like’? For

example, under the uniform distribution on �(n)

• What is the expected number of blocks?
• How many singletons (or blocks of size i ) are there?
• What is the size of the largest block?

The Bell polynomials can be used to get moments. For example:

Proposition 1. (i) Let �(λ) be the number of blocks. Then

m(�; n) :=
∑

λ∈�(n)

�(λ) = Bn+1 − Bn

m(�2; n) =Bn+2 − 3Bn+1 + Bn

m(�3; n) =Bn+3 − 6Bn+2 + 8Bn+1Bn+1 − Bn

(ii) Let X1(λ) be the number of singleton blocks, then

m(X1; n) =nBn−1

m(X2
1 ; n) =nBn−1 + n(n − 1)Bn−2

In accordance with our general theorem, the right hand sides of (i) and (ii) are shifted
Bell polynomials. To make contact with the results shown previously, there is a direct
proof of these classical formulae.

Proof. Specializing the variables in the generating function (2) gives a two variable
generating functions for �:

∞∑
n=0

∑
λ∈�(n)

y�(λ) xn

n!
=
∑
n≥0
�≥0

S(n, �)y� xn

n!
= ey(e

x−1).

Differentiating with respect to y and setting y = 1 shows that m(�; n) is the coefficient
of xn

n! in (ex − 1)eex−1. Noting that

∂

∂x
ee

x−1 = exee
x−1 =

∞∑
n=0

Bn+1
xn

n!

yieldsm(�) = Bn+1 − Bn. Repeated differentiation gives the higher moments.
For X1, specializing variables gives

∞∑
n=0

∑
λ∈�(n)

yX1(λ) xn

n!
= ee

x−1−x+yx.

Differentiation with respect to y and settings y = 1 readily yields the claimed results.

The moment method may be used to derive limit theorems. An easier, more systematic
method is due to Fristedt [23]. He interprets the factorization of the generating func-
tion B(t) in (2) as a conditional independence result and uses ‘dePoissonization’ to get
results for finite n. Let Xi(λ) be the number of blocks of size i. Roughly, his results say
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that {Xi}ni=1 are asymptotically independent and of size (log(n))i/i!. More precisely, let αn
satisfy αneαn = n + 1 (so αn = log(n) − log log(n) + o(1)). Let βi = αi

n/i! then

P
{
Xi − βi√

βi
≤ x
}

= �(x) + o(1)

where �(x) = 1√
2π

∫ x
−∞ e−u2/2du. Fristedt also has a description of the joint distribution

of the largest blocks.

Remark 5. It is typical to expand the asymptotics in terms of un where uneun = n. In
this notation, un and αn differ by O(1/n).

The number of blocks �(λ) is asymptotically normal when standardized by its mean
μn ∼ n

log(n)
and variance σ 2

n ∼ n
log2(n)

. These are precisely given by Proposition 1. Refining
this, Hwang [24] shows

P
{

� − μn
σn

≤ x
}

= �(x) + O
(
log(n)√

n

)
.

Stam [25] has introduced a clever algorithm for random uniform sampling of set par-
titions in �(n). He uses this to show that if W (i) is the size of the block containing i,
1 ≤ i ≤ k, then for k finite and n large W (i) are asymptotically independent and normal
with mean and variance asymptotic to αn. In [1], we use Stam’s algorithm to prove the
asymptotic normality of d(λ) and cr2(λ).
Any of the codings previously mentioned lead to distribution questions. The upper tri-

angular representation leads to the study of the dimension and crossing statistics, the arc
representation suggests crossings, nestings, and even the number of arcs, i.e. n − �(λ).
Restricted growth sequences suggest the number of zeros, the number of leading zeros,
largest entry. See Mansour [7] for this and much more. Semi-labeled trees suggest the
number of leaves, length of the longest path from root to leaf, and various measures of
tree shape (e.g., max degree). Further probabilistic aspects of uniform set partitions can
be found in [16,26].

Probabilistic group theory

One way to study a finite groupG is to ask what ‘typical’ elements ‘look like’. This program
was actively begun by Erdös and Turan [27-33] who focused on the symmetric group Sn.
Pick a permutation σ of n at random and ask the following:

• How many cycles in σ ? (about log n)
• What is the length of the longest cycle? (about 0.61n)
• How many fixed points in σ ? (about 1)
• What is the order of σ ? (roughly e(log n)2/2)

In these and many other cases, the questions are answered with much more precise
limit theorems. A variety of other classes of groups have been studied. For finite groups
of Lie type, see [34] for a survey and [35] for wide-ranging applications. For p groups, see
[36].
One can also ask questions about ‘typical’ representations. For example, fix a conjugacy

class C (e.g., transpositions in the symmetric group), what is the distribution of χρ(C) as
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ρ ranges over irreducible representations [34,37,38]. Here, two probability distributions
are natural, the uniform distribution on ρ and the Plancherel measure (Pr(ρ) = d2ρ/|G|
with dρ the dimension of ρ). Indeed, the behavior of the ‘shape’ of a random partition of
n under the Plancherel measure for Sn is one of the most celebrated results in modern
combinatorics. See Stanley’s study [39] for a survey with references to the work of Kerov
and Vershik [40], Logan and Shepp [41], Baik et al. [42], and many others.
The previous discussion focuses on finite groups. The questions make sense for com-

pact groups. For example, pick a randommatrix from Haar measure on the unitary group
Un and ask: what is the distribution of its eigenvalues? This leads to the very active sub-
ject of random matrix theory. We point to the wonderful monographs of Anderson et al.
[43], and Forrester [44] which have extensive surveys.

Super character theory

LetGn(q) be the group of n×nmatrices which are upper triangular with ones on the diag-
onal over the field Fq. The group Gn(q) is the Sylow p subgroup of GLn(Fq) for q = pa.
Describing the irreducible characters of Gn(q) is a well-known wild problem. However,
certain unions of conjugacy classes, called superclasses, and certain characters, called
supercharacters, have an elegant theory. In fact, the theory is rich enough to provide
enough understanding of the Fourier analysis on the group to solve certain problems, see
the work of Arias-Castro et al. [45]. These superclasses and supercharacters were devel-
oped by André [46-48] and Yan [49]. Supercharacter theory is a growing subject. See
[6,50-54] and their references.
For the groups Gn(q), the supercharacters are determined by a set partition of [n] and

a map from the set partition to the group F∗
q. In the analysis of these characters, there are

two important statistics, each of which only depends on the set partition. The dimension
exponent is denoted d(λ), and the intertwining exponent is denoted i(λ).
Indeed, if χλ and χμ are two supercharacters, then

dim(χλ) = qd(λ) and
〈
χλ,χμ

〉 = δλ,μqi(λ).

While d(λ) and i(λ) were originally defined in terms of the upper triangular representa-
tion (for example, d(λ) is the sum of the horizontal distance from the ‘ones’ to the super
diagonal), their definitions can be given in terms of blocks or arcs:

d(λ) :=
∑

e�f∈Arc(λ)

(
f − e − 1

)
(3)

and

i(λ) :=
∑

e1<e2<f1<f2
e1�f1∈Arc(λ)
e2�f2∈Arc(λ)

1 (4)

Remark 6. Notice that i(λ) = cr2(λ) is the number of two crossings which were
introduced in the previous sections.

Our main theorem shows that there are explicit formulae for every moment of these
statistics. The following represents a sharpening using special properties of the dimension
exponent.
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Theorem 3. For each k ∈ {0, 1, 2, · · · }, there exists a closed form expression

M(dk ; n) :=
∑

λ∈�(n)

d(λ)k = Pk,2k(n)Bn+2k + Pk,2k−1(n)Bn+2k−1 + · · · + Pk,0(n)Bn

where each Pk,2k−j is a polynomial with rational coefficients. Moreover, the degree of Pk,2k−j
is {

j j ≤ k
k − � j−k

2 � j > k
.

For example,∑
λ∈�(n)

d(λ) = − 2Bn+2 + (n + 4)Bn+1∑
λ∈�(n)

d(λ)2 =4Bn+4 − (4n + 15)Bn+3 + (n2 + 8n + 9)Bn+2 − (4n + 3)Bn+1 + nBn

Remark 7. See section ‘More data’ for the moments with k ≤ 6, and see [55] for the
moments with k ≤ 22. The first moment may be deduced easily from results of Bergeron
and Thiem [56]. Note that they seem to have an index which differs by one from ours.

Remark 8. Theorem 3 is stronger than what is obtained directly from Theorem 2. For
example, the lower shift index is 0, while the best that can be obtained from Theorem 2 is
a lower shift index of −k. This theorem is proved by working directly with the generating
function for a generalized statistic on ‘marked set partitions’. These set partitions are
introduced in section ‘Computational results’.

Asymptotics for the Bell numbers yield the following asymptotics for the moments. The
following result gives some asymptotic information about these moments.

Theorem 4. Let αn = log(n) − log log(n) + o(1) be the positive real solution of ueu =
n + 1. Then

E(d(λ)) =
(

αn − 2
α2
n

)
n2 + O

(
nα−1

n
)
.

Let Sk(d; n) := 1
Bn
∑

λ∈�(n)(d(λ) − M(d; n)/Bn)k be the symmetrized moments of the
dimension exponent. Then

S2(d; n) =
(

α2
n − 7αn + 17
α3
n(αn + 1)

)
n3 + O

(
n2α−1

n
)

S3(d; n) =
(

−881
3

− 244αn + 145α2
n − 83

3
α3
n + 2α4

n

)
n4

α4
n(αn + 1)3

+ O
(
n3α−1

n
)

Remark 9. Asymptotics for Sk(d; n)with k = 1, 2, 3, 4, 5, 6 and with further accuracy are
in section ‘More data’.

Analogous to these results for the dimension exponent are the following results for the
intertwining exponent.
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Theorem 5. For each k ∈ {0, 1, 2, · · · } there exists a closed form expression

M(ik ; n) :=
∑

λ∈�(n)

i(λ)k = Qk,2k(n)Bn+2k + · · · + Qk,0(n)Bn + · · · + Qk,−k(n)Bn−k

where each Qk,2k−j is a polynomial with rational coefficients. Moreover, the degree of
Qk,2k−j is bounded by j.
For example,

M(i; n) =1
4

((2n + 1)Bn + (2n + 9)Bn+1 − 5Bn+2)

M(i2; n) = 1
144

(
(36n2 + 24n − 23)Bn + (72n2 + 72n − 260)Bn+1

+(36n2 + 156n + 489)Bn+2 − (180n + 814)Bn+3 + 225Bn+4
)
.

Remark 10. The expression for M(i; n) = M(cr2; n) was established first by Kasraoui
(Theorem 2.3 of [9]).

Remark 11. Theorem 5 is deduced directly from Theorem 2. The shifted Bell polynomi-
als for M(ik ; n) for k ≤ 5 are given in section ‘More data’, and see [55] for the aggregates
with k ≤ 12.

Remark 12. Amusingly, the formula forM(i; n) implies that the sequence {Bn}∞n=0 taken
modulo 4 is periodic of length 12 beginning with {1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2}. Similarly,
the formula for M(i2; n) shows that the sequence is periodic modulo 9 (respectively 16)
with period 39 (respectively 48). For more about such periodicity, see the papers of
Lunnon et al. [57] and Montgomery et al. [58].

In analogy with Theorem 4, there is the following asymptotic result.

Theorem 6. With αn as above,

E(i(λ)) =
(
2αn − 5
4α2

n

)
n2 + O

(
nα−1

n
)
.

Let Sk(i; n) = 1
Bn
∑

λ∈�(n) (i(λ) − M(i, n)/Bn)
k. Then,

S2(i; n) =3α2
n − 22αn + 56
9α3

n(αn + 1)
n3 + O

(
n2α−1

n
)

S3(i; n) = (αn − 5)(4α3
n − 31α2

n + 100αn + 99)
8α4

n(αn + 1)3
n4 + O

(
n3α−3

n
)

Theorems 3 and 5 show that there will be closed formulae for all of the moments of
these statistics. Moreover, these theorems give bounds for the number of terms in the
summand and the degree of each of the polynomials. Therefore, to compute the formulae,
it is enough to compute enough values for M(dk ; n) or M(ik ; n) and then to do linear
algebra to solve for the coefficients of the polynomials. For example,M(d; n) needs P1,2(n)

which has degree at most 0, P1,1(n) which has degree at most 1, and P1,0(n) which has
degree at most 0. Hence, there are four unknowns, and so only M(d; n) for n = 1, 2, 3, 4
are needed to derive the formula for the expected value of the dimension exponent.



Chern et al. Research in theMathematical Sciences 2014, 1:2 Page 13 of 32
http://www.resmathsci.com/content/1/1/2

Computational results
Enumerating set partitions and calculating these statistics would take time O(Bn) (see
Knuth’s volume [13] for discussion of how to generate all set partitions of fixed size,
the book of Wilf and Nijenhuis [59], or the website [60] of Ruskey). This section intro-
duces a recursion for computing the number of set partitions of n with a given dimension
or intertwining exponent in time O(n4). The recursion follows by introducing a notion
of ‘marked’ set partitions. This generalization seems useful in general when computing
statistics which depend on the internal structure of a set partition.
The results may then be used with Theorems 3 and 5 to find exact formulae for the

moments. Proofs are given in section ‘Proofs of recursions, asymptotics, and Theorem 3’.
For a set partition λ, mark each block either open or closed. Call such a partition

a marked set partition. For each marked set partition λ of [n], let o(λ) be the num-
ber of open blocks of λ and �(λ) be the total number of blocks of λ. (Marked set
partitions may be thought of as what is obtained when considering a set partition of
a potentially larger set and restricting it to [ n]. The open blocks are those that will
become larger upon adding more elements of this larger set, while the closed blocks
are those that will not.) With this notation, define the dimension of λ with blocks
B1,B2, · · · by

d̃(λ) =

⎛⎜⎜⎜⎝ ∑
Bj

Bj is closed

max(Bj)

⎞⎟⎟⎟⎠−
⎛⎝∑

Bj

min(Bj)

⎞⎠+ �(λ) + n(o(λ) − 1). (5)

It is clear that if o(λ) = 0, then λ may be thought of as a usual ‘unmarked’ set partition
and d̃(λ) = d(λ) is the dimension exponent of λ. Define

f (n;A,B) :=
{
λ ∈ �(n) : o(λ) = A and d̃(λ) = B

}
(6)

Theorem 7. For n > 0

f (n;A,B) =f (n − 1;A − 1,B − A + 1) + f (n − 1;A,B − A)

+ Af (n − 1;A,B − A + 1) + (A + 1)f (n − 1;A + 1,B − A).

with initial condition f (0;A,B) = 0 for all (A,B) �= (0, 0) and f (0; 0, 0) = 1.

Therefore, to find the number of partitions of [n] with dimension exponent equal to k,
it suffices to compute f (n, 0, k) for k and n. Figure 2 gives the histograms of the dimension
exponent when n = 20 and n = 100.With increasing n, these distributions tend to normal
with mean and variance given in Theorem 4. This approximation is already apparent for
n = 20.
It is not necessary to compute the entire distribution of the dimension index to compute

the moment formulae for the dimension exponent. Namely, it is better to implement the
following recursion for the moments.
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Figure 2 Histograms of the dimension exponent counts for n = 20 and n = 100.

Corollary 1. Define Mk(d; n,A) :=∑λ∈�(n)
o(λ)=A

d(λ)k. Then

Mk(d; n,A) =
k∑

j=0

(
k
j

)
(A − 1)k−jMj(d; n − 1,A − 1)

+
k∑

j=0

(
k
j

)
Ak−jMj(d; n − 1,A)

+ A
k∑

j=0

(
k
j

)
(A − 1)k−jMj(d; n − 1,A)

+ (A + 1)
k∑

j=0

(
k
j

)
Ak−jMj(d; n − 1,A + 1).

To compute M(dk ; n), then for each m < n, this recursion allows us to keep only k
values rather than computing allO(m ·m2) values of f (m,A,B). To find the linear relation
of Theorem 3, only O(k · k2) values ofMk(d; n,A) are needed.
In analogy, there is a recursion for the intertwining exponent.
Let f(i)(n,A,B) be the number of marked partitions of [n] with intertwining weight equal

to B and with A open sets where the intertwining weight is equal to the number of inter-
laced pairs i � j and k � � where k is in a closed set plus the number of triples i, k, j such
that i � j and k is in an open set.

Theorem 8. With the notation above, the following recursion holds

f(i)(n + 1,A,B) = f(i)(n,A,B) + f(i)(n,A − 1,B)

+
A∑
j=0

f(i)(n,A + 1,B − j) +
A−1∑
j=0

f(i)(n,A,B − j).

This recursion allows the distribution to be computed rapidly. Figure 3 gives the his-
tograms of the intertwining exponent when n = 20 and n = 100. Again, for increasing n,
the distribution tends to normal with mean and variance from Theorem 6. The skewness
is apparent for n = 20.

Proofs of recursions, asymptotics, and Theorem 3
This section gives the proofs of the recursive formulae discussed in Theorems 7 and 8
Additionally, this section gives a proof of Theorem 3 using the three-variable generating
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Figure 3 Histograms of the intertwining exponent counts for n = 20 and n = 100.

function for f (n,A,B). Finally, it gives an asymptotic expansion for Bn+k/Bn with k fixed
and n → ∞. This asymptotic is used to deduce Theorems 4 and 6.

Recursive formulae

This subsection gives the proof of the recursions for f (n,A,B) and f(i)(n,A,B) given in
Theorems 7 and 8 The recursion is used in the next subsection to study the generating
function for the dimension exponent.
Proof of Theorem 7The four terms of the recursion come from considering the following

cases: (1) n is added to a marked partition of [n− 1] as a singleton open set, (2) n is added
to a marked partition of [n − 1] as a singleton closed set, (3) n is added to an open set of
a marked partition of [n − 1] and that set remains open, and (4) n is added to an open set
of a marked partition of [n − 1] and that set is closed.
Proof of Theorem 8 The argument is similar to that of Theorem 7. The same four cases

arise. However, when adding n to an open set, the statistic may increase by any value j and
it does so in exactly one way.

The generating function for f(n,A, B)

This section studies the generating function for f (n,A,B) and deduces Theorem 3. Let

F(X,Y ,Z) :=
∑

n,A,B≥0
f (n;A,B)

Xn

n!
YAZB (7)

be the three-variable generating function. Theorem 7 implies that
∂

∂X
F(X,Y ,Z) = (1 + Y )(F(X,YZ,Z) + FY (X,YZ,Z)), (8)

where FY denotes ∂
∂Y F .

Then, F(X, 0,Z) is the generating function for the distribution of d(λ), i.e.,

F(X, 0,Z) =
∞∑
n=0

∑
λ∈�(n)

Zd(λ)Xn

n!
.

Thus, the generating function for the kth moment is∑
n≥0

M(dk ; n)
Xn

n!
= (Z

∂

∂Z
)kF(X,Y ,Z)

∣∣Z=1,Y=0 .

Consider

Fk(X,Y ) := (Z
∂

∂Z
)kF(X,Y ,Z) |Z=1 . (9)
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So Fk(X, 0) =∑M(dk ; n)X
n

n! .

Lemma 1. In the notation above,(
∂

∂X
− (1 + Y )

∂

∂Y

)
Fn(X,Y ) = (1 + Y )

∑
k>0

(
n
k

)((
Y

∂

∂Y

)k (
1 + ∂

∂Y

)
Fn−k(X,Y )

)
.

Proof. From (8),

∂

∂X
Fn(X,Y ) = (1 + Y )

∑
k

(
n
k

)((
Y

∂

∂Y

)k (
1 + ∂

∂Y

)
Fn−k(X,Y )

)
Hence, solving for Fn gives(

∂

∂X
− (1 + Y )

∂

∂Y

)
Fn(X,Y ) = (1 + Y )

∑
k>0

(
n
k

)((
Y

∂

∂Y

)k (
1 + ∂

∂Y

)
Fn−k(X,Y )

)
.

(10)

Throughout the remainder Y = eα − 1. Abusing notation, let

Gk(X,α) := Gk(X,Y ) := Fk(X,Y ) exp(−(1 + Y )(eX − 1)).

The following lemma gives an expression for Gk(X,α) in terms of a differential
operators. Define the operators

R := ∂

∂X
− ∂

∂α

S :=eα

T := ∂

∂α
+ eX+α .

Lemma 2. Clearly, G0(X,Y ) = 1. Moreover,

Gk(X,α) =
∑
a,b,c

Ck
a,b,cS

aTbXc1,

Proof. (10) is equivalent to(
∂

∂X
+ (1 + Y )eX − (1 + Y )

(
∂

∂Y
+ eX

))
Gn(X,Y )

=(1 + Y )
∑
k>0

(
n
k

)(
Y
(

∂

∂Y
+ eX − 1

))k (
∂

∂Y
+ eX

)
Gn−k

Now (
∂

∂X
− ∂

∂α

)
Gk(X,α)

=
∑
�>0

(
k
�

)(
(1 − e−α)

(
∂

∂α
+ eX+α − eα

))k (
∂

∂α
+ eX+α

)
Gk−�(X,α)

where a eα has been commuted through. Then,

RGk(X,α) =
∑
�>0

(
k
�

)
(T − TS−1 − S)�TGk−�. (11)
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Since Gk(0,α) = 0 for k > 0,

Gk(X,α) =
∫ X

0

∑
�>0

(
k
�

)
(T − TS−1 − S)�TGk−�(t,X + α − t)dt. (12)

From this

Gk(X,α) =
∑
a,b,c

Ck
a,b,cS

aTbXc1,

for some constants Ck
a,b,c.

The next lemma evaluates the terms in the summation of Lemma 2, thus yielding a
generating function for Gk(X,Y ) which resembles that for the Bell numbers.

Lemma 3.

(T�1) |α=0 exp(eX − 1) =
∑
n≥0

Bn+�

Xn

n!
.

Proof. It is easy to see by induction on � that T�1 is a polynomial in eX+α . Thus,

T�1 =
(

∂

∂X
+ eX+α

)�

1.

Hence

T�1

∣∣∣∣∣α=0 =
(

∂

∂X
+ eX

)�

1 .

From this, it is easy to see that

T�1
∣∣∣∣α=0 exp(eX − 1) = ∂�

∂X�
exp(eX − 1) .

And the result follows.

Lemmas 2 and 3 readily yield the following expression for the moments of the
dimension exponent as a shifted Bell polynomial.

Lemma 4. For each k ≥ 0 and n ≥ 0

M(dk ; n) =
∑
a,b,c

Ck
a,b,cn(n − 1) · · · (n − c + 1)Bn+b−c.

Theorem 3 needs some further constraints on the degrees of terms in this polynomial.
The following lemma yields the claimed bounds for the degrees.

Lemma 5. In the notation above, Ck
a,b,c = 0 unless all of the following hold:

1. c ≤ b.
2. c < b unless a = 0.
3. b ≤ 2k.
4. 3c − b ≤ k.
5. 3c − b ≤ k − 2 if a �= 0.
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Proof. Let Ha,b,c(X,α) = SaTbXc1. Using Equation 12, write Ck
a,b,c in terms of the C�

a,b,c
for � < k. To do this requires understanding∫ X

0
Ha,b,c(t,X + α − t)dt.

As a first claim: if a = 0, then the above is simply 1
c+1H0,b,c+1. This is seen easily from the

fact that R commutes with T. For a �= 0, it is easy to see that this is a linear combination
of the Ha,b,c′ over c′ ≤ c, and of H0,b′,0 over b′ ≤ b.
The desired properties can now be proved by induction on k. It is clear that they all hold

for k = 0. For larger k, assume that they hold for all k − �, and use Equation 12 to prove
them for k.
By the inductive hypothesis, the TGk−� are linear combinations of Ha,b,c with c < b.

Thus, (T − TS−1 − S)�TGk−� is a linear combination of Ha,b,c’s with b > c. Thus, by
Equation 12, Gk is a linear combination of Ha,b,c’s with c ≤ b and a = 0 or with c < b.
This proves properties 1 and 2.
By the inductive hypothesis, theGk−� are linear combinations ofHa,b,c with b ≤ 2(k−�).

Thus, T − TS−1 − S�TGk−� is a linear combination of Ha,b,c’s with b ≤ 2k + 1 − � ≤ 2k.
Thus, by Equation 12, Gk is a linear combination of Ha,b,c’s with b ≤ 2k. This proves
property 3.
Finally, consider the contribution toGk coming from each of theGk−� terms. For � = 1,

Gk−� is a linear combination of Ha,b,c’s with 3c − b ≤ k − 3 if a �= 0, 3c − b ≤ k − 1 if
a = 0. Thus, TGk−� is a linear combination of Ha,b,c’s with 3c − b ≤ k − 3 if a �= 0, and
3c− b ≤ k − 2 otherwise. Thus, (T −TS−1 − S)�TGk−� is a linear combination ofHa,b,c’s
with 3c − b ≤ k − 3 if a = 0, and 3c − b ≤ k − 2 otherwise. Thus, the contribution from
these terms to Gk is a linear combination of Ha,b,c’s with 3c − b ≤ k and 3c − b ≤ k − 2 if
a �= 0. For the terms with � > 1,Gk−� is a linear combination ofHa,b,c’s with 3c−b ≤ k−2
and 3c − b ≤ k − 4 when a �= 0. Thus, TGk−� is a linear combination of Ha,b,c’s with
3c − b ≤ k − 3, as is (T − TS−1 − S)�TGk−�. Thus, the contribution of these terms to Gk
is a linear combination ofHa,b,c’s with 3c− b ≤ k and 3c− b ≤ k − 3 if a �= 0. This proves
properties 4 and 5.
This completes the induction and proves the Lemma.

From this Lemma, it is easy to see that

M(dk ; n) =
2k∑

�=0
Bn+�Pk,�(n)

for some polynomials Pk,�(n) with deg(Pk,�) ≤ min(2k − �, k/2 + �/2).

Asymptotic analysis

This section presents some asymptotic analysis of the Bell numbers and ratios of Bell
numbers. These results yield Theorems 4 and 6. Similar analysis can be found in [13].

Proposition 2. Let αn be the solution to

ueu = n + 1
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and let

ζn,k := eαn
(
1 + 1

αn

)
+ k

α2
n

= (n + 1)(αn + 1) + k
α2
n

.

Then

Bn+k = (n + k)!√
2πe

ζ
− 1

2
n,k exp(eαn − (n + k + 1) log(αn))(1 + O(e−αn)).

More precisely, for T ≥ 0

Bn+k = (n + k)!√
2πe

ζ
− 1

2
n,k exp(eαn − (n + k + 1) log(αn))

×
(
1 +

T∑
m=1

Rm,k(αn)
1
nm

+ O
((αn

n

)T+1
))

.

where Rm,k are rational functions. In particular

R1,k(u) =
(
(−12k2+24k−2)+(−24k2+24k+18)u+(−12k2−12k+20)u2+(−12k+3)u3−2u4

)
24(u+1)3

R2,k(u) = (1, 44k4−384k3+624k2−1, 152k+100) + (576k4−576k3+ 816k2− 3, 264k− 648)u
1152(u + 1)6

+ (864k4 + 1, 056k3 + 432k2 − 6384k − 1, 292)u2

1, 152(u + 1)6

+ (5, 76k4 + 2, 784k3 + 2, 280k2 − 7, 440k − 2, 604)u3

1, 152(u + 1)6

+ (144k4+2, 016k3+3, 888k2−3, 552k−2, 988)u4+(480k3+ 2, 328k2+ 72k−1, 800)u5

1, 152(u + 1)6

+ (480k2 + 600k − 551)u6 + (144k − 60)u7 + 4u8

1, 152(u + 1)6

Proof. The proof is very similar to the traditional saddle point method for approximat-
ing Bn. The idea is to evaluate at the saddle point for Bn rather than for Bn+k . We follow
the proof in Chapter 6 of [61].
By Cauchy’s formula,

2π ie
(n + k)!

Bn+k =
∫
C
exp(ez)z−n−k−1dz

where C encircles the origin once in the positive direction. Deform the path to a verti-
cal line u − i∞ to u + i∞ by taking a large segment of this line and a large semi-circle
going around the origin. As the radius, say R, is taken to infinity the factor z−n−k−1 =
O(R−n−k−1) and exp(ez) is bounded in the half-plane.
Choose u = αn and then

2πe
(n + k)!

Bn+k = exp(eαn − (n + k + 1) log(αn))

∫ ∞

−∞
exp(ψn,k(y))dy

where

ψn,k(y) = eαn
(

(eiy − 1) − n + 1 + k
eαn

log
(
1 + iyα−1

n
))

.

The real part has maxima around y = 2πm for each integer m, but using log
(1+ y2α−2

n ) > 1
2y

2α−2
n for π < y < αn and 1+ y2α−2

n > 2yα−1
n for y > αn as in [61] gives∫ ∞

−∞
exp(ψn,k(y))dy =

∫ π

−π

exp(ψn,k(y))dy + O
(
exp

(
−eαn

αn

))
.
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Next, note that

ψn,k(y) = − iky
αn

−
(
1 + n + 1 + k

(n + 1)αn

)
n + 1
αn

y2

2

+
∑
m>2

(
1
m!

+ (−1)m
n + 1 + k

mαm−1
n (n + 1)

)
n + 1
αn

(iy)m

where n+1+k
eαn = αn + ke−αn and eαn = n+1

αn
were used. Hence,

ψn,k

(
y√
ζn,k

)
= − ik

αn
√

ζn,k
− y2

2

+
∑
m>2

(
1
m!

+ (−1)m
n + 1 + k

mαm−1
n (n + 1)

)
n + 1
αn

(
iy√
ζn,k

)m

Making the change of variables and extending the sum of interval of integration gives∫ ∞

−∞
exp(ψn,k(y))dy + O

(
exp

(
−eαn

αn

))
=
∫ ∞

−∞
e−

y2
2 exp

(
− ik

αn
√

ζn,k
+
∑
m>2

frac1m! + (−1)m
n + 1 + k

αm−1
n (n + 1)

n + 1
αn

iy√
ζn,k

m
)
dy.

Hence, Taylor expanding around y = 0 and using

∫
R

yke−
y2
2 dy =

⎧⎪⎪⎨⎪⎪⎩
0 k ≡ 1 (mod2)
√
2π

k!

2
k
2
(
k
2

)
!

k ≡ 0 (mod 2)

gives the desired result.
For more details, see [61].

Proposition 2 yields

Bn+k
Bn

= (n + k)!
n!

α−k
n

(
1 − kαn

(n + 1)(αn + 1)

)− 1
2
(1 + O(e−αn)). (13)

Direct application of this result gives the results in Theorems 4 and 6.

Proofs of Theorems 1 and 2
This section gives the proofs of Theorems 2 and 1. Theorem 2 implies Theorem 5. A pair
of lemmas which will be useful in the proof of Theorem 2:

Lemma 6. For Bn, the Bell numbers, define

gr,d,k,s(n) := nd
n−k∑
i=0

(
n − k
i

)
Bi+srn−k−i

where r, d, k, s are non-negative integers. Then, gr,d,k,s(n) is a shifted Bell polynomial of
lower shift index −k and upper shift index r + s − k.

Proof. It clearly suffices to prove that gr,0,k,s(n) is a shifted Bell polynomial. Since
gr,0,0,s(n − k) = gr,0,k,s(n), it suffices to prove that gr,s(n) := gr,0,0,s(n) is a shifted Bell
polynomial.
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For this, consider the exponential generating function
∞∑
n=0

gr,s(n)
xn

n!
=

∞∑
n=0

n∑
i=0

(
n
i

)
Bi+srn−i xn

n!
=

∞∑
a=0

∞∑
b=0

Ba+srb
xa+b

a! b!

= ∂s

∂xs

( ∞∑
n=0

Bn
xn

n!

)
erx = erx

∂s

∂xs
(
ee

x−1
)
.

This is easily seen to be equal to eex−1 times a polynomial in ex of degree s + r.
Since g0,s(n) = Bn+s, the generating function

∑∞
n=0 Bn+s

xn
n! equals e

ex−1 times a poly-
nomial of exact degree s. From this, for all s, r the space of all polynomials in ex of degree
at most s + r times eex−1 is spanned by the set of generating functions

∑∞
n=0 Bn+m

xn
n! as

m runs over all integers 0, 1, . . . , s + r. Since the generating function for gr,s(n) lies in this
span,

∞∑
n=0

gr,s(n)
xn

n!
=

s+r∑
m=0

βs,r,m

∞∑
n=0

Bn+m
xn

n!

for some rational numbers βs,r,m. It follows that for all n,

gr,s(n) =
s+r∑
m=0

βs,r,mBn+m.

For a sequence, r = {r0, r1, · · · , rk}, of rational numbers and a polynomial Q ∈
Q[y1, · · · , yk ,m] define

M(k,Q, r, n, x) :=
∑

1≤x1<x2<...<xk≤n
Q(x1, . . . , xk , n)

k∏
i=0

(x + ri)xi+1−xi−1, (14)

where x0 = 0, xk+1 = n + 1.

Lemma 7. Fix k, let Q ∈ Z[y1, · · · , yk ,m] and r = {r0, r1, · · · , rk} be a sequence of ratio-
nal numbers. As defined above, M(k,Q, r, n, x) is a rational linear combination of terms of
the form

F(n)G(x)(x + ri)n−k ,

where F ∈ Q[n] ,G ∈ Q[x] are polynomials.

Proof. The proof is by induction on k. If k = 0 then definitionally, M(k,Q, r, n, x) =
Q(n)(x + r0)n, providing a base case for our result. Assume that the lemma holds for k
one smaller. For this, fix the values of x1, . . . , xk−1 in the sum and consider the resulting
sum over xk . Then

M(k,Q, r, n, x)

=
∑

1≤x1<x2<...<xk−1≤n−1

k−2∏
i=0

(x + ri)xi+1−xi−1

×
∑

xk−1<xk≤n
Q(x1, . . . , xk , n)(x + rk−1)

xk−xk−1−1(x + rk)n−xk .

Consider the inner sum over xk :
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If rk−1 = rk , then the product of the last two terms is always (x + rk)n−xk−1−2, and thus
the sum is some polynomial in x1, . . . , xk−1, n times (x+ rk)n−xk−1−2. The remaining sum
over x1, . . . , xk−1 is exactly of the form M(k − 1,Q′, r′, n − 1, x), for some polynomial Q′,
and thus, by the inductive hypothesis, of the correct form.
If rk−1 �= rk , the sum is over pairs of non-negative integers a = xk − xk−1 − 1 and

b = n − xk − 1 summing to n− xk−1 − 2 of some polynomial,Q′ in a and n and the other
xi times (x + rk−1)

a(x + rk)b. Letting y = (x + rk−1) and z = (x + rk), this is a sum of
Q′(xi, n, a)yazb. Let d be the a degree of Q′. Multiplying this sum by (y − z)d+1, yields,
by standard results, a polynomial in y and z of degree n − xk−1 − 2 + (d + 1) in which
all terms have either y exponent or z exponent at least n − xk−1 − 1. Thus, this inner
sum over xk when multiplied by the non-zero constant (rk−1 − rk)d+1 yields the sum of
a polynomial in x, n, x1, . . . , xk−1 times (x + rk−1)

n−xk−1−2 plus another such polynomial
times (x + rk−1)

n−xk−1−2. Thus, M(k,Q, r, n, x) can be written as a linear combination of
terms of the form G(x)M(k − 1,Q′, r′, n, x). The inductive hypothesis is now enough to
complete the proof.

Turn next to the proof of Theorem 2. Proof of Theorem 2
It suffices to prove this Theorem for simple statistics. Thus, it suffices to prove that for

any pattern P and polynomial Q that

M(fP,Q; n) =
∑
λ∈�n

fP,Q(λ) =
∑
λ∈�n

∑
s∈Pλ

Q(s)

is given by a shifted Bell polynomial in n. As a first step, interchange the order of
summation over s and λ above. Hence,

M(fP,Q; n) =
∑
s∈[n]k

Q(s)
∑

λ∈�(n)
s∈Pλ

1.

To deal with the sum over λ above, first consider only the blocks of λ that contain some
element of s. Equivalently, let λ′ be obtained from λ by replacing all of the blocks of λ that
are disjoint from s by their union. To clarify this notation, let �′(n) denote the set of all
set partitions of [n] with at most one marked block. For λ′ ∈ �′(n), say that s ∈P λ′ if s
in an occurrence of P in λ′ as a regular set partition so that additionally the non-marked
blocks of λ′ are exactly the blocks of λ′ that contain some element of s. For λ′ ∈ �′(n)

and λ ∈ �(n), say that λ is a refinement of λ′ if the unmarked blocks in λ′ are all parts
in λ, or equivalently, if λ can be obtained from λ′ by further partitioning the marked
block. Denote λ being a refinement of λ′ as λ � λ′. Thus, in the previous computation of
M(fP,Q; n), letting λ′ be the marked partition obtained by replacing the blocks in λ disjoint
from s by their union:

M(fP,Q; n) =
∑
s∈[n]k

Q(s)
∑

λ′∈�′(n)
s∈Pλ′

∑
λ∈�(n)
λ�λ′

1.

Note that the λ in the final sum above correspond exactly to the set partitions of the
marked block of λ′. For λ′ ∈ �′(n), let |λ′| be the size of the marked block of λ′. Thus,

M(fP,Q; n) =
∑
s∈[n]k

Q(s)
∑

λ′∈�′(n)
s∈Pλ′

B|λ′|.
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Remark 13. This is valid even when the marked block is empty.

Dealing directly with the Bell numbers above will prove challenging, so instead compute
the generating function

M(P,Q, n, x) :=
∑
s∈[n]k

Q(s)
∑

λ′∈�′(n)
s∈Pλ′

x|λ′|.

After computing this, extract the coefficients of M(P,Q, n, x) and multiply them by the
appropriate Bell numbers.
To compute M(P,Q, n, x), begin by computing the value of the inner sum in terms of

s = (x1 < x2 < . . . < xk) that preserves the consecutivity relations of P (namely those in
C(P)). Denote the equivalence classes in P by 1, 2, . . . , �. Let zi be a representative of this
ith equivalence class. Then, an element λ′ ∈ �′(n) so that s ∈P λ′ can be thought of as
a set partition of [n] into labeled equivalence classes 0, 1, . . . , �, where the 0th class is the
marked block, and the ith class is the block containing xzi . Thus, think of the set of such
λ′ as the set of maps g :[n]→ {0, 1, . . . , �} so that:

1. g(xj) = i if j is in the ith equivalence class
2. g(x) �= i if x < xj, j ∈ F(P) and j is in the ith equivalence class
3. g(x) �= i if x > xj, j ∈ L(P) and j is in the ith equivalence class
4. g(x) �= i if xj < x < xj′ , (j, j′) ∈ A(P) and j, j′ are in the ith equivalence class

It is possible that no such g will exist if one of the latter three properties must be violated
by some x = xh. If this is the case, this is a property of the pattern P, and not the occur-
rence s, and thus,M(fP,Q; n) = 0 for all n. Otherwise, in order to specify g, assign the given
values to g(xi) and each other g(x) may be independently assigned values from the set of
possibilities that does not violate any of the other properties. It should be noted that 0 is
always in this set, and that furthermore, this set depends only which of the xi our given x
is between. Thus, there are some sets S0, S1, . . . , Sk ⊆ {0, 1, . . . , �}, depending only on s,
so that g is determined by picking functions

{1, . . . , x1 − 1} → S0, {x1 + 1, . . . , x2 − 1} → S1, . . . , {xk + 1, . . . , n} → Sk .

Thus, the sum over such λ′ of x|λ′| is easily seen to be

(x + r0)x1−1(x + ri)x2−x1−1 · · · (x + rk−1)
xk−xk−1−1(x + rk)n−xk ,

where ri = |Si| − 1 (recall |Si| > 0, because 0 ∈ Si). For such a sequence, r of rational
numbers define

M(k,Q, r, n, x,C(P)) :=
∑

1≤x1<x2<...<xk≤n
|xi−xj|=1for (i,j)∈C(P)

Q(x1, . . . , xk , n)

k∏
i=0

(x + ri)xi+1−xi−1, (15)

where, as in Lemma 7, using the notation x0 = 0, xk+1 = n + 1.
Note that the sum is empty if C(P) contains nonconsecutive elements. We will hence-

forth assume that this is not the case. We call j a follower if either (j − 1, j) or (j, j − 1)
are in C(P). Clearly, the values of all xi are determined only by those xi where i is not
a follower. Furthermore, Q is a polynomial in these values and n. If j is the index of the
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ith non-follower then let yi = xj − j + i. Now, sequences of xi satisfying the necessary
conditions correspond exactly to those sequences with 1 ≤ y1 < y2 < · · · < yk−f ≤ n− f
where f is the total number of followers. Thus,

M(k,Q, r, n, x,C(P)) =
∑

1≤y1<y2<...<yk−f ≤n−f
Q̃(y1, . . . , yk , n)

k∏
i=0

(x + r̃i)yi+1−yi−1

= M(k − f , Q̃, r̃, n − f , x).

where the r̃i are modified versions of the ri to account for the change from {xj} to {yi}. In
particular, if xj is the (i + 1)st non-follower, then r̃i = rj−1.
By Lemma 7, M(k − f , Q̃, r̃, n − f , x) is a linear combination of terms of the form

F(n)G(x)(x + ri)n−k for polynomials F ∈ Q[n] and G ∈ Q[x].
Thus, M(fP,Q; n) can be written as a linear combination of terms of the form gr,d,�,s(n)

where � is the number of equivalence classes in P and r, d, s are non-negative integers.
Therefore, by Lemma 6M(fP,Q; n) is a shifted Bell polynomial.
The bound for the upper shift index follows from the fact that M(fP,Q; n) = O(nNBn)

and by (13) each term nαBn+β is of an asymptotically distinct size. To complete the proof
of the result it is sufficient to bound the lower shift index of the Bell polynomial. By (15) it
is clear the largest power of x in each term is (n − k). Thus, from Lemma 6, the resulting
shift Bell polynomials can be written with minimum lower shift index−k. This completes
the proof.
Next turn to the proof of Theorem 1. To this end, introduce some notation.

Definition 3. Given three patterns P1,P2,P3, of lengths k1, k2, k3, say that a merge of P1
and P2 onto P3 is a pair of strictly increasing functions m1 :[k1]→[ k3], m2 :[k2]→[k3] so
that

1. m1([ k1] ) ∪ m2([ k2] ) =[k3]
2. m1(i) ∼P3 m1(j) if and only if i ∼P1 j, andm2(i) ∼P3 m2(j) if and only if i ∼P2 j
3. i ∈ F(P3) if and only if there exists either a j ∈ F(P1) so that i = m1(j) or a

j ∈ F(P2) so that i = m2(j)
4. i ∈ L(P3) if and only if there exists either a j ∈ L(P1) so that i = m1(j) or a

j ∈ L(P2) so that i = m2(j)
5. (i, i′) ∈ A(P3) if and only if there exists either a (j, j′) ∈ A(P1) so that i = m1(j) and

i′ = m1(j′) or a (j, j′) ∈ A(P2) so that i = m2(j) and i′ = m2(j′)
6. (i, i′) ∈ C(P3) if and only if there exists either a (j, j′) ∈ C(P1) so that i = m1(j) and

i′ = m1(j′) or a (j, j′) ∈ C(P2) so that i = m2(j) and i′ = m2(j′)

Such a merge is denoted as m1,m2 : P1,P2 → P3.

Note that the last four properties above imply that given P1 and P2, a merge (including a
pattern P3) is uniquely defined by mapsm1,m2 and an equivalence relation ∼P3 satisfying
(1) and (2) above.

Lemma 8. Let P1 and P2 be patterns. For any λ there is a one-to-one correspondence:{
(s1, s2) : s1 ∈P1 λ, s2 ∈P2 λ

}↔ {
P3, s3 ∈P3 λ, andm1,m2 : P1,P2 → P3

}
. (16)
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Moreover, under this correspondence

Qm1,m2,Q1,Q2(s3) :=Q1(zm1(1), zm1(2), . . . , zm1(k1), n)Q2(zm2(1), zm2(2), . . . , zm2(k2), n)

= Q1(s1)Q2(s2). (17)

Proof. Begin by demonstrating the bijection defined by Eq. 16. On the one hand, given
s3 ∈P3 λ given by z1 < z2 < . . . < zk3 and m1,m2 : P1,P2 → P3, define s1 and s2 by the
sequences zm1(1) < zm1(2) < . . . < zm1(k1) and zm2(1) < zm2(2) < . . . < zm2(k2). It is easy
to verify that these are occurrences of the patterns P1 and P2 and furthermore that Eq. 17
holds for this mapping.
This mapping has a unique inverse: Given s1 and s2, note that s3 must equal the union

s1 ∪ s2. Furthermore, the maps ma, for a = 1, 2, must be given by the unique function so
that ma(i) = j if and only if the ith smallest element of sa equals the jth smallest element
of s3. Note that the union of these images must be all of [ k3]. In order for s3 to be an
occurrence of P3 the equivalence relation∼P3 must be that i ∼P3 j if and only if the ith and
jth elements of s3 are equivalent under λ. Note that since S1 and S2 were occurrences of P1
and P2, that this must satisfy condition (2) for a merge. The rest of the data associated to
P3 (namely F(P3),L(P3), A(P3), and C(P3)) is now uniquely determined bym1,m2,P1,P2
and the fact that P3 is a merge of P1 and P2 under these maps. To show that s3 is an
occurrence of P3 first note that by construction the equivalence relations induced by λ

and P3 agree. If i ∈ F(P3), then there is a j ∈ F(Pa) with i = ma(j) for some a, j. Since sa
is an occurrence of Pa, this means that the jth smallest element of sa in in First(λ). On the
other hand, by the construction ofma, this element is exactly zma(j) = zi. This if i ∈ F(P3),
zi ∈ First(λ). The remaining properties necessary to verify that S3 is an occurrence of P3
follow similarly. Thus, having shown that the above map has a unique inverse, the proof
of the lemma is complete.

Recall, the number of singleton blocks is denoted X1 and it is a simple statistic. To
illustrate this lemma return to the example of X2

1 discussed prior to the lemma. Let P1 =
P2 be the pattern of length 1 with A(P1) = φ, F(P1) = L(P1) = 1. Then there are five
possible merges of P1 and P2 into some pattern P3. The first choice of P3 is P1 itself. In
which case m1(1) = m2(1) = 1. The latter choices of P3 is the pattern of length 2 with
F(P3) = L(P3) = {1, 2},A(P3) = ∅. The equivalence relation on P3 could be either the
trivial one or the one that relates 1 and 2 (though in the latter case the pattern P3 will
never have any occurrences in any set partition). In either of these cases, there is a merge
withm1(1) = 1 andm2(1) = 2 and a second merge withm1(1) = 2 andm2(1) = 1. As a
result,

M(X2
1 ; n) =

∑
λ∈�(n)

X1(λ)2 =
∑

λ∈�(n)

⎛⎜⎜⎜⎜⎝
∑
x1

x1∈First(λ)
x1∈Last(λ)

1

⎞⎟⎟⎟⎟⎠
2

=
∑

λ∈�(n)

∑
x1

x1∈First(λ)
x1∈Last(λ)

∑
y1

y1∈First(λ)
y1∈Last(λ)

1 = 2
∑

λ∈�(n)

∑
x1<x2

x1,x2∈First(λ)
x1,x2∈Last(λ)

1 +
∑

λ∈�(n)

∑
x1

x1∈First(λ)
x1∈Last(λ)

1
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Proof of Theorem 1 The fact that statistics are closed under pointwise addition and
scaling follows immediately from the definition. Similarly, the desired degree bounds for
these operations also follow easily. Thus only closure and degree bounds for multiplica-
tionmust be proved. Since every statistic may be written as a linear combination of simple
statistics of no greater degree, and since statistics are closed under linear combination, it
suffices to prove this theorem for a product of two simple statistics. Thus let fi be the sim-
ple statistic defined by a pattern Pi of size ki and a polynomial Qi. It must be shown that
f1(λ)f2(λ) is given by a statistic of degree at most k1 + k2 + deg(Q1) + deg(Q2).
For any λ

f1(λ)f2(λ) =
∑

s1∈P1λ,s2∈P2λ

Q1(s1)Q2(s2).

Simplify this equation using Lemma 8, writing this as a sum over occurrences of only a
single pattern in λ.
Applying Lemma 8,

f1(λ)f2(λ) =
∑

s1∈P1λ,s2∈P2λ

Q1(s1)Q2(s2)

=
∑
P3

∑
m1,m2:P1,P2→P3

∑
s3∈P3λ

Qm1,m2,Q1,Q2(s3),

=
∑

m1,m2:P1,P2→P3

fP3,Qm1,m2,Q1,Q2
(λ).

Thus, the product of f1 and f2 is a sum of simple characters. Note that the quantity is
a polynomial of s3 which is denoted Qm1,m2,Q1,Q2(s3). Finally, each pattern P3 has size at
most k1 + k2 and each polynomial Qm1,m2,Q1,Q2 has degree at most deg(Q1) + deg(Q2).
Thus the degree of the product is at most the sum of the degrees.

More data
This section contains some data for the dimension and intertwining exponent statistics.
The moment formulae of Theorem 3 for k ≤ 22 and the moment formulae for the inter-
twining exponent for k ≤ 12 have been computed and are available at [55]. Moreover, the
values f (n, 0,B) for n ≤ 238 and f(i)(n, 0,B) for n ≤ 146 are available. These sequences
can also be found on Sloane’s Online Encyclopedia of integer sequences [62].
The remainder of this section contains a small amount of data and observations regard-

ing the distributions f (n, 0,B) and f(i)(n, 0,B) and regarding the shifted Bell polynomials
of Theorems 3 and 5.

Dimension index

A couple of easy observations: it is clear that

f (n, 0, 0) = 2n−1.

That is the number of set partitions of [ n] with dimension exponent 0 is 2n−1. Set parti-
tions of [n] that have dimension exponent 0 must have n appearing in a singleton set or it
must appear in a set with n− 1, thus the result is obtained by recursion. Additionally, the
number of set partitions of [n] with dimension exponent equal to 1 is n2n−1, that is

f (n, 0, 1) = n2n−1.
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Curiously, the numbers f (n, 0,B) are smooth (roughly they have many small prime fac-
tors), for reasonably sized B. This can be established by using the recursion of Theorem 7.
For example,

f (100, 0, 979) = 211 × 37 × 53 × 72 × 11 × 797 × 12269 × 12721

× 342966248369 × 2647544517313 × 1641377154765701

× 16100683847944858147992523687926541327031916811919

f (100, 0, 2079) = 227× 314× 57× 74× 112×132× 17× 19 ×23 × 29× 31× 24679914019

×58640283519733×194838881932339884007114639638682100019517

Note that f (100, 0, 979) has 111 digits and f (100, 0, 2079) has about 100 digits.
In the notation of Theorem 3, these are some values of the first few moments of d(λ).

P_{3,0}(n) = 0 +1n

P_{3,1}(n) = -1/3 +6n +3n^2

P_{3,2}(n) = +8/3 -45n -12n^2

P_{3,3}(n) = +18 +51n +12n^2 +1n^3

P_{3,4}(n) = -131/3 -45n -6n^2

P_{3,5}(n) = +42 +12n

P_{3,6}(n) = -8

P_{4,0}(n) = 0 +1n +3n^2

P_{4,1}(n) = -21/2 -18n -20n^2

P_{4,2}(n) = -36 +116/3n +72n^2 +6n^3

P_{4,3}(n) = -5/6 -166/3n -162n^2 -24n^3

P_{4,4}(n) = -103/3 +312n +150n^2 +16n^3 +1n^4

P_{4,5}(n) = -81/2 -812/3n -90n^2 -8n^3

P_{4,6}(n) = +409/3 +168n +24n^2

P_{4,7}(n) = -104 -32n

P_{4,8}(n) = +16

P_{5,0}(n) = 0 +1n +10n^2

P_{5,1}(n) = +1036/15 +50/3n -35n^{2} +15n^3

P_{5,2}(n) = -1373/30 +95/2n -180n^{2} -110n^3

P_{5,3}(n) = +4415/3 -1370/3n +2030/3n^{2} +300n^{3} +10n^4

P_{5,4}(n) = +47/2 -605/6n -2350/3n^{2} -390n^{3} -40n^4

P_{5,5}(n) = +1049/3 +15n +1380n^{2} +330n^{3} +20n^{4} +1n^5

P_{5,6}(n) = +4673/30 -2485/2n -2750/3n^{2} -150n^{3} -10n^4

P_{5,7}(n) = -95/3 +3005/3n +420n^{2} +40n^3

P_{5,8}(n) = -1010/3 -520n -80n^2

P_{5,9}(n) = +240 +80n

P_{5,10}(n) = -32

P_{6,0}(n) = 0 +1n +25n^{2} +15n^3

P_{6,1}(n) = +1655/6 +185/6n -309n^{2} -120n^3

P_{6,2}(n) = -661817/90 -17539/15n +1015n^{2} +495n^{3} +45n^4

P_{6,3}(n) = +149203/45 +12779/10n +1935/2n^{2} -1770n^{3} -340n^4

P_{6,4}(n) = -1118236/45 +36605/3n -3460n^{2} +10420/3n^{3}

+840n^{4} +15n^5

P_{6,5}(n) = -121658/9 +3887/2n -8385/2n^{2} -11450/3n^{3}

-765n^{4} -60n^5
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P_{6,6}(n) = -1547/9 +1133n +3485n^{2} +3960n^{3} +615n^{4}

+24n^{5} +1n^6

P_{6,7}(n) = -38697/10 +7573/5n -13695/2n^{2} -6940/3n^{3}

-225n^{4} -12n^5

P_{6,8}(n) = -12653/90 +3410n +3965n^{2} +840n^{3} +60n^4

P_{6,9}(n) = +665 -2980n -1560n^{2} -160n^3

P_{6,10}(n) = +2060/3 +1440n +240n^2

P_{6,11}(n) = -528 -192n

P_{6,12}(n) = +64

These formulae exhibit a number of properties. Here is a list of some of them.

1. Using the fact that Bn+k ≈ nkBn, each momentM(dk ; n) has a number of terms
with asymptotic of size equal to n2kBn, up to powers of log(n) (or αn). Call these
terms the leading powers of n. The leading ‘power’ of n contribution is equal to

(n − 2T)kBn+k

where T is the operator given by TBm = Bm+1. For example, the leading order n
contributions for the average is

nBn+1 − 2Bn+2

and the leading order contribution for the second moment is

n2Bn+2 − 4nBn+3 + 4Bn+4.

Structure of this sort is necessary because of the asymptotic normality of the
dimension exponent (see the forthcoming work [1]). The next remark also
concerns this sort of structure.

2. The next order n terms ofM(dk ; n) have size roughly n2k−1Bn and have the shape⎛⎝∑
j≥0

Cj(−1)j+1
(
k
j

)
nk−jTk+j−1

⎞⎠Bn

where the constants Cj are

Cj = 2j−3(17 − j)j.

3. The generating function for the polynomials P0,k(n) seems to be

∑
k≥0

P0,k(n)
Xk

k!
= exp

((
eX − 1 − X

)
n
)
.

We do not have a proof of this observation.

As in the introduction, let Sk(d; n) := 1
Bn
∑

λ∈Sn

(
d(λ) − 1

BnM(d; n)
)k

. From
Proposition 2 and the formulae for M(dk ; n) deduced from Theorem 3 and stated in



Chern et al. Research in theMathematical Sciences 2014, 1:2 Page 29 of 32
http://www.resmathsci.com/content/1/1/2

section ‘Dimension index’ and using SAGE, the asymptotic expansion of the first few Sk
are as follows:

S2(d; n) = α2
n − 7αn + 17
(αn + 1)α3

n
n3

+ −8α7
n − 29α6

n − 136α5
n − 207α4

n + 69α3
n + 407α2

n + 116αn − 80
2α4

n(αn + 1)4
n2 + O(n)

S3(d; n) = 6α4
n − 83α3

n + 435α2
n − 732αn − 881

3(αn + 1)3α4
n

n4 + O(
n3

α2
n
)

S4(d; n) = 3(
α2
n − 7αn + 17
(αn + 1)α3

n
)2n6 + O(

n5

α3
n
)

S5(d; n) = 10
3

(
α2
n − 7αn + 17
(αn + 1)α3

n
)

(
6α4

n − 83α3
n + 435α2

n − 732αn − 881
(αn + 1)3α4

n

)
n7 + O

(
n6

α4
n

)
S6(d; n) = 15

(
α2
n − 7αn + 17
(αn + 1)α3

n

)3
n9 + O

(
n8

α5
n

)

Remark 14. These asymptotics support the claim that the dimension exponent is nor-
mally distributed with mean asymptotic to n2

log(n)
and standard deviation

√
n3

log(n)2
. This

result will be established in the forthcoming work [1].

Intertwining index

Table 2 contains the distribution for of the intertwining exponent for the first few n.
In the notation of Theorem 5, these are some values of the first few moments of

i(λ) = cr2(λ).

Q_{3,0}(n) = +19/192 -29/96n +1/16n^{2} +1/8n^3

Q_{3,1}(n) = +331/192 -193/96n -17/16n^{2} +3/8n^3

Q_{3,2}(n) = -25/6 -743/96n -1/4n^{2} +3/8n^3

Q_{3,3}(n) = +775/64 +449/96n -1/16n^{2} +1/8n^3

Q_{3,4}(n) = -451/32 -619/96n -15/16n^2

Q_{3,5}(n) = +2045/192 +75/32n

Q_{3,6}(n) = -125/64

Q_{4,0}(n) = +4387/172800 +103/360n -11/32n^{2} 0n^{3} +1/16n^4

Q_{4,1}(n) = -3343/10800 +787/144n -7/16n^{2} -7/4n^{3} +1/4n^4

Table 2 A table of the distribution of the intertwining exponent f(i)(n, 0,B)

n\B 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1

1 1

2 2

3 5

4 14 1

5 42 9 1

6 132 55 14 2

7 429 286 120 35 6 1

8 1430 1365 819 364 119 35 7 1

9 4862 6188 4900 2940 1394 586 203 59 13 2

10 16796 27132 26928 20400 12576 6846 3246 1358 493 153 38 8 1

Recall i(λ) = cr2(λ).
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Q_{4,2}(n) = -25453/3456 +7777/288n -335/48n^{2} -23/8n^{3} +3/8n^4

Q_{4,3}(n) = -16681/8640 -4303/288n -49/8n^{2} -9/8n^{3} +1/4n^4

Q_{4,4}(n) = +963509/34560 +23891/480n +6n^{2} -5/8n^{3} +1/16n^4

Q_{4,5}(n) = -637751/14400 -8197/288n -53/12n^{2} -5/8n^3

Q_{4,6}(n) = +126773/3456 +1745/96n +75/32n^2

Q_{4,7}(n) = -3425/192 -125/32n

Q_{4,8}(n) = +625/256

Q_{5,0}(n) = -107993/138240 -593/69120n +569/1152n^{2}

-175/576n^{3} -5/192n^{4} +1/32n^5

Q_{5,1}(n) = -79109/27648 -67769/7680n +9859/1152n^{2}

+995/576n^{3} -115/64n^{4} +5/32n^5

Q_{5,2}(n) = +5436923/138240 -1228273/11520n +5925/128n^{2}

+815/96n^{3} -925/192n^{4} +5/16n^5

Q_{5,3}(n) = -29849/512 -92287/6912n +1375/16n^{2} -65/32n^{3}

-415/96n^{4} +5/16n^5

Q_{5,4}(n) = +1825783/27648 -2270759/13824n -6497/576n^{2}

+865/288n^{3} -105/64n^{4} +5/32n^5

Q_{5,5}(n) = -1092827/138240 +9971653/69120n +21119/288n^{2}

+725/96n^{3} -145/192n^{4} +1/32n^5

Q_{5,6}(n) = -14859283/138240 -6747031/34560n -44905/1152n^{2}

-1145/576n^{3} -25/64n^4

Q_{5,7}(n) = +188749/1536 +656965/6912n +7225/384n^{2} +125/64n^3

Q_{5,8}(n) = -2168275/27648 -61625/1536n -625/128n^2

Q_{5,9}(n) = +258125/9216 +3125/512n

Q_{5,10}(n) = -3125/1024

We conjecture that Qj(n) = 0 for all j < 0.
The formulae stated previously for Sk(i; n) := 1

Bn
∑

λ∈�(n)(i(λ)−M(i; n)/Bn)k with (13)
give

S2(i; n) = 3α2
n − 22αn + 56
9α3

n(αn + 1)
n3

+ −16α7
n − 52α6

n − 204α5
n − 155α4

n − 126α3
n − 12α2

n + 230αn + 175
8α4

n(αn + 1)4
n2 + O(n)

S3(i; n) = (αn − 5)(4α3
n − 31α2

n + 100αn + 99)
8α4

n(αn + 1)3
n4 + O

(
n3

α3
n

)
S4(i; n) = 3(

3α2
n − 22αn + 56)2

9α3
n(αn + 1)

)2n6 + O
(
n5

α3
n

)

S5(i; n) = 5
(αn − 5)(3α2

n − 22αn + 56)(4α3
n − 31α2

n + 100αn + 99)
36α7

n(αn + 1)4
n7 + On6

S6(i; n) = 15
(
3α2

n − 22αn + 56)2

9α3
n(αn + 1)

3)
n9 + O(n8)
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