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Abstract Quenched thermodynamic states of an amorphous ferromagnet are studied. The
magnet is a countable collection of point particles chaotically distributed over R

d , d ≥ 2. Each
particle bears a real-valued spin with symmetric a priori distribution; the spin-spin interaction
is pair-wise and attractive. Two spins are supposed to interact if they are neighbors in the
graph defined by a homogeneous Poisson point process. For this model, we prove that with
probability one: (a) quenched thermodynamic states exist; (b) they are multiple if the intensity
of the underlying point process and the inverse temperature are big enough; (c) there exist
multiple quenched thermodynamic states which depend on the realizations of the underlying
point process in a measurable way.
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1 Introduction

1.1 Setup

In this paper, we study thermodynamic states of the following system. A countable collection
of ‘particles’ is distributed over R

d , d ≥ 2, in such a way that every bounded � ⊂ R
d

contains only finite number of them. Each ‘particle’ represents a cluster of negligible size of
magnetically active physical particles. In our model, this amounts to assuming that a ‘particle’
is characterized by its location x ∈ R

d and spin σx ∈ R. The locations of ‘particles’ constitute
a locally finite set (configuration) γ ⊂ R

d , and the spins take real values. We also assume
that each σx is characterized by one and the same symmetric a priori distribution χ on R. The
interaction is supposed to be pair-wise and attractive. For the ‘particles’ located at x and y,
the interaction energy is φ(|x − y|)σxσy , with φ(r) ≥ φ∗ > 0 for r ∈ [0, r∗], and φ(r) = 0
for r > r∗. If γ were a crystalline lattice, then the model would be a standard lattice system of
‘unbounded spins’. The study of Gibbs states of such spin systems goes back to the seminal
paper [29], further continued in [6,37,38]. In [28], a similar model living on a more general
discrete metric space was studied. The next step was made in [26] where the underlying
set was a countable graph with globally unbounded vertex degrees. In that paper, a class of
graphs was introduced in which vertices of large degree are sparse—a property formulated
in [26] as a weighted summability of the vertex degrees. For such graphs, tempered Gibbs
states of unbounded spin systems were constructed and studied. A natural continuation of
those works would be to pass to random graphs, in which this kind of summability holds
for almost all realizations. In the present paper we do this step by letting the underlying set
γ ⊂ R

d be random, obeying the Poisson law with homogeneous density λ > 0. The graph
structure on γ is then defined by the spin-spin interaction: x, y ∈ γ are adjacent (neighbors)
if φ(|x − y|) > 0. We call this model the amorphous ferromagnet, cf. [34, Sect. 11].

In view of the mentioned randomness, there can be two types of thermodynamic state
of our model. In the first case, the randomness is taken into account already at the level of
local states defined on the space of (marked) configurations γ̂ = {(x, σx ) : x ∈ γ }. The
global thermodynamic states constructed in this way are then annealed states; they describe
the thermal equilibrium of the whole system. The second approach, which we follow in this
paper, consists in constructing thermodynamic states of the spin system alone for fixed typical
configurations γ . These are quenched states, cf. [8]. The global observables characterizing
such states ought to be self-averaging – taking the same value for all typical (i.e., for almost
all) configurations γ . Note that studying quenched states is a more difficult problem, as
compared to that of annealed ones, since the present spatial irregularities do not allow for
applying here most of the methods effective for regular systems. In what follows, we aim at
proving:

– Existence, for almost all configurations γ , of thermodynamic states with properties suit-
able for physical applications.

– Measurability of thermodynamic states with respect to γ .
– Multiplicity of such states, for almost γ , for temperatures T < T∗, where the self-

averaging parameter T∗ > 0 may depend on the model parameters λ, φ∗, r∗, d .

There are only few publications on the mathematically rigorous theory of phase transitions
in spin systems of general type living on non-crystalline (amorphous) substances, see [12,
20–22,36] where annealed states were considered. The reason for this is presumably that
the corresponding methods, e.g., infrared estimates, are essentially based on the translation
invariance (and other symmetries) of the underlying crystals. At the same time, for Ising
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spins σx = ±1, there exist methods applicable to the corresponding models on graphs, see
[23,30]. For such models, see also [11], the main idea of proving the existence of phase
transitions is to relate the appearance of multiple phases of the spin system to the Bernoulli
bond percolation on the underlying graph. In our model, we deal with a random graph with
vertex set γ and the adjacency relation x ∼ y defined by the property |x − y| ≤ r∗. That
is, the set of edges of the graph is εγ = {{x, y} ⊂ γ : x ∼ y}, and the graph itself—known
as the Gilbert graph – is then the pair (γ, εγ ). It has various applications and is intensively
studied, see, e.g., [5,18,31,33]. The probability distribution of (γ, εγ ) is described in Sect.
2.1 below. If this graph has an infinite connected component, which is a random event with
probability dependent on λ, under certain conditions one can observe the Bernoulli bond
percolation with a nontrivial percolation threshold q∗ ∈ (0, 1). We combine the mentioned
methods and prove that the mean magnetization in our model can be positive for almost all
configurations γ , and hence the quenched Gibbs states can be multiple, if the particle density
λ and the inverse temperature β = 1/T are large enough1. Finally, let us mention that, for our
model with σx ∈ R, the problem of uniqueness of Gibbs states remains open, see Sect. 2.3
below. We also note that the method developed in this article can be used to study annealed
states of amorphous ferromagnetic substances where the spin and the particle configurations
are in thermal equilibrium.

1.2 The Overview of the Results

In the sequel, by πλ we denote the homogeneous Poisson measure with density λ > 0 – the
probability distribution of the configurations γ . In Proposition 4 and Theorem 1 below, we
show that there exists a set of configurations A1 such that: (a) πλ(A1) = 1 for all λ > 0;
(b) Gt(β|γ ) �= ∅ for all β > 0 and all γ ∈ A1. Here Gt(β|γ ) is the set of tempered Gibbs
measures of our spin system on γ at a given β. Tempered Gibbs measures are Gibbs measures
supported on the configurations with tempered growth of |σx | as |x | → +∞. Note that, for
spin models on graphs with unbounded vertex degrees and with single-spin distributions with
noncompact support, there may exist states supported on configurations of spins with rapidly
increasing |σx |, whereas for typical ferromagnetic configurations in physical substances,
most of the spins take values close to same s > 0. The proof of Theorem 1 is based on [26,
Theorem 3.1] and on the property of πλ obtained in Proposition 4. Here A1 appears as the
set of all those configurations for which the quantities in (11) are finite, and hence the graph
(γ, εγ ) belongs to the class of ‘sparse’ graphs introduced in [26].

The Ising model on γ is a particular case of our model, which corresponds to the choice
χ(dσ) = δ(σ 2 − 1)dσ . As is well-known, the set of Gibbs states of this model, GIsing

t (β|γ ),
is nonempty for all γ . Next, for

A2(β) := {γ : |Gt(β|γ )| > 1},
AIsing

2 (β) := {γ : |GIsing
t (β|γ )| > 1},

by the Wells correlation inequality [42], it follows that, cf. Proposition 5 below,

A2(β) ⊇ AIsing
2 (a2β) (1)

where a > 0 is determined by the measure χ , see (27). For the reader convenience, we
present here a complete proof of the Wells inequality, which is a refinement of that in [10,
Appendix]. By standard results on the continuum percolation driven by the Poisson random

1 From now on, the parameters r∗ and φ∗ are fixed and mostly suppressed from the notations.
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point process, see [31,33] and also [17, Corollary 3.7] and [18, Theorem 3.1], it follows that,
for πλ-almost all γ , the corresponding graph (γ, εγ ) has an infinite connected component
whenever λ > λ∗, where a non-random parameter λ∗ > 0 is determined by the parameter
r∗ and the dimension of the space d . Suppose now that each edge of this infinite connected
component is removed independently with probability 1 − q and kept with probability q . If
the graph obtained in this way still possesses an infinite connected component, then one says
that the Bernoulli bond percolation with bond probability q occurs on the infinite connected
component of (γ, εγ ). As in the previous result, it is possible to show, see Propositions 2 and
3 below, that for λ > λ∗ there exists q∗ ∈ (0, 1) such that

πλ(A3(q)) = 1, for q > q∗ and λ > λ∗, (2)

where A3(q) is the set of all those γ such that the Bernoulli bond percolation with bond
probability q occurs on the infinite connected component of (γ, εγ ). By [23, Theorem 2.1],
we know that

AIsing
2 (β) ⊇ A3(q), for β > [log(1 + q) − log(1 − q)]/2,

Then combining (1) and (2), we conclude that, for λ > λ∗, there exists β∗ ≥ [log(1 + q∗) −
log(1 − q∗)]/2 such that, for all β > a2β∗ and πλ-almost all γ , the set Gt(β|γ ) contains at
least two elements, see Theorem 2 below. In principle, we could stop here. However, in that
case one important aspect of the theory would have been omitted. This is the dependence of
our tempered Gibbs measures on γ . In mathematical theories of random systems [9], Gibbs
measures are supposed to depend on the random parameters in a measurable way. Then they
are called random Gibbs measures. In Sect. 4, we study the measurability issue by employing
marked configurations γ̂ consisting of pairs (x, σx ). In this setting, random Gibbs measures
are obtained as conditional measures on the space of marked configurations. In Theorem
3, we show that the random Gibbs measures of our model are multiple if the conditions of
Theorem 2 are satisfied.

For the sake of clarity, in this paper we restricted ourselves to the simplest model of
amorphous substances—the Gilbert graph model based on the Poisson point process. In a
similar way, one can prove the statements mentioned above if the underlying graph is as
in the random connection model, see [18,31,33] or a tempered Gibbs random field, see
[17, Corollary 3.7]. The only condition is that the graph almost surely has the summability
property as in Proposition 4, see [14] for more detail.

2 Quenched Gibbs Measures

2.1 The Underlying Graph

Let B(Rd) and Bb(R
d) stand for the set of all Borel and all bounded Borel subsets of R

d ,
respectively. The space of all configurations is defined as

� =
{
γ ⊂ R

d : |γ ∩ �| < ∞ for any � ∈ Bb(R
d)
}

, (3)

where |A| stands for the cardinality of A. The space � is equipped with the vague topology
being the weakest one in which the maps � � γ �→ ∑

x∈γ f (x) are continuous for all

continuous functions f : R
d → R with compact support, see, e.g., [3]. By B(�) we denote

the corresponding Borel σ -field. The vague topology is metrizable in such a way that the
corresponding metric space is complete and separable. By πλ we denote the homogeneous
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Poisson measure on (�, B(�)) with intensity (density) λ > 0. Note that the set of all finite
configurations �0 is a Borel subset of � such that πλ(�0) = 0. That is, πλ-almost all
configurations γ ∈ � are infinite.

Each γ can be considered as a graph with vertex set γ and adjacency relation x ∼ y
defined by the condition |x − y| ≤ r∗. Then εγ = {{x, y} ⊂ γ : x ∼ y} is its edge set. The
probability distribution of the random graph (γ, εγ ) is constructed in the following way, cf.
[17]. Let ε denote a set of pairs of distinct points, i.e., of e = {x, y}, x, y ∈ R

d , x �= y.
We say that ε is locally finite if ε� is finite for each � ∈ Bb(R

d). Here ε� := {{x, y} ∈ ε :
{x, y} ⊂ �}. Let E be the set of all locally finite ε, and F(E) be the σ -field of subsets of
E generated by the counting maps ε �→ |ε�| with all possible � ∈ Bb(R

d). Note that E
is, in fact, the set of locally finite configurations, cf. (3), over the symmetrization of the set
R

d × R
d\{(x, x) : x ∈ R

d}. Let P(E) be the set of all probability measures on (E, F(E)).
Each ς ∈ P(E) can uniquely be determined by its Laplace transform, which we introduce
in the following way. Let θ : R

d × R
d → (−1, 0] be measurable, symmetric, and local, i.e.,

θ(x, y) = 0 whenever x or y is in �c := R\� for some � ∈ Bb(R
d). By � we denote the

set of all such functions. Then for a ς ∈ P(E), its Laplace transform is defined as

Lς (θ) =
∫

E

exp

⎡
⎣ ∑

{x,y}∈ε

log(1 + θ(x, y))

⎤
⎦ ς(dε), θ ∈ �.

Now let g : R
d × R

d → [0, 1] be measurable and symmetric. For each θ ∈ �, the pointwise
product gθ is also in �. An independent g-thinning of a given ς ∈ P(E), cf. [15, Sect. 11.2],
is the measure ς g defined by the relation

Lςg (θ) = Lς (gθ). (4)

The g-thinning of ς means that each configuration ε distributed according to ς is ‘thinned’
in the sense that each {x, y} ∈ ε is removed from the edge configuration with probability
1 − g(x, y) and kept with probability g(x, y). The probability distribution of such ‘thinned’
configurations is then ς g .

Given γ ∈ �, we define ς(·|γ ) ∈ P(E) by its Laplace transform

L(θ |γ ) = exp

⎡
⎣∑

x∈γ

∑
y∈γ \x

log(1 + j (x, y)θ(x, y))

⎤
⎦ (5)

where j (x, y) = 1 for |x − y| ≤ r∗ and j (x, y) = 0 otherwise. For a measurable � :
R

d × R
d → R+ := [0,+∞), the function

� � γ �→
∑
x∈γ

∑
y∈γ \x

�(x, y) ∈ R

is measurable. Therefore, the map � � γ �→ L(θ |γ ) ∈ R is also measurable for each θ .
Thus, ς defined in (5) is a probability kernel from (�, B(�)) to (E, F(E)), cf. [17, Lemma
2.4]. The probability distribution of the graph (γ, εγ ) is now defined by the measure

ζλ(dγ, dε) = ς(dε|γ )πλ(dγ ). (6)

It may happen that ζλ-typical graphs (γ, εγ ) have only finite connected components. Given
g as in (4), by ς g(·|γ ) we denote the independent g-thinning of ς(·|γ ), and set

ζ
g
λ (dγ, dε) := ς g(dε|γ )πλ(dγ ).
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The following fact is known, see [17, Lemma 2.4 and Corollary 3.7] and especially [18,
Theorem 3.1].

Proposition 1 Let g : R
d × R

d → [0, 1] be measurable, symmetric, and translation invari-
ant. Then there exists c(d) > 0 such that, for λ satisfying the condidion

λ

∫

Rd

g(x, 0)dx > c(d), (7)

ζ
g
λ -almost all graphs (γ, ε) have infinite connected components.

Then by Proposition 1 we obtain the following fact.

Proposition 2 There exists λ∗ such that, for λ > λ∗, the graph (γ, εγ ) has an infinite
connected component for πλ-almost all γ .

We prove Proposition 2 by taking in (7) g(x, y) = j (x, y) and

λ∗ = c(d)/V (r∗), (8)

where V (r∗) is the volume of the ball {x ∈ R
d : |x | ≤ r∗}. Note that there can only be a

single infinite connected component, see [31, Theorem 6.3, page 172].
For a constant function q(x, y) ≡ q ∈ [0, 1], let us consider the independent q-thinning

of ς(·|γ ). If the corresponding random graph has an infinite connected component, then
the Bernoulli bond percolation with bond probability q occurs on the infinite connected
component of (γ, εγ ). The next fact can also be deduced from Proposition 1.

Proposition 3 Let λ∗ be as in Proposition 2 and inequality λ > λ∗ hold. Then, there exists
q∗ ∈ (0, 1) such that forπλ-almost allγ , the Bernoulli bond percolation with bond probability
q > q∗ occurs on the infinite connected component of (γ, εγ ).

Indeed, by (7) and (8) one can take

q∗ = λ∗
λ

= c(d)

λV (r∗)
.

Our next step is to prove that, for πλ-almost all γ , the graph (γ, εγ ) belongs to the class of
‘sparse’ graphs studied in [26]. For x ∈ γ , let nγ (x) be the number of neighbors of x in γ ,
i.e., nγ (x) := |{y ∈ γ : y ∼ x}|. Clearly, nγ (x) is finite for all γ ∈ �. Note, however, that

sup
x∈γ

nγ (x) = +∞, (9)

also for πλ-almost all γ . Set

wα(x) = exp(−α|x |), α > 0, x ∈ R
d . (10)

For x ∈ γ and θ > 0, we then consider, cf. Eqs. (4) and (5) in [26],

aγ (α, θ) :=
∑

{x,y}∈εγ

[wα(x) + wα(y)][nγ (x)nγ (y)]θ ,

bγ (α) :=
∑
x∈γ

wα(x), (11)
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and

A1,a = {γ ∈ � : ∀α > 0 ∀θ > 0 aγ (α, θ) < +∞}
A1,b = {γ ∈ � : ∀α > 0 bγ (α) < +∞}

A1 = A1,a ∩ A1,b.

Proposition 4 For all λ > 0, it follows that A1 ∈ B(�) and πλ(A1) = 1.

Proof For each γ , by (11) we have that bγ (α) ≤ bγ (α′) whenever α > α′. Likewise, aγ (α, θ)

is decreasing in α and increasing in θ . This yields that

A1,a =
⋂

α,θ∈Q+
{γ ∈ � : aγ (α, θ) < +∞},

A1,b =
⋂

α∈Q+
{γ ∈ � : bγ (α) < +∞},

where Q+ is the set of all positive rational numbers. Hence, it is enough to obtain the πλ-a.s.
finiteness of aγ (α, θ) and bγ (α) for fixed α ∈ Q+ and θ ∈ Q+.

By the definition of the Poisson measure πλ, for each n ∈ N and any measurable and
symmetric function f : R

d × � → R+, we have that

∫

�

⎛
⎝∑

x∈γ

f (x, γ \x)

⎞
⎠πλ(dγ ) = λ

∫

�

⎛
⎜⎝
∫

Rd

f (x, γ )dx

⎞
⎟⎠πλ(dγ ) (12)

- the Mecke identity. Then

∫

�

bγ (α)πλ(dγ ) =
∫

�

⎛
⎝∑

x∈γ

wα(x)

⎞
⎠πλ(dγ ) = λ

∫

Rd

wα(x)dx < ∞,

which yields

πλ({γ : bγ (α) + ∞}) = 0.

Next, we rewrite (11) in the form

aγ (α, θ) =
∑
x∈γ

wα(x)mγ (θ, x), mγ (θ, x) :=
∑

y:y∼x

[nγ (x)nγ (y)]θ . (13)

Set Br (x) = {y ∈ R
d : |x − y| ≤ r}, r > 0, and let I : R

d → {0, 1} be the indicator of the
ball B2r∗(0). Clearly,

max
y∈Br∗ (x)∩γ

nγ (y) ≤
∑
z∈γ

I(z − x).

Applying this in (13) we get

mγ (θ, x) ≤ [nγ (x)]θ+1 max
y:y∼x

[nγ (y)]θ ≤
⎛
⎝ ∑

y∈γ \x

I(y − x)

⎞
⎠

2θ+1

.
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By the latter and (12), as well as by the translation invariance of πλ, we then obtain from (13)

∫

�

aγ (α, θ)πλ(dγ ) ≤
∫

�

∑
x∈γ

wα(x)

⎛
⎝ ∑

y∈γ \x

I(y − x)

⎞
⎠

2θ+1

πλ(dγ )

=
∫

Rd

wα(x)

⎧⎪⎨
⎪⎩

∫

�

⎛
⎝∑

y∈γ

I(y − x)

⎞
⎠

2θ+1

πλ(dγ )

⎫⎪⎬
⎪⎭

dx

=
⎛
⎜⎝
∫

Rd

wα(x)dx

⎞
⎟⎠ ·

∫

�

⎛
⎝∑

y∈γ

I(y)

⎞
⎠

2θ+1

πλ(dγ )

= �2θ+1
(
λV (2r∗)

) ·
∫

Rd

wα(x)dx < ∞.

Here

�ϑ(�) := e−�
∞∑

k=1

kϑ�k/k!, ϑ, � > 0,

and V (2r∗) = ∫
Rd I(x)dx is the volume of the ball B2r∗(0). The latter estimate leads to the

conclusion

πλ({γ : aγ (α, θ) = +∞}) = 0,

which completes the proof.

2.2 The Gibbs Specification

As mentioned in the Introduction, the a priori distribution of the spin of a ‘particle’ is deter-
mined by a finite symmetric measure χ on R. We assume that, for some u > 2 and � > 0,
the following holds

∫

R

exp
(
�|t |u)χ(dt) < ∞. (14)

For a fixed γ , let R
γ stand for the space of all maps σ : γ → R. We equip it with the

topology of point-wise convergence and the corresponding Borel σ -field B(Rγ ). Let also
P(Rγ ) denote the set of all probability measures on (Rγ , B(Rγ )). For � ∈ B(Rd) and
γ ∈ �, we set γ� = γ ∩ � and denote by σ� the restriction of σ to γ�, i.e., σ� = (σx )x∈γ� .
For σ, σ̄ ∈ R

γ and � ∈ B(Rd), by σ� × σ̄�c we denote the element σ ′ ∈ R
γ such that

σ ′
� = σ� and σ ′

�c = σ̄�c .
The magnet that we study is characterized by a ferromagnetic spin-spin interaction, which

for fixed � ∈ Bb(R
d) and γ ∈ � is described by the following relative energy functional

− Eγ
�(σ�|σ̄�c ) =

∑
{x,y}⊂γ�

φ(|x − y|)σxσy +
∑

x∈γ�,y∈γ�c

φ(|x − y|)σx σ̄y . (15)

Here φ : R+ → R+ is a measurable and bounded function such that, φ(r) ≥ φ∗ > 0 for
r ∈ [0, r∗] and φ(r) = 0 for all r > r∗.
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For � ∈ Bb(R
d), by B�(Rγ ) we denote the smallest σ -subfield of B(Rγ ) which contains

all sets A = {σ ∈ R
γ : σ� ∈ A0}, A0 ∈ B(Rγ�), where B(Rγ�) is the corresponding Borel

σ -field. The algebra of local sets is

Bloc(R
γ ) :=

⋃

�∈Bb(Rd )

B�(Rγ ). (16)

We will use the following topology on P(Rγ ), see [16, Definition 4.2, p. 59].

Definition 1 The topology of local set convergence (L-topology for short) is the weakest
topology on P(Rγ ) that makes the evaluation maps μ �→ μ(A) continuous for all A ∈
Bloc(R

γ ).

For � ∈ Bb(R
d) and σ̄ ∈ R

γ , we define

�
γ
�(A|σ̄ ) = 1

Zγ
�(σ̄ )

∫

R
γ�

IA(σ� × σ̄�c ) exp
(−βEγ

�(σ�|σ̄�c )
)
χ�(dσ�), (17)

where IA is the indicator of A ∈ B(Rγ ), Eγ
� is as in (15), and

χ�(dσ�) :=
⊗
x∈γ�

χ(dσx ),

Zγ
�(σ̄ ) :=

∫

R|�|

exp
(−βEγ

�(σ�|σ̄�c )
)
χ�(dσ�). (18)

Thus, for each A ∈ B(Rγ ), �
γ
�(A|·) is B(Rγ )-measurable, and, for each σ̄ ∈ R

γ , �
γ
�(·|σ̄ )

is a probability measure on (Rγ , B(Rγ )). The collection of probability kernels {�γ
� : � ∈

Bb(R
d)} is called the Gibbs specification of the model we consider, see [16, Chap. 2]. It

enjoys the consistency property
∫

Rγ

�
γ
�1

(A|σ)�
γ
�2

(dσ |σ̄ ) = �
γ
�2

(A|σ̄ ),

which holds for all A ∈ B(Rγ ), σ̄ ∈ R
γ , and all �1,�2 ∈ Bb(R

d) such that �1 ⊂ �2.

Definition 2 A probability measure μ on (Rγ , B(Rγ )) is said to be a quenched Gibbs mea-
sure (for a fixed γ ∈ �) if it satisfies the Dobrushin–Lanford–Ruelle equation

μ(A) =
∫

Rγ

�
γ
�(A|σ)μ(dσ), for all A ∈ B(Rγ ).

The set of all such measures is denoted by G(β|γ ).

In modern equilibrium statistical mechanics, the notion of thermodynamic phase of a system
of bounded spins living on a fixed graph like Z

d is attributed to the extreme elements of the
set of corresponding Gibbs measures, see, e.g., [16, Chap. 7] or [40, Chap. III]. However, for
unbounded spins, not all extreme Gibbs measures may have physical meaning. It is believed
that the measures corresponding to observed thermodynamic states should be supported on
spin configurations with ‘tempered growth’ see [6,29,37,38] or a more recent development
in [2,28] and [1, Chap. 3]. In this approach, only tempered Gibbs measures are taken into
account, and hence a phase transition is related to the existence of multiple tempered Gibbs
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measures2. We take this approach and study quenched Gibbs measures introduced in Defini-
tion 2 with a priori prescribed support properties. We call them tempered Gibbs states. Thus,
for an α > 0, we define

�(α) :=
⎧⎨
⎩σ ∈ R

γ :
∑
x∈γ

|σx |2wα(x) < ∞
⎫⎬
⎭ , (19)

where the weights wα are as in (10). For each fixed γ ∈ �, �(α) is a Borel subset of R
γ and

its elements are called tempered configurations. Then

Gt(β|γ ) := {μ ∈ G(β|γ ) : μ(�(α)) = 1} (20)

is the set of tempered Gibbs states.

Theorem 1 Let the single-spin measure χ be such that (14) holds and A1 be as in Proposition
4. Then, for all γ ∈ A1 and all β > 0, the set of Gibbs states Gt(β|γ ) is nonempty. Moreover,
for each γ ∈ A1 and each positive ϑ and α, there exists a finite Cγ (ϑ, α) > 0 such that the
estimate

∫

Rγ

exp

⎛
⎝ϑ

∑
x∈γ

|σx |2wα(x)

⎞
⎠μ(dσ) ≤ Cγ (ϑ, α) (21)

holds uniformly for all μ ∈ Gt(β|γ ).

Proof The proof of all the statements of the theorem follows by Theorem 1 of [26] since
all the conditions of that theorem are satisfied in view of Proposition 4 and the assumed
properties of χ .

Let us make some comments. The existence of Gibbs measures follows from the relative
compactness of the family {�γ

�(·|σ̄ ) : � ∈ Bb(R
d)} in the L-topology, see Definition 1,

for at least some σ̄ ∈ �(α). A typical choice of σ̄ , for which the compactness is proven, is
σ̄x = s ∈ R for all x ∈ γ . Note that such σ̄ is tempered, see (19). Then the accumulation
points of the family {�γ

�(·|σ̄ ) : � ∈ Bb(R
d)} are shown to obey the Dobrushin–Lanford–

Ruelle equation and to satisfy the estimate in (21), in which the constant Cγ (ϑ, α) can be
expressed explicitly in terms of the weights as in (10) and the parameters defined in (11),
cf. Proposition 4 above. Thus, the accumulation points are tempered measures, and hence
belong to Gt(β|γ ). Let us stress again that Gt(β|γ ) is nonempty for all those γ , for which both
aγ (α, θ) and bγ (α) are finite. By similar arguments, one can show that Gt(β|γ ) is compact
in the L-topology. Finally, let us mention that u > 2 in (14) and θ in Proposition 4 should
be such that θ(u − 2) > 2. Under this condition the sufficiently fast decay of the tail of χ

compensates destabilizing effect of the property (9) of the underlying graph, see [26] for
more detail. Since Proposition 4 holds for all θ > 0, then we just assume that u > 2.

A sequence {�n}n∈N ⊂ Bb(R
d) is called cofinal if �n ⊂ �n+1, n ∈ N, and each

� ∈ Bb(R
d) is contained in a certain �n . Given σ̄ ∈ �(α), the relative compactness of the

family {�γ
�(·|σ̄ ) : � ∈ Bb(R

d)} yields that there exists a cofinal sequence {�n}n∈N such that
the sequence {�γ

�n
(·|σ̄ )}n∈N converges in the L-topology to a certain element of Gt(β|γ ).

For a > 0, by

μ±a ∈ Gt(β|γ ) (22)

2 Note that the theory of quantum stabilization and phase transitions in quantum anharmonic crystals developed
in [2,25,28] and [1, Chap. 6] with the use of tempered Gibbs measures is consistent with the corresponding
phenomena observed experimentally.
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we denote limiting elements of Gt(β|γ ) which correspond to σ̄x = ±a for all x ∈ γ . Each
such μ±a depends on the sequence {�n}n∈N along which it has been attained. Note that only
limiting Gibbs measures can approximate thermodynamic states of large finite systems, see
[16, Sect. 7.1].

Now we turn to the single-spin measure χ . If it has compact support, as was the case in
[36], then (14) clearly holds for any u and �. The most known example of such χ is

χ(dt) = [δ−1(dt) + δ+1(dt)]/2, (23)

which corresponds to an Ising magnet. Here δs is the Dirac measure concentrated at s ∈ R.
We reserve a special notation GIsing(β|γ ) for the set of all corresponding Gibbs measures. By
ν± ∈ GIsing(β|γ ), we denote the limiting Gibbs measures as in (22) with a = 1. In this case,
however, ν± are independent of the sequences {�n}n∈N along which they were attained. This
holds because, for each x and ν ∈ GIsing(β|γ ),

∫

Rγ

σxν
−(dσ) ≤

∫

Rγ

σxν(dσ) ≤
∫

Rγ

σxν
+(dσ).

That is, ν+ and ν− are the maximum and minimum elements of GIsing(β|γ ), respectively, cf.
[28, Theorem 3.8].

In the case of ‘unbounded’ spins, a natural choice of the single-spin measure is

χ(dt) = exp (−V (t)) dt,

where V : R → R is a measurable even function such that: (a) the set {t ∈ R : V (t) < +∞}
is of positive Lebesgue measure; (b) V (t) increases at infinity as |t |u+ε with some ε > 0 and
u as in (14). This includes the case where V is a polynomial of even degree at least 4 with
positive leading coefficient, cf. [26–29].

2.3 The Question of Uniqueness

Once the existence of Gibbs states has been established, the problem of their unique-
ness/nonuniqueness arises. Thus, prior to proving non-uniqueness of μ ∈ Gt(β|γ ), which
holds for πλ-almost all γ whenever β and λ are large enough, see Theorem 2 below, we
address the question of whether the same uniqueness does actually hold for some values of
these parameters. For small enough λ, all the connected components of the graph (γ, εγ ) are
finite, and hence Gt(β|γ ) is a singleton for all β. On the other hand, Gt(β|γ ) is a singleton if
and only if, for each x ∈ γ , arbitrary σ̄ ∈ �(α), and any cofinal sequence {�n}n∈N, one has

lim
n→+∞

∫

Rγ

σx�
γ
�n

(dσ |σ̄ ) = 0. (24)

This equivalence holds for any symmetric ferromagnet satisfying the bound in (21), that
can be proven by standard arguments based on the Strassen theorem, see [28] for more
detail. Actually, for models with ‘unbounded’ spins living on an infinite connected graph
with globally unbounded degree, which by (9) is the case in our situation, there are no tools3

for proving (24). For the Ising ferromagnet, the uniqueness in question can be obtained by
percolation arguments, see [19, Theorem 7.2].

3 The celebrated Dobrushin uniqueness technique is not applicable here.
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3 The Phase Transition

3.1 The Statement

Recall that by a phase transition in the considered ferromagnet we mean the fact that the set
of tempered Gibbs states Gt(β|γ ) for πλ-almost all γ contains at least two elements (if β

and λ are big enough). It is equivalent to the appearance of a nonzero magnetization in states
μ±a ∈ Gt(β|γ ), cf. [16, Chap. 19] and (24).

Let us note that there is no interaction between spins in different connected components
of the underlying graph. Then for a phase transition to occur it is necessary that the graph
(γ, εγ ) possess an infinite connected component, which holds for πλ-almost all γ whenever
λ > λ∗, see [31,33] and also [17, Corollary 3.7] and [18, Theorem 3.1]. For λ < λ∗, we have
no infinite connected component of (γ, εγ ) and thus |G(β|γ )| = 1 for all β and πλ-almost all
γ . In order to obtain a sufficient condition for a phase transition to occur, we will explore the
well-known relationship between the Bernoulli bond percolation on the fixed sample graph
(γ, εγ ), established in Propositions 2 and 3, and the existence of multiple Gibbs states in the
corresponding Ising model, established in [23]. Our goal is to prove the following statement.

Theorem 2 Let the measure χ be as in Theorem 1 and such that χ({0}) < χ(R). Assume
also that the intensity λ of the underlying Poisson point process satisfies the condition λ > λ∗,
and thus the typical graph (γ, εγ ) has an infinite connected component. Then there exists a
constant β∗ > 0 such that, for β > β∗ and πλ-almost all γ , the sets Gt(β|γ ) contain at least
two elements.

The proof of this statement is based on the following result, cf. (22).

Lemma 1 Let the conditions of Theorem 2 be satisfied. Then there exist a > 0, and β∗ > 0
such that, for πλ-almost all γ , and for all β > a2β∗, all μ+a ∈ G(β|γ ), and some o ∈ γ ,
the following estimate holds:

∫

Rγ

σoμ
+a(dσ) > 0. (25)

The proof of this lemma is given in the next subsection.
Proof of Theorem 2: Since the integral in (25) is the limit of those in (24) with σ̄x = a,

then (25) contradicts (24) and hence implies non-uniqueness, which ought to hold for β >

β∗ := a2β∗. On the other hand, by the invariance of χ and of the interaction in (15) with
respect to the transformation σ → −σ and σ̄ → −σ̄ , we have

∫

Rγ

σoμ
+a(dσ) = −

∫

Rγ

σoμ
−a(dσ).

Then (25) yields μ+a �= μ−a and hence the multiplicity in question. Note that o in (25)
belongs to the infinite connected component of (γ, εγ ), and the integral in (25) is the mean
value of the spin at this vertex in state μ+a .

3.2 Proof of Lemma 1

First, by means of the percolation arguments of [23], we prove the lemma for the Ising model.
Then we extend the proof to the general case by comparison inequalities.
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Recall that the single-spin measure of the Ising model is given in (23), GIsing(β|γ ) denotes
the set of all corresponding Gibbs measures, and ν+ ∈ GIsing(β|γ ) is the maximum Gibbs
measure as in (22) with a = 1. We are going to use the key fact proven in [23]: the Ising
model with constant intensities φ(|x − y|) = φ∗ > 0 on the edges of an infinite graph has at
least two phases if and only if the graph admits the Bernoulli bond percolation with critical
probability q∗ ∈ (0, 1) if β > [log(1+q∗)− log(1−q∗)]/2φ∗. In our case, for πλ-almost all
γ , the graph (γ, εγ ) admits this percolation and the threshold probability satisfies q∗ ≥ λ∗/λ,
see Proposition 3. Then, for some o ∈ γ , it follows that

∫

Rγ

σoν̃
+(dσ) > 0, (26)

see [23, Theorem 2.1] and also the proof of Lemma 4.2 therein. Here ν̃+ is the corresponding
Gibbs measure of the Ising model with φ(|x −y|) = φ∗ > 0. By the standard GKS inequality,
see, e.g., [23, Sect. 3.4], we have

∫

Rγ

σoν
+(dσ) ≥

∫

Rγ

σoν̃
+(dσ),

which together with (26) yields the proof in this case.
Now we turn to the general case and estimate the integral in (25) from below by the

corresponding integral with respect to the maximum Gibbs measure ν+ of the Ising model
with a rescaled interaction intensity. The proof of the lemma immediately follows from the
Wells inequality used, e.g., in [35].

Proposition 5 (Wells inequality) Let a > 0 be such that

χ
(
[a√

2,+∞)
)

≥ χ([0, a]). (27)

Then, for each x ∈ γ and each μ+a ∈ G(β|γ ), as well as for ν+ ∈ GIsing(a2β|γ ), we have
that ∫

Rγ

σxμ
+a(dσ) ≥ a

∫

Rγ

σxν
+(dσ). (28)

As the original publication [42] is hardly attainable and the proof in [10] contains numerical
inaccuracies, for the reader convenience in Appendix we give a short proof of this inequality
in the form suitable for our purposes.

4 Random Gibbs Measures

Random Gibbs measures of spin systems are supposed to depend on the random parameters
(γ in ours case) in a measurable way, see, e.g., [9, Definition 6.2.5] and [27, Definition 2.3]. At
the same time, the measures introduced in Definition 2 and (20) are defined on spaces which
themselves depend on γ , and thus one cannot speak of the corresponding measurability in
this setting. In order to settle this problem, we use some of the results of [14] where random
Gibbs measures are defined as conditional measures on spaces of marked configurations.
Here we outline the main points of this construction and prove the non-uniqueness of such
measures, see Theorem 3 below.

123



Quenched Amorphous Ferromagnet 169

For our model, the space of marked configurations is

�̂ = {γ̂ = (γ, σ ) : γ ∈ �, σ ∈ R
γ },

where � is as in (3). Thus, the elements of �̂ consist of pairs (x, σx ), and γ̂ = γ̂ ′ implies
γ = γ ′. To relate γ̂ with γ we use the canonical projection

�̂ � γ̂ �→ p̂(γ̂ ) = γ ∈ �, (29)

and equip �̂ with the following topology. Let f : R
d × R → R be a bounded continuous

function with support contained in � × R for some � ∈ Bb(R
d). The topology in question

is the weakest one which makes the maps

�̂ � γ̂ �→
∑

x∈ p̂(γ̂ )

f (x, σx ) ∈ R (30)

continuous for all possible f : R
d × R → R as above. This topology is completely and

separably metrizable, see [13, Sect. 2], and thus �̂ is a Polish space. Let B(�̂) denote the
corresponding Borel σ -field. From the definition of the topologies of � and �̂, it follows that
the projection defined in (29) is continuous, and hence, for each γ ∈ �, we have that

p̂−1({γ }) =: R
γ ∈ B(�̂).

For each fixed γ ∈ �, R
γ is a Polish space embedded into �̂, which is a Polish space as well.

By the Kuratowski theorem [39, page 21], the latter implies that the Borel σ -fields B(Rγ )

and

A(Rγ ) := {A ∈ B(�̂) : A ⊂ R
γ }

are measurably isomorphic. Thus, any probability measure μ on B(�̂) with the property
μ(Rγ ) = 1 can be redefined as a measure on B(Rγ ).

Let P(�̂) be the set of all probability measures on (�̂, B(�̂)). We equip it with the topology
defined as follows. For a fixed � ∈ Bb(R

d), let B�(�̂) be the smallest σ -subfield of B(�̂)

such that the maps as in (30) are B�(�̂)-measurable for all bounded measurable functions
f : R

d × R → R with support contained in � × R. Then we set, cf. (16),

Bloc(�̂) =
⋃

�∈Bb(Rd )

B�(�̂).

Now the L-topology on P(�̂) is defined as in Definition 1 by using Bloc(�̂) as the algebra
of local sets. A map �̂ � γ̂ �→ ϕ(γ̂ ) ∈ R is called local if it is B�(�̂)-measurable for some
� ∈ Bb(R

d). Local maps � � γ �→ ϕ(γ ) ∈ R are defined in the same way.
Let σ̄ in (17) be fixed in such a way that σx = s for some s ∈ R and all x ∈ γ . Then,

for each γ ∈ � and � ∈ Bb(R
d) and for such σ̄ , we can define a probability measure on

(�̂, B(�̂)) by setting

�̂s
�(A|γ ) = �

γ
�(A ∩ R

γ |σ̄ ), (31)

where �
γ
�(·|σ̄ ) is given in (17). By the very construction, the map � � γ �→ �̂s

�(A|γ ) ∈ R

is measurable for each A ∈ B(�̂). Thus, we can set

η̂s
�(·) :=

∫

�

�̂s
�(·|γ )πλ(dγ ), (32)
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which is an element of P(�̂), equipped with the L-topology defined above. It can be shown,
see [14, Corollary 4.2], that, for each s ∈ R, the family {η̂s

�}�∈Bb(Rd ) is relatively compact
in P(�̂) . Let η̂s be its accumulation point and {�n}n∈N be the cofinal sequence such that
η̂s

�n
→ η̂s as n → +∞. By η̂s

� we denote the projection of η̂s on �. For a bounded local

function f : � → R, f̂ := f ◦ p̂ : �̂ → R is then also local, and hence
∫

�

f dπλ =
∫

�̂

f̂ dη̂s
�n

→
∫

�̂

f̂ dη̂s =
∫

�

f dη̂s
�, n → +∞.

Thus, η̂s
� = πλ, and we can disintegrate, cf. (32), and obtain

η̂s(A) =
∫

�

ηs(A|γ )πλ(dγ ), A ∈ B(�̂), (33)

where ηs is a regular conditional measure such that ηs(A|γ ) = ηs(A ∩ R
γ |γ ) for almost

all γ . As in (31), we then redefine ηs(·|γ ) as a measure on R
γ , for which we keep the same

notation. One can prove [14] that, for almost all γ , ηs(·|γ ) ∈ Gt(β|γ ). Thus, ηs(·|γ ) is a
random Gibbs measure.

In principle, we could construct such Gibbs measures without the study performed in Sect.
2, just by showing that the family {η̂s

�}�∈Bb(Rd ) is relatively compact in P(�̂). However, this
way has the following drawbacks: (a) in contrast to those in (22), the measures ηs(·|γ ) need
not be limiting and hence cannot approximate thermodynamic states of large finite systems;
(b) there is no control on the sets of γ , as well as on their dependence on λ and s, for
which ηs(·|γ ) exist, cf. Proposition 4; (c) nothing can be said of the integrability properties
of ηs(·|γ ), cf. (21); (d) it is unclear whether we can have η+a �= η−a . These problems are
partly resolved in the statement below. Recall that each μ+a is a measure on R

γ , γ ∈ A1, see
Proposition 4, and is attained along a cofinal sequence L := {�n}n∈N, that will be indicated
as μ+a

L . For each γ ∈ A1, such measures μ+a constitute the set of accumulation points of
the family {�γ

�(·|σ̄ ) : � ∈ Bb(R
d)}. The meaning of the theorem below is that, for a full

πλ-measure subset A′
1 ⊂ A1, there exists a (measurable) selection {μ+a

L(γ )}γ∈A′
1

such that

μ+a
L(γ ) = η+a(·|γ ) for all γ ∈ A′

1.

Theorem 3 For arbitrary positive a and λ, there exists A′
1 ⊂ A1 such that: (i) πλ(A′

1) = 1;
(ii) for each γ ∈ A′

1, there exists a cofinal sequence L(γ ) such that μ+a
L(γ ) = η+a(·|γ ).

Therefore, η+a(·|γ ) �= η−a(·|γ ), and hence quenched random Gibbs measures are multiple
whenever the conditions of Theorem 2 are satisfied.

Proof From now on we fix s = +a and {�n}n∈N, and hence η̂s . Note that we cannot expect
that the assumed convergence η̂s

�n
→ η̂s does imply that �γ

�n
(·|σ̄ ) → ηs(·|γ ), which would

yield the proof.
Let {�n}n∈N ⊂ Bb(R

d) be a partition of R
d . Fix dense subsets {yn

k }k∈N ⊂ �n . As in the
proof of Lemma 2.3 in [24, p. 20], by means of this partition we introduce a linear order
of the elements of each γ ∈ �. If x, y ∈ γ belong to distinct �n , we set x < y whenever
x ∈ �n , y ∈ �m , and n < m. If both x and y lie in the same �n , let k be the smallest integer
such that |x − yn

k | �= |y − yn
k |. Then we set x < y if |x − yn

k | < |y − yn
k |. Next, we enumerate

the elements of γ in accordance with the order in such a way that x1 < x2 < · · · < xk < · · · .
This defines an enumeration on �̂, that is, the map

γ̂ �→ ε(γ̂ ) = {(x1, σx1), . . . , (xk, σxk ), . . . } (34)
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such that all (xk, σxk ) are distinct and (xk, σxk ) ∈ γ̂ . This map is measurable in the sense
that {γ̂ : xk ∈ �, σxk ∈ �} ∈ B(�̂) for each k ∈ N, � ∈ Bb(R

d) and � ∈ B(R). The latter
fact can be proven by a slight generalization of the proof of Lemma 2.3 in [24, p. 20]. Then,
for a fixed � ∈ Bb(R

d) and any k ∈ N, p ∈ (Qd)N, and q ∈ Q
N, the real and imaginary

parts of the function

γ̂ �→ exp[i(pk · xk + qkσxk )] ∈ C

are as in (30), and hence are B�(�̂)- measurable. Here i = √−1 and p · x stands for the
scalar product in R

d . Let D = {�n}n∈N ⊂ Bb(R
d) be a cofinal sequence. For ε as in (34),

� ∈ D, p ∈ (Qd)N, and q ∈ Q
N, we set

f�,p,q(γ̂ ) = exp

⎛
⎝i

|γ�|∑
j=1

[
pk j · xk j + qk j σxk j

]⎞⎠ , (35)

where γ = p̂(γ̂ ), (xk, σxk ) is the k-th element of the sequence ε(γ̂ ), and the sum runs over
the set of all those j for which xk j ∈ �. By construction, each such f is B�(�̂)-measurable.
Let F be the (countable) family of all such functions. It has the following properties: (a) is
closed under point-wise multiplication; (b) separates points of �̂. The latter means that, for
any two distinct γ̂ , γ̂ ′ ∈ �̂, one finds f ∈ F such that f (γ̂ ) �= f (γ̂ ′). By Fernique’s theorem
[41, p. 6], property (b) implies that σ(F) = B(�̂). That is, the smallest σ -field of subsets of
�̂ with respect to which each f ∈ F is measurable, is B(�̂). Combining this with property
(a) we then obtain, see [7, . 149] or the proof of Theorem 1.3.26 in [1, p. 113], that F is a
separating class for P(�̂). That is, μ, ν ∈ P(�̂) coincide if and only if

∫
f dμ =

∫
f dν, for all f ∈ F .

For a fixed triple �, p, q , by the assumed convergence η̂s
�n

→ η̂s we have that
∫

�̂

f�,p,q(γ̂ )η̂s
�n

(dγ̂ ) =
∫

�

g(n)
�,p,q(γ )πλ(dγ ) →

∫

�̂

f�,p,q(γ̂ )η̂s(dγ̂ ), (36)

as n → +∞. Here, cf. (33) and (35),

g(n)
�,p,q(γ ) :=

∫

�̂

f�,p,q(γ̂ )�̂s
�n

(dγ̂ |γ ) = exp

⎛
⎝i

|γ�|∑
j=1

pk j · xk j

⎞
⎠ h(n)

�,q(γ ),

h(n)
�,q(γ ) :=

∫

Rγ

exp

⎛
⎝i

∑
x∈γ�

qk(x)σx

⎞
⎠�

γ
�n

(dσ |σ̄ ), (37)

where k(x) is the number of x ∈ γ = p̂(γ̂ ) defined by the enumeration (34). Obviously,
|h(n)

�,q(γ )| ≤ 1 for all n ∈ N, and {h(n)
�,q}n∈N ⊂ L1(�, dπλ). By Komlós’ theorem (see,

e.g., [4,27]), there exists a subsequence {h(nl )
�,q}l∈N ⊂ {h(n)

�,q}n∈N such that, for each further

subsequence {h(nlm )

�,q }m∈N ⊂ {h(nl )
�,q}l∈N, one has

1

M

M∑
m=1

h
(nlm )

�,q (γ ) → h�,q(γ ), for πλ − a.a. γ ∈ �, (38)
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where h�,q is a certain element of L1(�, dπλ). Note that the subsequence {nl}l∈N depends on
the choice of �, q . However, by the diagonal procedure as in [27] one can pick {nlm }m∈N ⊂
{nl}l∈N such that (38) holds for all � ∈ D, and q ∈ Q

N. Then by (37) and (38) we get

∫

Rγ

exp

⎛
⎝i

∑
x∈γ�

qk(x)σx

⎞
⎠ Pγ

M (dσ |σ̄ ) → h�,q(γ ), for πλ − a.a. γ ∈ �, (39)

where �m := �nlm
and

Pγ

M (dσ |σ̄ ) := 1

M

M∑
m=1

�
γ
�m (dσ |σ̄ ), σ̄x = s = +a, x ∈ γ. (40)

Note that by Komlós’ theorem the convergence in (39) holds also for the Cesàro means of
each subsequence of {�γ

�m (·|σ̄ )}m∈N. For any γ ∈ A1, by Proposition 4 {�γ
�m (·|σ̄ )}m∈N is

relatively compact in the L-topology. Thus, one can pick L(γ ) = {�ml (γ )}l∈N ⊂ {�m}m∈N,
for which, cf. (22),

�
γ

�ml (γ )
(·|σ̄ ) → μ+a

L(γ ) ∈ Gt(β|γ ), l → +∞. (41)

Note that the dependence of the sequence L(γ ) on γ can be very irregular in view of the
so called chaotic size dependence, see [32] and the discussion in [27]. Now let A′

1 ⊂ A1 be
such that also (39) holds for all � and q . Then, for a fixed γ ∈ A′

1, by (40) and (41) there
exists the sequence {Pγ

M } such that Pγ

M → μ+a
L(τ ), which yields

h�,q(γ ) =
∫

Rγ

exp

⎛
⎝i

∑
x∈γ�

qk(x)σx

⎞
⎠μ+a

L(γ )(dσ), γ ∈ A′
1.

Since h�,q ∈ L1(�, dπλ), we can integrate and by (33), (36), (37), and (38) obtain

∫

�

exp

⎛
⎝i

|γ�|∑
j=1

pk j · xk j

⎞
⎠
⎡
⎣
∫

Rγ

exp

⎛
⎝i

∑
x∈γ�

qk(x)σx

⎞
⎠ η+a(dσ |γ )

⎤
⎦πλ(dγ )

=
∫

�

exp

⎛
⎝i

|γ�|∑
j=1

pk j · xk j

⎞
⎠
⎡
⎣
∫

Rγ

exp

⎛
⎝i

∑
x∈γ�

qk(x)σx

⎞
⎠μ+a

L(γ )(dσ)

⎤
⎦πλ(dγ ),

which holds for all � ∈ D, p ∈ (Qd)N, and q ∈ Q
N. This yields the proof since the integrand

functions constitute separating classes.
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Appendix: Proof of Proposition 5

For the general choice of χ , let �γ,+a
� be defined as in (17) with σ̄x = +a for all x ∈ γ . Each

μ+a is the limit of {�γ,+a
�n

}n∈N for some cofinal sequence {�n}n∈N. In the case of unbounded

spins, this convergence alone does not yet imply the convergence of the moments of �
γ,+a
�n

to that on the left-hand side of (28). Then we use the uniform in n bound as in (21), which
can also be proven for all �

γ,+a
� , and obtain

∫

Rγ

σx�
γ,+a
�n

(dσ) →
∫

Rγ

σxμ
+a(dσ), n → +∞.

Since the sequence {�n}n∈N is exhausting, it contains a cofinal subsequence, {�nk }k∈N, such
that also ∫

Rγ

σx�
γ,Ising
�nk

(dσ) →
∫

Rγ

σxν
+(dσ), n → +∞,

where �
γ,Ising
�nk

is the kernel (17) corresponding to the Ising single-spin measure (23), inter-

action intensities a2φ(|x − y|), and the choice σ̄x = +1 for all x ∈ γ . Thus, the validity of
(28) will follow if we prove that, for each � which contains x , the following holds

∫

Rγ

σx�
γ,+a
� (dσ) ≥ a

∫

Rγ

σx�
γ,Ising
� (dσ). (42)

Let Zγ
�(a) and Z

γ ,Ising
� (1) be the corresponding normalizing factors defined in (18). Then by

(17) we have, cf. (15),
∫

Rγ

σx�
γ,+a
� (dσ) − a

∫

Rγ

σx�
γ,Ising
� (dσ) =

(
Z�(a)Z

γ ,Ising
� (1)

)−1

×
∫

Rγ

∫

Rγ

(σx − aσ̃x ) exp

⎧⎨
⎩β

∑
{x,y}⊂γ�

φ(|y − z|)[σyσz + a2σ̃y σ̃z]

+
∑
y∈γ�

[σy + aσ̃y]Ky

⎫⎬
⎭
⊗
x∈γ�

(
χ(dσx ) ⊗ χ Ising(dσ̃x )

)
, (43)

where χ Ising is given in (23) and Ky = βa
∑

z∈γ�c :z∼y φ(|y − z|) ≥ 0. Then (42) will follow
from the positivity of the integral on the right-hand side of (43). Now we rewrite the integrand
in (43) in the variables u±

x := (σx ± aσ̃x )/
√

2, and then expand the exponent and write the
integral as the sum of the products over x ∈ γ� of ‘one-site’ integrals having the form

Cx

∫

R2

(u+
x )mx (u−

x )nx χ(dσx ) ⊗ χ Ising(dσ̃x )

= Cx

∫

R

[
(σx + a)mx (σx − a)nx + (σx − a)mx (σx + a)nx

]
χ(dσx ), Cx ≥ 0. (44)

Thus, to prove the statement we have to show that the integral on the right-hand side of (44)
is nonnegative for all values of mx , nx ∈ N0. By the assumed symmetry of χ , this integral
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vanishes if mx and nx are of different parity. If both mx and nx are even, then the positivity
is immediate. Thus, it is left to consider the case where mx = 2k + 1 and nx = 2l + 1. By
the symmetry of χ , it is enough to take k ≥ l. Thus, we have to prove the positivity of the
following integral

∫

R

[
(σ + a)2k+1(σ − a)2l+1 + (σ − a)2k+1(σ + a)2l+1

]
χ(dσ)

= 2

+∞∫

0

(σ 2 − a2)2l+1
[
(σ + a)k−l + (σ + a)k−l

]
χ(dσ).

The function ϕ(σ) := (σ + a)k−l + (σ + a)k−l is increasing on [0,+∞). The integral on
the right-hand side of the latter equality can be written in the form

+∞∫

0

(σ 2 − a2)2l+1ϕ(σ)χ(dσ) = I1(a) + I2(a) + I3(a),

I1(a) :=
a∫

0

(σ 2 − a2)2l+1ϕ(σ)χ(dσ) ≥ −a4l+2ϕ(a)χ([0, a]),

I2(a) :=
a
√

2∫

a

(σ 2 − a2)2l+1ϕ(σ)χ(dσ) ≥ 0,

I3(a) :=
+∞∫

a
√

2

(σ 2 − a2)2l+1ϕ(σ)χ(dσ) ≥ a4l+2ϕ(a
√

2)χ([a√
2,+∞)) (45)

In view of (27), the sum on the right-hand side of (45) is nonnegative, which completes the
proof.

References

1. Albeverio, S., Kondratiev, Yu., Kozitsky, Yu., Röckner, M., The Statistical Mechanics of Quantum Lattice
Systems. A Path Integral Approach. EMS Tracts in Mathematics, vol. 8. European Mathematical Society,
Zürich (2009)

2. Albeverio, S., Kondratiev, Y., Kozitsky, Y., Röckner, M.: Phase transitions and quantum effects in anhar-
monic crystals. Int. J. Modern Phys. B 26, 1250063 (2012)

3. Albeverio, S., Kondratiev, Yu.G., Röckner, M.: Analysis and geometry on configuration spaces. J. Func.
Anal. 154, 444–500 (1998)

4. Balder, E.J.: Infinite-dimensional extensions of a theorem of Komlós. Probab. Theor. Relat. Fields 81,
185–188 (1989)

5. Balister, P., Bollobás, B., Sarkar, A., Percolation, connectivity, coverage and colouring of random geo-
metric graphs. In: Handbook of Large-Scale Random Networks, Bolyai Society Mathematical Studies,
vol. 18, pp. 117–142, Springer, Berlin (2009)

6. Bellissard, J., Høegh-Krohn, R.: Compactness and the maximal Gibbs state for random Gibbs fields on a
lattice. Commun. Math. Phys. 84, 297–327 (1982)

7. Bogachev, V.I.: Measure Theory, vol. 1. Springer, Berlin (2007)
8. Ben Arous, G., Molchanov, S., Ramírez, A.F.: Transition from the annealed to the quenched asymptotics

for a random walk on random obstacles. Ann. Probab. 33, 2149–2187 (2005)
9. Bovier, A., Statistical Mechanics of Disordered Systems: A Mathematical Perspective. Cambridge Series

in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2006)

123



Quenched Amorphous Ferromagnet 175

10. Bricmont, J., Lebowitz, J.L., Pfister, Ch.E.: Periodic Gibbs states of ferromagnetic spin systems. J. Stat.
Phys. 24, 269–277 (1981)

11. Chayes, J.T., Chayes, L., Kotecký, R.: The analysis of the Widom–Rowlonson model by stochastic
geometric methods. Commun. Math. Phys. 172, 551–569 (1995)

12. Chayes, L., Shlosman, S.B., Zagrebnov, V.A.: Discontinuity of the magnetization in diluted O(n)-models.
J. Stat. Phys. 98, 537–549 (2000)

13. Conrad, F., Grothaus, M.: N/V -limit for Langevin dynamics in continuum. Rev. Math. Phys. 23, 1–51
(2011)

14. Daletskii, A., Kondratiev, Yu., Kozitsky, Yu., Pasurek, T., Gibbs states on random configurations, preprint
SFB-701, 13026, 2013, Bielefeld; arXiv: 1307.4718vl [math-ph]

15. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, vol. 2, 2nd edn. Springer,
New York (2003)

16. Georgii, H.-O.: Gibbs Measures and Phase Transitions (de Gruyter Studies in Mathematics, vol. 9.
de Gruyter, Berlin (1988)

17. Georgii, H.-O., Häggström, O.: Phase transition in continuum Potts models. Commun. Math. Phys. 181,
507–528 (1996)

18. Georgii, H.-O., Phase transition and percolation in Gibbsian particle models. In: Statistical physics and
spatial statistics (Wuppertal, 1999). Lecture Notes in Physics, vol. 554, pp. 267–294,Springer, Berlin
(2000)

19. Georgii, H.-O., Häggström, O., Maes, C., The random geometry of equilibrium phases. In: Phase transi-
tions and critical phenomena, vol. 18, pp. 1–142, Academic Press, San Diego (2001)

20. Georgii, H.-O., Zagrebnov, V.A.: On the interplay of magnetic and molecular forces in Curie-Weiss
ferrofluid models. J. Stat. Phys. 93, 79–107 (1998)

21. Gruber, Ch., Griffiths, R.B.: Phase transition in a ferromagnetic fluid. Physica A 138, 220–230 (1986)
22. Gruber, Ch., Tamura, H., Zagrebnov, V.A.: Berezinskii–Kosterlitz–Thouless order in two-dimensional

O(2)-ferrofluid. J. Stat. Phys. 106, 875–893 (2002)
23. Häggström, O.: Markov random fields and percolation on general graphs. Adv. Appl. Probab. 32, 39–66

(2000)
24. Kallenberg, O.: Random Measures, 3rd edn. Akademie-Verlag, Berlin (1983)
25. Kargol, A., Kondratiev, Yu., Kozitsky, Yu.: Phase transitions and quantum stabilization in quantum anhar-

monic crystals. Rev. Math. Phys. 20, 529–595 (2008)
26. Kondratiev, Yu., Kozitsky, Yu., Pasurek, T.: Gibbs random fields with unbounded spins on unbounded

degree graphs. J. Appl. Probab. 47, 856–875 (2010)
27. Kondratiev, Yu., Kozitsky, Yu., Pasurek, T.: Gibbs measures of disordered lattice systems with unbounded

spins. Markov Process. Relat. Fields 18, 553–582 (2012)
28. Kozitsky, Yu., Pasurek, T.: Euclidean Gibbs measures of interacting quantum anharmonic oscillators.

J. Stat. Phys. 127, 985–1047 (2007)
29. Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Commun. Math. Phys.

50, 195–218 (1976)
30. Lyons, R.: The Ising model and percolation on trees and tree-like graphs. Commun. Math. Phys. 125,

337–353 (1989)
31. Meester, R., Roy, R.: Continuum Percolation. Cambridge Tracts in Mathematics, vol. 119. Cambridge

University Press, Cambridge (1996)
32. Newman, C.M., Stein, D.L.: Thermodynamic chaos and the structure of short-range spin glasses. In:

Bovier, A., Picco, P. (eds.) Mathematical Aspects of Spin Glasses and Neural Networks. Progress in
Probability, vol. 41, pp. 243–287. Birkhäuser Boston, Boston (1998)

33. Penrose, M.D.: Random Geometric Graphs, (Oxford Studies in Probability, 5. Oxford University Press,
Oxford (2003)

34. O’Handley, R.C.: Modern Magnetic Materials: Principles and Applications. Wiley, New York (2000)
35. Osada, H., Spohn, H.: Gibbs measures relative to Brownian motion. Ann. Probab. 27, 1183–1207 (1999)
36. Romano, S., Zagrebnov, V.A.: Orientational ordering transition in a continuous-spin ferrofluid. Phys. A

253, 483–497 (1998)
37. Park, Y.M., Yoo, H.J.: A characterization of Gibbs states of lattice boson systems. J. Stat. Phys. 75,

215–239 (1994)
38. Park, Y.M., Yoo, H.J.: Uniqueness and clustering properties of Gibbs states for classical and quantum

unbounded spins. J. Stat. Phys. 80, 223–271 (1995)
39. Parthasarathy, K.R.: Probability Measures on Metric Spaces (Probability and Mathematical Statistics 3.

Academic Press Inc, New York (1967)
40. Simon, B.: The Statistical Mechanics of Lattice Gases. Princeton Series in Physics, vol. I. Princeton

University Press, Princeton (1993)

123

http://arxiv.org/abs/1307.4718


176 A. Daletskii et al.

41. Vakhania, N.N., Tarieladze, V.I., Chobanian, S.A.: Probability Distributions on Banach Spaces. D. Reidel
Publishing Company, Dordrecht (1987)

42. Wells, D., Some Moment Inequalities and a Result on Multivariable Unimodality Thesis, Indiana Uni-
versity,Bloomington (1977)

123


	A Phase Transition in a Quenched Amorphous Ferromagnet
	Abstract
	1 Introduction
	1.1 Setup
	1.2 The Overview of the Results

	2 Quenched Gibbs Measures
	2.1 The Underlying Graph
	2.2 The Gibbs Specification
	2.3 The Question of Uniqueness

	3 The Phase Transition
	3.1 The Statement
	3.2 Proof of Lemma 1

	4 Random Gibbs Measures
	Acknowledgments
	Appendix: Proof of Proposition 5
	References


