
Int J Softw Tools Technol Transfer (2016) 18:355–357
DOI 10.1007/s10009-016-0414-5

INTRODUCTION

Preface of the special issue on Model Checking of Software
Selectedpapers of the 20th International SPINSymposiumonModelChecking of Software

Ezio Bartocci1 · C. R. Ramakrishnan2

Published online: 10 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Software Model Checking consists of a broad
collection of techniques to tackle the complexity and the
diversity in the use of software in safety-critical systems.
The contributions in this special issue address some of the
core problems in software model checking. The articles are
based on papers selected from the 2013 SPIN Symposium
on Model Checking of Software, an annual forum for prac-
titioners and researchers interested in symbolic and state
space-based techniques for the validation and analysis of
software systems.

Keywords Model checking · Software verification ·
Formal methods

1 Background

Verification of software systems raises several unique prob-
lems. These problems range from the use of complex data and
control structures in software to the variety of systems imple-
mented in software, for example in cyber-physical systems.
This special issue contains six contributions that address
some of the core issues in software model checking. The
papers were selected from articles presented at SPIN 2013,
the 20th International Symposium on Model Checking of
Software, which was held on 8–9 July 2013, in Stony Brook
(NY), USA. The traditional focus of the SPIN series has
been on explicit-state model checking techniques and empir-
ical evaluations, as implemented in SPIN model checker and

B Ezio Bartocci
ezio.bartocci@gmail.com

1 Technische Universität Wien, Vienna, Austria

2 Stony Brook University, Stony Brook, NY, USA

other related tools. During the recent years, the scope of the
Symposium has broadened to also include techniques for
the verification and formal testing of embedded software,
security-critical software, enterprise and web applications,
and other interesting software platforms. Papers at the sym-
posium reflect the breadth of problems in software model
checking, exemplified by the collection of articles in this
issue.

Software systems have typically been characterized by the
use of complex data and control structures. Contributions by
Lopes et al. [12] and Sethi et al. [13] directly address prob-
lems with analyzing programs with such structures. Concur-
rent data structures are also considered by Adhikari et al. [1]
by tackling the verification of quasi-linearizability property,
which relaxes the traditional requirements for ensuring their
correctness. State space reduction for the verification of soft-
ware systems is addressed by Laarman et al. in [8] with a
language-agnostic partial order reduction technique. Analy-
sis of systems with timing and other resource constraints is
addressed by Jensen et al. [7], where a technique for model
checking weighted Kripke structures is presented. Finally,
the verification of control software in cyber-physical systems
is addressed byBogomolov et al. [3],who present a technique
for guided search to detect error paths in hybrid systems.

We would like to thank all the authors contributing to this
special issue and the anonymous reviewers for their efforts
in the reviewing process.

2 Selected papers

In the first paper in this collection, Lopes et al. [12] introduce
a novel semi-algorithm for automatically proving the equiv-
alence of programs containing nested loops over the theory
of integer arithmetic combined with uninterpreted functions.

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81802939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-016-0414-5&domain=pdf


356 E. Bartocci, C.R. Ramakrishnan

Uninterpreted functions are commonly used to abstract away
parts of a program whose specifics are irrelevant to the proof
under consideration.Thekey idea of theirmethod is to rewrite
the applications of uninterpreted functions with polynomi-
als over the inputs of the application, and nested loops with
closed-form solutions of the corresponding recurrences. This
reduces the program equivalence problem to checking the
equality of expressions over integers. The effectiveness of
this technique has been shown using CORK, a tool for veri-
fying the correctness of compiler optimizations.

In the second contribution, Sethi et al. [13] present a
method to verify concurrent list-based data structures with
unbounded number of elements and unbounded number of
threads that can access them. The authors leverage the CoM-
Positional (CMP) method [4], a verification technique for
systems with a parameterized number of processes. At first,
they consider finite data structures, and use CMP to reduce
unbounded number of threads to a finite model by keeping
one thread concrete and abstracting the rest into single envi-
ronment. This abstraction may be refined by the user, using
assertions generated by an assertion mining tool Daikon, in
order to prove correctness. They then extend this method to
unbounded data structures as well. The aim of this work is
to provide an automatic method that verifies, with limited
human guidance, linearizability of protocols that use lists to
implement a shared object.

In the third contribution, Adhikari et al. [1] present an
automated method for verifying the quasi-linearizability
property on highly concurrent data structures. Quasi-
linearizability is a quantitative variation of the classi-
cal notion of linearizability, a requirement of correct-
ness for concurrent systems stating that all the method
calls on a shared object appear to take effect instanta-
neously between their invocation and the response. Quasi-
linearizability relaxes this requirement allowing more flex-
ibility in the data structure implementation to improve the
runtime performance. In this paper the authors present
two approaches. The first approach consists of verifying,
using an existing model checking algorithm, the concurrent
implementation with respect to a manually provided quasi-
linearizable sequential specification. In the second approach,
the quasi-linearizable sequential specification is instead auto-
matically derived and the concurrent implementation is
verified using a novel refinement checking algorithm.

In the fourth contribution [7], Jensen et al. present a
novel algorithm to model check aWeighted Kripke Structure
(WKS)with respect to a negation-freeweightedComputation
Tree Logic (WCTL) formula with upper-bound constraints
on the weight. WKS is a formalism that extends the classical
Kripke Structure with weights on the transition relation. This
is suitable tomodel in a system functional and non-functional
requirements such as timing and resource constraints. The
authors show how to encode a WKS and a WCTL formula

into a dependency graph [10] (DG), where the nodes are a set
of configurations and the hyper-edges define how the assign-
ment of a configuration is dependent on the others. They
first prove that the model checking problem in this setting is
equivalent to the computation of the pre-fixed point assign-
ment in the DG and then provide an efficient symbolic, local
and on-the-fly algorithm.

Thefifth contribution [8] proposes a novel approachwhere
the partial order reduction (POR) technique is independent of
the modeling language. POR is a well-established technique
that identifies subsets of interleavings of simultaneously
enabled transitions that are necessary to capture all behav-
iors of interest during verification. Such subsets are computed
based on the system description, using methods that are gen-
erally tailored to a particular specification language. ThePins
interface of the LTSmin [9] separates specification languages
from various model checking algorithms. This contribution
proposes a language-agnostic POR technique over Pins
by extending Valmari’s stubborn sets [14]. The contribution
compares the effectiveness of this technique with respect to
the SPIN system’s ample-set-based POR technique.

In the sixth contribution, Bogomolov et al. [3] intro-
duce a guided search technique to detect error paths over
the dynamic behavior of hybrid systems. This formalism,
combining continuous and discrete dynamics, is very use-
ful for the modeling and analysis of cyber-physical [11,15]
and biological systems [2,6]. While the reachability analy-
sis for hybrid systems is generally undecidable, in the last
years modern tools such as SpaceEx [5] implement semi-
decision algorithms based on over-approximation techniques
to attack this problem. This contribution proposes the use of
a cost function based on coarse-grained space abstractions to
guide the reachability analysis. More specifically, the esti-
mated cost is the length of the shortest trajectory (in the
abstract state space) leading to an abstract error state. The
paper shows, via a SpaceEx-based implementation, how this
cost function can be computed efficiently and can be used
effectively to guide the search as well.

Acknowledgments Open access funding provided by TU WIen
(TUW).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Adhikari, K., Street, J., Wang, C., Liu, Y., Zhang, S.: Verifying a
quantitative relaxation of linearizabilty via refinement. J. Softw.
Tools Technol. Transf. (2016) (In this issue)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Preface of the special issue on Model Checking of Software 357

2. Bartocci, E., Bortolussi, L., Smolka, S.A.: Hybrid systems and
biology. Inf. Comput. 236, 1–2 (2014)

3. Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T.,
Ladan, H., Podelski, A., Wehrle, M.: Guided search for hybrid
systems based on coarse-grained space abstractions. J. Softw. Tools
Technol. Transf. (2016) (In this issue)

4. Chou, C.T., Mannava, P.K., Park, S.: A simple method for para-
meterized verification of cache coherence protocols. In: Proc. of
FMCAD 2004: Formal Methods in Computer-Aided Design, vol.
3312 of LNCS, pp. 382–398. Springer (2004)

5. Frehse, G., LeGuernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel,
O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scal-
able Verification of Hybrid Systems. In: Proc. of CAV 2011: the
23rd International Conference on Computer Aided Verification,
vol. 6806 of LNCS, pp. 379–395. Springer (2011)

6. Grosu, R., Batt, G., Fenton, F., Glimm, J., Le Guernic, C., Smolka,
S.A., Bartocci, E.: From cardiac cells to genetic regulatory net-
works. In: Proc. of CAV 2011: the 14th International Conference
on Computer Aided Verification, vol. 6806 of LNCS, pp. 396–411.
Springer, Berlin, Heidelberg (2011)

7. Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Efficient
model-checking of weighted ctl with upper-bound constraints. J.
Softw. Tools Technol. Transf. (2016) (In this issue)

8. Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based
partial-order reduction. J. Softw. Tools Technol. Transf. (2016) (In
this issue)

9. Laarman, A.W., van de Pol, J.C., Wehrle, M.: Multi-core ltsmin:
marrying modularity and scalability. In: Proc. of NFM 2011: the
Third International Symposium on NASA Formal Methods, vol.
6617 of LNCS, pp. 506–511. Springer (2011)

10. Liu, Y., Smolka, S.A.: Simple linear-time algorithms for minimal
fixed points. In: Proc. of ICALP’98: the 25th International Collo-
quium on Automata, Languages and Programming, vol. 1443 of
LNCS, pp. 53–66. Springer (1998)

11. Lividas, C., Lygeros, J., Lynch, N.A.: High-level modelling and
analysis of tcas. In: IEEE Real-time systems symposium, pp. 115–
125 (1999)

12. Lopes, N.P., Monteiro, J.: Automatic equivalence checking of pro-
gramswith uninterpreted functions and integer arithmetic. J. Softw.
Tools Technol. Transf. (2016) (In this issue)

13. Sethi, D., Talupur, M., Malik, S.: Model checking unbounded con-
current lists. J. Softw. Tools Technol. Transf. (2016) (In this issue)

14. Valmari, A.: Stubborn sets for reduced state space generation. In:
Proceedings of the 10th International Conference on Applications
and Theory of Petri Nets: Advances in Petri Nets, pp. 491–515.
Springer, London (1991)

15. Varaiya, P.: Smart cars on smart roads: problems of control. IEEE
Trans. Autom. Control 38(2), 195–207 (1993)

123


	Preface of the special issue on Model Checking of Software
	Selected papers of the 20th International SPIN Symposium on Model Checking of Software
	Abstract
	1 Background
	2 Selected papers
	Acknowledgments
	References





