
Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23
http://www.journalofcloudcomputing.com/content/2/1/23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
RESEARCH Open Access
An improved task assignment scheme for
Hadoop running in the clouds
Wei Dai* and Mostafa Bassiouni
Abstract

Nowadays, data-intensive problems are so prevalent that numerous organizations in various industries have to face
them in their business operation. It is often crucial for enterprises to have the capability of analyzing large volumes
of data in an effective and timely manner. MapReduce and its open-source implementation Hadoop dramatically
simplified the development of parallel data-intensive computing applications for ordinary users, and the combination
of Hadoop and cloud computing made large-scale parallel data-intensive computing much more accessible to all
potential users than ever before. Although Hadoop has become the most popular data management framework
for parallel data-intensive computing in the clouds, the Hadoop scheduler is not a perfect match for the cloud
environments. In this paper, we discuss the issues with the Hadoop task assignment scheme, and present an improved
scheme for heterogeneous computing environments, such as the public clouds. The proposed scheme is based on an
optimal minimum makespan algorithm. It projects and compares the completion times of all task slots’ next data block,
and explicitly strives to shorten the completion time of the map phase of MapReduce jobs. We conducted extensive
simulation to evaluate the performance of the proposed scheme compared with the Hadoop scheme in two types of
heterogeneous computing environments that are typical on the public cloud platforms. The simulation results showed
that the proposed scheme could remarkably reduce the map phase completion time, and it could reduce the amount
of remote processing employed to a more significant extent which makes the data processing less vulnerable to both
network congestion and disk contention.

Keywords: Cloud computing; Hadoop; MapReduce; Task assignment; Data-intensive computing; Parallel and
distributed computing
Introduction
We have entered the era of Big Data. It was estimated
that the total volume of digital data produced worldwide
in 2011 was already around 1.8 zettabytes (one zettabyte
equal to one billion terabytes) compared to 0.18 zettabytes
in 2006 [1]. Data has been generating in an explosive way.
Back in 2009, Facebook already hosted 2.5 petabytes of
user data growing at about 15 terabytes per day. And the
trading system in the New York Stock Exchange generates
around one terabyte of data every day. For many organiza-
tions, petabyte datasets have already become the norm,
and the capability of data-intensive computing is a neces-
sity instead of a luxury. Data-intensive computing lies in
the core of a wide range of applications used across various
industries, such as web indexing, data mining, scientific
* Correspondence: wdai@knights.ucf.edu
School of Electrical Engineering & Computer Science, University of Central
Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, USA

© 2013 Dai and Bassiouni; licensee Springer. Th
Commons Attribution License (http://creativeco
reproduction in any medium, provided the orig
simulations, bioinformatics research, text/image processing,
and business intelligence. In addition to large volume, Big
Data also features high complexity, which makes the pro-
cessing of data sets even more challenging. As a result, it is
difficult to work with Big Data using most relational data-
base management systems. And the solution is parallel and
distributed processing on large number of machines.
MapReduce [2] is a parallel and distributed programming

model and also an associated implementation for process-
ing huge volumes of data on a large cluster of commodity
machines. Since it was proposed by Google in 2004, MapRe-
duce has become the most popular technology that makes
data-intensive computing possible for ordinary users, espe-
cially those that don’t have any prior experience with parallel
and distributed data processing. While Google owns its
proprietary implementation of MapReduce, an open source
implementation named Hadoop [3] has gained great popu-
larity in the rest of the world. Hadoop is now being used at
is is an Open Access article distributed under the terms of the Creative
mmons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
inal work is properly cited.

https://core.ac.uk/display/81802901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wdai@knights.ucf.edu
http://creativecommons.org/licenses/by/2.0

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 2 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
many organizations in various industries, including
Amazon, Adobe, Facebook, IBM, Powerset/Microsoft,
Twitter, and Yahoo! [4]. Many well-known IT companies
have been either offering commercial Hadoop-related
products or providing support for Hadoop, including
Cloudera, IBM, Yahoo!, Google, Oracle, and Dell [5].
The access to computer clusters of sufficient size is

necessary for the parallel processing of large volumes of
data. However, not every organization with data-intensive
computing needs can afford or has the interest to pur-
chase and maintain such computer clusters. The innova-
tive concept of utility computing proposed a perfect
solution to this problem, which eliminates both upfront
hardware investment and periodical maintenance costs
for cloud users. The combination of Hadoop and cloud
computing has become an attractive and promising
solution to parallel processing of terabytes and even peta-
bytes datasets. A well-known feat of running Hadoop in
clouds for data-intensive computing was the New York
Times used 100 Virtual Machines (VM’s) on Amazon
Elastic Compute Cloud (EC2) [6] to convert 4 terabytes
of scanned archives from the paper to 11 million articles
in PDF format in less than 24 hours [7].
Although Hadoop has become the most prevalent data

management framework for the processing of large
volumes of data in clouds, there exist issues with the
Hadoop scheduler that can seriously degrade the per-
formance of Hadoop running in clouds. In this paper,
we discuss the issues with the Hadoop task assignment
scheme, and present an improved scheme, which is
based on an optimal algorithm for minimum makespan
scheduling and explicitly strives to shorten the duration
of the map phase of MapReduce jobs. We conducted
extensive simulations to evaluate the performance of
the proposed scheme. The simulation results indicated
that the proposed scheme could significantly improve
the performance of Hadoop in terms of both the com-
pletion time of map phase and the amount of remote
processing employed.
The rest of the paper is organized as follows. Background:

MapReduce and Hadoop introduces the related back-
ground in MapReduce and Hadoop. Issues with the
Hadoop task assignment scheme discusses issues with
the Hadoop task assignment scheme in the context of
the cloud environments. Related mathematical model
introduces the related mathematical model on which our
new scheme is based. The ECT task assignment scheme
provides the details of the new scheme. Evaluation presents
the simulation setup and results. Related work is introduced
in Related work, and we conclude in Conclusion.

Background: MapReduce and Hadoop
In the programming model of MapReduce [2], the input
of the computation is a set of key/value pairs, and the
output is also a set of key/value pairs usually in a different
domain from the input. Users define a map function
which converts one input key/value pair to an arbitrary
number of intermediate key/value pairs, and a reduce
function which merges all intermediate values of the
same intermediate key into a smaller set of values, typic-
ally one value for each intermediate key. An example of
the application of the programming model is counting
the number of occurrences of each word in a large col-
lection of documents. The input < key/value > pair to the
map function is < the name of certain document in the
collection/contents of that document>. The map func-
tion emits an intermediate key/value pair of < word/1 > for
each word in the document. Then the reduce function
sums all counts emitted for a particular word to obtain
the total number of occurrences of that word.
Hadoop [3] is currently the most mature, accessible,

and popular implementation of the MapReduce program-
ming model. A Hadoop cluster adopts the master–slave
architecture, where the master node is called the Job-
Tracker, and the multiple slave nodes TaskTrackers.
Hadoop is usually supported by the Hadoop Distributed
File System (HDFS), an open-source implementation
of the Google File System (GFS). HDFS also adopts the
master–slave architecture, where the NameNode (master)
maintains the file namespace and directs client applica-
tions to the DataNodes (slaves) that actually store the
data blocks. HDFS stores separate copies (three copies
by default) of each data block for both fault tolerance
and performance improvement. In a large Hadoop clus-
ter, each slave node serves as both the TaskTracker and
the DataNode, and there would usually be two dedicated
master nodes serving as the JobTracker and the Name-
Node respectively. In the case of small clusters, there
may be only one dedicated master node that serves as
both the JobTracker and the NameNode.
When launching a MapReduce job, Hadoop first splits

the input file into fixed-sized data blocks (64 MB by
default) that are then stored in HDFS. The MapReduce
job is divided into certain number of map and reduce
tasks that can be run on slave nodes in parallel. Each map
task processes one data block of the input file, and outputs
intermediate key/value pairs generated by the user defined
map function. The output of a map task is first written to
a memory buffer, and then written to a spill file on local
disk when the data in the buffer reaches certain threshold.
All the spill files generated by one map task are eventually
merged into one single partitioned and sorted inter-
mediate file on the local disk of the map task. Each par-
tition in this intermediate file is to be processed by one
different reduce task, and is copied by the reduce task
as soon as the partition becomes available. Running in
parallel, reduce tasks then apply the user defined reduce
function to the intermediate key/value pairs associated

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 3 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
with each intermediate key, and generate the final out-
put of the MapReduce job.
In a Hadoop cluster, the JobTracker is the job submission

node where a client application submits the MapReduce
job to be executed. The JobTracker organizes the whole
execution process of the MapReduce job, and coordinates
the running of all map and reduce tasks. TaskTrakers are
the worker nodes which actually perform all the map and
reduce tasks. Each TaskTraker has a configurable number
of task slots for task assignment (two slots for map tasks
and two for reduce tasks by default), so that the resources
of a TaskTraker node can be fully utilized. The JobTracker
is responsible for both job scheduling, i.e. how to schedule
concurrent jobs from multiple users, and task assignment,
i.e. how to assign tasks to all TaskTrackers. In this paper,
we only address the problem of map task assignment. The
map task assignment scheme of Hadoop adopts a heartbeat
protocol. Each TaskTraker sends a heartbeat message to the
JobTracker every few minutes to inform the latter that it’s
functioning properly and also whether it has an empty task
slot. If a TaskTracker has an empty slot, the acknowledg-
ment message from the JobTracker would contain informa-
tion on the assignment of a new input data block.
To reduce the overhead of data transfer across net-

work, the JobTracker attempts to enforce data locality
when it performs task assignment. When a TaskTraker
is available for task assignment, the JobTracker would
first attempt to find an unprocessed data block that is
located on the local disk of the TaskTracker. If it cannot
find a local data block, the JobTracker would then attempt
to find a data block that is located on certain node that is
on the same rack as the TaskTracker. If it still cannot find
a rack-local block, the JobTracker would finally find an
unprocessed block that is as close to the TaskTracker as
possible based on the topology information on the cluster.
While map tasks have only one stage, reduce tasks

consist of three: copy, sort and reduce stages. In the
copy stage, reduce tasks copy the intermediate data pro-
duced by map tasks. Each reduce task is usually respon-
sible for processing the intermediate data associated with
many intermediate keys. Therefore, in the sort stage, re-
duce tasks need to sort all the intermediate data copied by
the intermediate keys. In the reduce stage, reduce tasks
apply the user defined reduce function to the intermediate
data associated with each intermediate key, and store the
output in final output files. The output files are kept in
the HDFS, and each reduce task generates exactly one
output file.

Hadoop fault tolerance mechanisms
Failures are mostly inevitable when Hadoop runs at large
scales. Consequently, Hadoop is designed as a fault-
tolerant framework that can handle various failures with
minimum impact on the quality of service. There are
three different failure modes, task failure, TaskTracker
failure, and JobTracker failure. When the TaskTracker
detects a task failure, it will mark the task attempt as
failed, free the task slot on which the task is running,
and notify the JobTracker of the failure in its heartbeat
message. The JobTracker will then try to reschedule
execution of that task on a different TaskTracker. The
whole job will fail, if any task fails a configurable num-
ber of times (four times by default), which usually means
the user code is buggy. TaskTracker failure occurs, when
the JobTracker hasn’t received any heartbeat message
from certain TaskTracker for a configurable period of time
(10 minutes by default). TaskTracker failure is a much
more serious failure mode than task failure, because the
intermediate output of all map tasks that previously ran
and finished on the failed TaskTracker becomes in-
accessible. In this case, the JobTracker will rerun all those
completed map tasks, and reschedule any tasks in pro-
gress on other TaskTrackers. JobTracker failure is the
most serious failure mode, but it is not likely to happen
as the chance that a particular machine fails is low. In
the case of JobTracker failure, Hadoop provides a con-
figuration option that can attempt to recover all jobs
that were running at the time the failure occurred.
More detailed discussions on various aspects of

MapReduce and Hadoop can be found in [8] and [9].

Issues with the Hadoop task assignment scheme
Both MapReduce and Hadoop were originally designed
for computer clusters instead of computer clouds. Clus-
ters are mostly a homogeneous computing environment,
where homogeneous nodes run in similar load conditions,
and tasks of the same type tend to start and finish at
roughly close times. However, the situation is completely
different in the clouds. Cloud service providers employ
virtualization technology to abstract physical resources,
simplify their usage, improve hardware utilization, and
provide user isolation for security purposes. Although
current virtualization technology can isolate CPU and
memory usage effectively, co-located VM’s still have to
compete for both network and disk bandwidth, espe-
cially in the case of I/O intensive workload, such as
the MapReduce jobs. Even in homogeneous environ-
ments, network bandwidth is often a bottleneck, and it
is more precious in the clouds due to the employment
of virtualization technology. Consequently, a cluster of
VM’s in the clouds are mostly heterogeneous instead
of homogeneous, and there exist two different sources
of heterogeneity. First, when the cloud service user only
uses small to medium numbers of VM’s, most of these
VM’s would probably reside on distinct physical hosts,
and hence would not compete with each other for the
I/O resources. However, these VM’s still have to com-
pete with varying numbers of VM’s belonging to other

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 4 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
users running different applications, and hence face re-
source contention of different intensities that could change
during the whole time period of data processing. Secondly,
the even worse scenario is when the user runs Hadoop at
large scales, and hence large numbers of VM’s are allocated.
In this case, most of the VM’s belonging to the same user
would not be isolated to each other anymore, and would
have to compete with each other for I/O resources, which
results in much higher heterogeneity in the VM cluster
than in the first scenario. As an example, Zaharia et al. [10]
conducted large scale experiments on Amazon EC2 to
measure its heterogeneity. Their experimental results
indicated that the performance difference can be of a
factor of about 1.4 in the first scenario, and up to 2.7 in
the second scenario due to the heterogeneity of the
computing platform. To evaluate the performance of
our proposed task assignment scheme, the above sce-
narios were resembled in the simulation as the slightly
and highly heterogeneous environments.
The Hadoop task assignment scheme is simple and

intuitive. Whenever a task slot becomes available, the
scheme assigns a data block to it. Initially all slots only
consume local blocks. After a while, certain slots, most
likely the faster ones, would run out of local blocks,
and as the data processing approaches the end of the map
phase, more and more slots would so. The challenging
question of how to utilize these task slots arises. The
Hadoop scheme simply assigns a remote block to the
slot to prevent it from becoming idle, which may not be
appropriate for two reasons. First, task slots can process
local blocks much faster than they can remote ones.
Although the local slots have to start the processing
later than the remote ones that are immediately avail-
able, the local slots may still be able to finish earlier
than the remote ones. Therefore, it may not be neces-
sary to assign data blocks to remote slots, even if the
overhead of fetching remote data blocks is acceptable.
Secondly, the utilization of remote slots comes at a price
that may be high enough to offset or even outweigh its
benefits. This is because reduce tasks start copying inter-
mediate data produced by map tasks as soon as the data
becomes available. In most cases, the copy stage accounts
for the majority of the execution time of reduce tasks, and
requires large amount of data transfer across network.
Therefore, after the first batch of map tasks finish, all the
reduce tasks would be running and fetching remote data
across network. At this point, the network bandwidth
would become the most precious resource within the
cluster environment, especially if it is a VM cluster run-
ning in a cloud. Any map tasks processing remote blocks
would increase the contention for network bandwidth,
and slow down the copy stage of all running reduce tasks.
Moreover, a remote map task also competes for the local
disk bandwidth with all running local tasks, as the remote
task needs to read the data block located on the local
disk. The competition would slow down both local and
remote tasks.
The second issue with the Hadoop scheme is about

data locality. One rule works well in the context of data-
intensive computing is moving processing to data, which
is adopted by both MapReduce and Hadoop. The Hadoop
scheduler always attempts to schedule a map task on a
node that has a copy of the data block to be processed
first. If it could not make it, the scheduler would instead
schedule the task as close to a copy of the data block as
possible based on the network topology information on
the computer cluster. Nodes in a computer cluster are
typically connected by high performance network, which
means the network topology of the cluster is known and
remain unchanged throughout the whole processing
period. However, in the case of clouds, the VM’s in a
cluster are linked together by certain network topology
that is completely unknown or at least obscure. And,
cloud operators employ the technology of VM migration
to balance load among physical servers or bring down cer-
tain servers for maintenance purposes, which means the
network topology of a cluster of VM’s could change dur-
ing the whole period of data processing. Therefore, when
running in the clouds, the Hadoop scheduler would not
have sufficient information on the network topology of
the VM cluster. As a result, the scheduler may schedule
a map task on a VM to process certain data block located
on another VM that could be many network hops away
from the first one. Since the data block must be fetched
across the network to be processed, that single map task
could seriously slow down the data processing if any part
of the network between those two VM’s is congested.
The completion time of MapReduce jobs is an important

performance metric of Hadoop, especially for the use cases
of ad-hoc queries where users need to obtain the results
as quickly as possible, and for the use cases of public
clouds where users are charged according to the amount
of time the provisioned resources are used. The Hadoop
scheme is reactive instead of proactive, it doesn’t make
any explicit effort to shorten the Map Phase Completion
Time (MPCT). Whereas, the MPCT is crucial to the job
completion time of MapReduce jobs, because reduce
tasks need to copy intermediate data produced by map
tasks before they can start processing, and typically all
reduce tasks need the intermediate data produced by
each and every map task including the one that finishes
the last, which stops at the MPCT.

Related mathematical model
Minimum makespan scheduling is one classical combina-
torial optimization problem, where given a set of jobs and
a cluster of machines, the scheduling is to assign jobs to
machines so that the makespan (maximum completion

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 5 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
time of all jobs) is minimized. There exist many variants
of this problem, but the one that is specifically related to
the map task assignment problem is scheduling identical
jobs on uniform parallel machines. The scheduling prob-
lem can be defined as follows. A set of identical and inde-
pendent jobs Ji (i = 1, 2, … , n) need to be assigned to a set
of uniform machines Mj (j = 1, 2, …, m) running in paral-
lel. Machines are uniform if they can process at most one
job at a time, and do so at known processing speeds,
which can be either the same or different for different
machines. The scheduling objective is to minimize the
makespan.
In 1990, Dessouky et al. [11] proposed an algorithm

for solving the above scheduling problem, which is based
on the Earliest Completion Time (ECT) rule. The algo-
rithm maintains a priority queue of the completion times
of the m machines’ next job assignment. It selects jobs in
sequential order and schedules each job on the machine
that can complete it the earliest among all machines. And
the earliest completion time in the priority queue is re-
placed by the updated completion time of the machine
that is assigned the job. The procedure continues until all
n jobs are assigned, and returns a series of job completion
times of t1, t2, … , tn, where t1 ≤ t2 ≤… ≤ tn. It is obvious
that no job would be assigned to a machine in such a
manner that its completion time can be reduced by the
assignment of the job to another machine. Therefore,
the Minimality Property can be directly reasoned out from
the algorithm procedure, which asserts that there does
not exist any other schedule with job completion times
t1’ ≤ t2’ ≤… ≤ tn’, such that tk’ < tk for any k = 1, 2, … , n.
In other words, the completion time of each job is the
earliest possible time.
In spite of its simplicity, the ECT algorithm is optimal,

which can be proved by the Minimality Property. Sup-
pose we have another schedule with job completion times
t1’, t2’, … , tn’, which can yield a smaller makespan. Whether
the series of t1’, t2’, … , tn’ is in certain order or no order
at all, we can always sort it to make it in the ascending
order. The last completion time in this sorted series is
the makespan of the schedule, which cannot be possibly
smaller than tn (the makespan of the schedule produced
by the ECT algorithm) according to the Minimality
Property.

The ECT task assignment scheme
Although the map task assignment problem is related to
scheduling identical jobs on uniform parallel machines,
the former is not identical to the latter for two reasons.
First, each machine in the latter can process all jobs at
the same speed. Whereas, in the former, machines can
process local blocks faster than they can remote ones.
Secondly, each machine in the latter has known and
constant processing speed, nevertheless the processing
speeds of machines in the former are unknown and fluc-
tuate over the whole processing period.
However, the ECT rule proposed by Dessouky et al. is

still applicable in the map task assignment problem. Since
all data blocks are of the same size, we assume all of them
require the same amount of processing work to be proc-
essed. Therefore, in the context of map task assignment,
the identical jobs are the input data blocks to be proc-
essed, and the machines are the task slots on VM’s. The
scheduler assigns a data block (job) to a task slot (ma-
chine) by scheduling a map task on that slot. The whole
map phase of a MapReduce job can be considered as a
multi-step process. The number of the steps is equal to
the number of input data blocks to be processed. In
each step, one single data block is processed by certain
slot. If we can minimize the completion time of each
step, we would be able to minimize the MPCT. Suppose
we have a set of task slots Si (i ϵ {1, 2, … , m}) for the
processing of input data blocks. Each task slot Si has an
available time Ti at which it would complete its current
data block and be available to process its next data
block. And if we know that it will take a task slot pro-
cessing time Pi (i ϵ {1, 2, … , m}) to process its next data
block, then the completion time of its next data block
will be Ci = Ti + Pi (i ϵ {1, 2, … , m}). The minimum
value Cj = min{Ci} (i, j ϵ {1, 2, … , m}) is the earliest pos-
sible completion time of the next step of the whole map
phase, which means we can minimize the completion
time of the next step by assigning a data block to the
task slot Sj (j ϵ {1, 2, … , m}). Therefore, the basic task
assignment strategy of our new scheme is the ECT rule,
i.e. the slot that can complete a data block (either a local
or a REMOTE one) the earliest among all slots is
assigned one. Note that this task slot doesn’t have to be
the earliest available slot, to which the Hadoop scheme
would always assign the next data block. We call the
new scheme ECT as it’s based on the ECT rule. Figure 1
is a flowchart of the ECT scheme. The two concurrent
processes: {When a slot becomes available, update its
PTE} and {Initialize the priority queue of completion
times} are modeled in the flowchart by a concurrent
construct similar to the Fork symbol used in UML activ-
ity diagrams.
Since the processing speeds of slots fluctuate, ECT

predicts the amount of time it takes a slot to process a
data block by sampling the processing behaviors of that
slot and averaging those samples into a Processing Time
Estimate (PTE). For each slot, there are two types of PTE’s,
local and remote PTE’s for the processing of local and
remote blocks, respectively. In the simulation, the pro-
cessing times of a slot were randomly generated within
certain range, and hence the PTE was simply computed
as the average of all processing time samples. Neverthe-
less, in practice, the PTE can also be calculated in a way

Initialization

Whenever a slot
becomes available,

assignit a data block
and update its local

PTE

Are local PTE’s
for all slots
obtained?

Initialize the priority
queue of completion

times

Choose the slot with
the earliest

completion time

No

Is the
completion time

the one of a
local block?

Choose a
remote
block

according
to the

maximum
RLPT rule

No

Adjust the
completion
time and
store it

back into
the priority

queue

Does the slot
have a local
unprocessed

block?

Yes

Store the block
number into the
slot’s assignment

queue

Yes

No Are there
enough samples

for updating
current

assignment
schedule?

Is current
assignment
schedule

completed?

Map Phase
Completed

Are all data
blocks

processed?

Assign the first block
in the assignment
queue to the slot

Is the
assignment

queue empty?

Checktheslot’s
assignment queue

When a slot
becomes available,

update its PTE

No

Yes

No

Yes

No

Yes

Yes

No

Yes

Figure 1 Flowchart of ECT.

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 6 of 16
http://www.journalofcloudcomputing.com/content/2/1/23

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 7 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
that is similar to the way the round-trip time is esti-
mated in network transport protocols to allow the PTE
adapt to sample variance more quickly. Whenever a
new sample is obtained, ECT can update the task slot’s
PTE according to the following formulas:

PTE1 ¼ S1

PTEj + 1 = α × PTEj + (1 − α)Sj + 1 (j = 1, 2, 3,…), where
PTEj is the current PTE, PTEj+1 is the new estimate
based on the new sample Sj+1, and α is a constant be-
tween 0 and 1 that controls how fast the PTE adapts to
sample variance. The value of α can be set to higher
ones for more variable computing environments, such as
virtualized clouds, and lower ones for more stable com-
puting environments, such as real clusters.
Before it can assign data blocks according to the ECT

rule, ECT needs to obtain the local PTE of all task slots.
Therefore, ECT assigns data blocks to slots whenever
they become available in its first stage. After the local
PTE is available for each slot, ECT starts assigning data
blocks according to the ECT rule by working out an as-
signment schedule. ECT maintains a priority queue of
the completion times of all slots’ next data block based
on their PTE’s. At each step of the schedule calculation,
ECT chooses the slot that can complete its next data
block the earliest among all slots. The next data block
can be either local or remote to the slot. Initially, all
completion times in the priority queue are the ones of
local blocks, as all slots would process local blocks first.
At certain point, each slot would run out of its local
blocks. The situation that needs special treatment is
when there are no remaining local blocks to be assigned
to certain slot that has the earliest completion time in
the priority queue. Instead of assigning a remote block
to the slot immediately, ECT needs to replace the slot’s
completion time in the priority queue, which is the com-
pletion time of its next LOCAL block, with the comple-
tion time of its next REMOTE block. Only when this
updated completion time shows up as the earliest time
in the priority queue, ECT will then assign a remote
block to the corresponding slot. And, this remote assign-
ment still minimizes the completion time of the corre-
sponding processing step.
When it does need to assign a data block to a remote

slot, ECT chooses a block on the local disk of the slot
that has the maximum Remaining Local Processing
Time (RLPT) to further reduce the amount of remote
processing. The RLPT of a slot is calculated as the num-
ber of unprocessed local blocks times the current local
PTE of the slot. For the slot having maximum RLPT, the
assignment of its local blocks to remote slots is less
likely (compared with other slots) to make it run out of
local blocks before the map phase ends, and hence it is
less likely this slot would engage in remote processing at
a later time.
ECT maintains an assignment queue for each slot to

store the block numbers of all data blocks assigned to
that slot. Task slots don’t wait until the whole assign-
ment scheme is calculated to receive their assignments.
Instead, as soon as the first data block is assigned to a
slot, the slot can start processing the data block. And a
slot’s data processing would not be interrupted, as long
as its assignment queue is not empty.
The processing speed of any task slot always fluctu-

ates, and ECT updates each slot’s PTE whenever a new
sample becomes available for that slot. ECT also updates
the assignment schedule of data blocks to make it better
reflect the changing computing environment. After a
configurable number of processing time samples are
obtained, ECT will work out a new assignment schedule
to replace the current one. The update of assignment
schedule also helps reduce the effect of estimation error,
which is the difference between the PTE and the actual
slot processing time. Estimation error will accumulate
in the calculation of an assignment schedule, therefore
the accuracy of the schedule decreases from the begin-
ning to the end. If the schedule is frequently updated,
only the beginning part of it, which is more accurate,
will actually be executed.

Evaluation
We evaluated the performance of ECT compared with
the Hadoop scheme by extensive simulation. We used
Discrete-Event Simulation to model the operation of the
map phase under both the Hadoop scheme and ECT.
The discrete sequence of events is the completion of in-
dividual data blocks, each of which is completed at a
particular instant in time and causes the change of state
in the simulated map phase operation. After the state of
the map phase operation has been updated, the current
simulation time skips to the completion time of the data
block that is to be completed next. The simulation pro-
cedure continues until all data blocks are processed.
Various statistics are recorded during the simulation,
and the ones of special interest are the MPCT, and the
total Number of data Blocks Remotely Processed (NBRP).
The simulation program also records the completion time
of each data block for the generation of processing time
traces. The common settings of all simulation scenarios
are shown in Table 1.
We tested ECT in two different computing environ-

ments that were typical in the public clouds, the slightly
and highly heterogeneous environments. To resemble
the heterogeneous environment in the clouds, we assumed
the base processing speeds of all 1000 task slots were evenly
distributed within a fixed range, while the two slots on the
same VM had identical base speed. In the simulation, we

Table 1 Common settings of all simulation scenarios

Total processing workload
of input data

100,000 task slot × time units

Number of VM’s 500

Number of map task slots
on each VM

2 (Hadoop Default)

Duplication factor of
data blocks

3 (Hadoop Default)

Speculation No

Table 2 RPC and VPPT settings in the simulation

Remote processing
coefficient (RPC)

Variation percentage of
processing time (VPPT)

Scenario One 1.5 ± 2.5%

Scenario Two 2.5 ± 5%

Scenario Three 4.0 ± 10%

Scenario Four 1.0 ± 2.5%

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 8 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
actually used slot processing times to represent slot pro-
cessing speeds. There were two types of slot processing
times, Local Processing Time (LPT) and Remote Processing
Time (RPT), which indicated the amount of time it took
a slot to process a local and remote block, respectively.
LPT was randomly generated within the range [(1-VPPT)t,
(1 + VPPT)t], where t was the base processing time of the
task slot, and VPPT was the Variation Percentage of Pro-
cessing Time, which was used to reflect the fact that the
actual slot processing times fluctuated during the whole
processing period. Most MapReduce jobs belong to the
relatively short and interactive category, so their job
completion times are usually measured in minutes in-
stead of hours. As a result, it is unlikely that the actual
slot processing times would fluctuate significantly dur-
ing the whole processing period. Therefore, we ran the
simulation at three different VPPT values: 2.5%, 5% and
10%. The base processing time t’s of slots on different
VM’s were assumed to be evenly distributed within the
range [(1-P)T, (1 + P)T], where T = 100,000 / total num-
ber of data blocks. In the simulation, the value of P was
set to 0.2 and 0.5 to resemble the slightly and highly het-
erogeneous environments respectively, which was based
on the experimental results obtained on Amazon EC2
by Zaharia et al. [10]. The RPT consisted of two parts,
the LPT and the amount of time it took the processing
slot to fetch the data bock across the network. In the
simulation, the RPT was calculated as (RPC × LPT), where
RPC was the Remote Processing Coefficient used to
reflect the overhead of fetching remote data blocks and
hence was greater than one. Since LPT was randomly
generated within the range [(1-VPPT)t, (1 + VPPT)t], RPT
was randomly generated within the range [RPC(1-VPPT)t,
RPC(1 + VPPT)t].
For both slightly and highly heterogeneous environ-

ments, we ran the simulation at four typical combinations
of RPC and VPPT values as shown in Table 2. Scenario
one resembles the computing environment where the
remote fetching overhead is low and background load on
VM’s is fairly stable. Scenario two resembles the environ-
ment where the remote fetching overhead is medium and
background load is relatively stable. Whereas, in Scenario
three, task slots experience network congestion (disk con-
tention), and slot processing speeds fluctuate. Scenario
four is to evaluate the performance of ECT in the circum-
stance where there is no overhead of fetching remote
data blocks.
For the performance comparison, we examined two

metrics: the MPCT and the NBRP. Although minimum
MPCT is one of the ultimate goals of all task assignment
schemes, the NBRP is also an important metric in the
sense that smaller NBRP values mean less remote pro-
cessing employed, and thus it is less likely the data pro-
cessing would be delayed by network congestion and/or
disk contention. Furthermore, remote processing involves
more factors than local processing, thus it is more likely
to fail due to its complexity. Therefore, a task assignment
scheme that employs less remote processing would be
more favorable to one that employs more, if the MPCT’s
achieved by both schemes are close.
Slightly heterogeneous environment
For the slightly heterogeneous environment, it can be
reasoned out from the simulation settings that the shortest
possible processing time of one data block is 0.9 × 0.8 T =
0.72 T time units, and the longest possible processing time
1.1 × 1.2 T = 1.32 T time units, which is less than two
times the shortest time. This means at the time the
slowest slot finishes its first block and is assigned its
second block, all other slots would be processing their
second blocks. Consequently, ECT needs to assign the
first 2000 data blocks to obtain the processing time esti-
mates of all task slots, before it can assign the remaining
data blocks according to the ECT rule. Therefore, for
each of the four scenarios, we ran the simulation with the
total number of data blocks taking on values of 2500,
3000, 3500, … , 8000. The amount of processing work of
one data block was adjusted according to the total number
of data blocks (i.e. T = 100,000/total number of data
blocks), so that the results of different total numbers of
data blocks are comparable to each other.
Figures 2, 3 and 4 present the MPCT’s achieved by

both schemes at different total numbers of data blocks
in scenarios one, two and three, respectively. It can be
observed that ECT always achieves less MPCT than the
Hadoop scheme, and the reduction is most significant in
scenario three, where the remote fetching overhead is
high. Simulation results of different total numbers of

2000 3000 4000 5000 6000 7000 8000
110

115

120

125

130

135

140

145

Total Number of Data Blocks

M
ap

 P
h

as
e

C
o

m
p

le
ti

o
n

 T
im

e
(t

im
e

u
n

it
s) ECT

Hadoop

Figure 2 Map phase completion times of scenario one.
(Slightly heterogeneous environment)

2000 3000 4000 5000 6000 7000 8000
120

140

160

180

200

220

240

260

280

Total Number of Data Blocks

M
ap

 P
h

as
e

C
o

m
p

le
ti

o
n

 T
im

e
(t

im
e

u
n

it
s) ECT

Hadoop

Figure 4 Map phase completion times of scenario three.
(Slightly heterogeneous environment)

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 9 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
data blocks in scenarios one, two and three are shown
in Tables 3, 4 and 5, respectively. (Only partial results
are included due to length limitation. All results are the
average of ten simulation runs.) The average results of
ALL different total numbers of data blocks for each sce-
nario is shown in Table 6, which indicate that the aver-
age MPCT achieved by ECT is 5.6%, 15.3% and 28.6%
less than the one achieved by the Hadoop scheme, and
the average NBRP under ECT is 29.5%, 73.8% and 97.5%
less than the one under the Hadoop scheme in scenarios
one, two and three, respectively. The MPCT reduction
of ECT is mostly attributed to its capability to reduce
remote processing, which could seriously impair the
MPCT performance. As mentioned earlier, ECT is de-
signed based on an optimal algorithm, which assumes
that all slot processing speeds remain the same through-
out the whole processing period. If this assumption
held, ECT would be able to yield the minimum possible
2000 3000 4000 5000 6000 7000 8000
110

120

130

140

150

160

170

180

190

Total Number of Data Blocks

M
ap

 P
h

as
e

C
o

m
p

le
ti

o
n

 T
im

e
(t

im
e

u
n

it
s) ECT

Hadoop

Figure 3 Map phase completion times of scenario two.
(Slightly heterogeneous environment)
MPCT. Unfortunately, in the case of map task assign-
ment, the slot processing speeds always fluctuate, and
hence the optimal solution does not actually exist. How-
ever, since the remote fetching overhead is relatively
high compared with the fluctuation of the slot process-
ing times, ECT can still effectively reject unnecessary
remote processing despite the estimation error of pro-
cessing time.
It can also be observed from the simulation results

that ECT is much more robust to network congestion
and/or disk contention than the Hadoop scheme. As shown
in Table 6, when the RPC increases from 1.5 to 4.0, the
average MPCT of Hadoop rises remarkably from 124.2
to 192.5 time units (a 55.0% increase), whereas the aver-
age MPCT of ECT only rises from 117.2 to 137.5 time
units (a 17.3% increase). The robustness of ECT is a result
of its capability to reduce the NBRP accordingly when
the remote fetching overhead rises. As shown in Table 6,
when the RPC increases from 1.5 to 4.0, the average
NBRP under ECT drops sharply from 226.6 to 7.5
(a 96.7% decrease), whereas the average NBRP under
Hadoop only decreases slightly from 321.5 to 306.2 (a 4.8%
decrease). As mentioned earlier, ECT projects and sorts
all task slots’ completion times of their next data block
and assigns blocks to slots at the sorted order, from the
earliest to the latest. When the remote fetching over-
head increases, it becomes more and more unlikely that
a data block would be assigned to a remote slot. In con-
trast, the Hadoop scheme doesn’t consider either the re-
mote fetching overhead or the MPCT when assigning
data blocks. The decrease of the NBRP under Hadoop is
actually related to the VPPT instead of the RPC, because
when the fluctuation of slot processing times increases,
the whole cluster of 1000 task slots becomes slightly less
heterogeneous due to the fact that the base slot process-
ing times are evenly distributed within a fixed range.

Table 3 Simulation results of scenario one (Slightly heterogeneous environment, low remote fetching overhead, and
stable slot processing speeds)

RPC = 1.5 Total number of data blocks

VPPT = ± 2.5% 2500 3000 4000 5000 6000 7000 8000

Number of blocks assigned according to the ECT rule 500 1000 2000 3000 4000 5000 6000

MPCT of Hadoop (time units) 141.4 140.8 129.4 123.2 118.7 115.6 113.6

MPCT of ECT (time units) 133.7 123.2 118.4 115.4 113.5 111.6 110.4

ECT reduction in MPCT 5.4% 12.5% 8.5% 6.3% 4.4% 3.4% 2.8%

NBRP under Hadoop 297.3 85.7 222.4 315.2 375.5 413.9 449.9

NBRP under ECT 159.4 56.4 143.5 214.7 265.7 300.4 325.6

ECT reduction in NBRP 46.4% 34.2% 35.5% 31.9% 29.2% 27.4% 27.6%

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 10 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
Consequently, the average NBRP under Hadoop de-
creases insignificantly.
Another important observation from the simulation

results is the total number of data blocks has a signifi-
cant impact on the MPCT’s achieved by both schemes.
It can be seen from Figures 2, 3 and 4, in general, the
MPCT decreases while the total number of data blocks
increases for both schemes. The data processing pro-
ceeds at the highest speed before it enters the ending
stage, because all slots run in parallel to process data
blocks. After it enters the ending stage, the processing
proceeds slower and slower, as more and more slots stop
running. All slots would eventually stop and mostly they
stop at different times. In general, the smaller the data
blocks, the closer the stop times of different slots. When
the total number of data blocks increases, the size of
them decreases accordingly, thus overall the stop times
of different slots get closer, which has the same effect as
increasing the average speed of the data processing in
the ending stage and hence decreases the MPCT. Al-
though they can yield shorter MPCT’s, larger values of
the total number of data blocks will increase the amount
of time it takes to duplicate the data blocks and distribute
all the copies to different VM’s, and will also increase the
maintenance overhead of the Hadoop Distributed File
System and the task assignment overhead of the JobTracker
Table 4 Simulation results of scenario two (Slightly heterogen
and relatively stable slot processing speeds)

RPC = 2.5

VPPT = ± 5% 2500

Number of blocks assigned according to the ECT rule 500

MPCT of Hadoop (time units) 185.4

MPCT of ECT (time units) 146.8

ECT reduction in MPCT 20.8%

NBRP under Hadoop 285.2

NBRP under ECT 0.9

ECT reduction in NBRP 99.7%
in a Hadoop cluster, which necessitates a wise tradeoff
between performance and overhead. Moreover, as the
data blocks become smaller, the distinction of the MPCT
performance between different task assignment schemes
also gets smaller, because in general a bad decision on the
assignment of a data block would increase the MPCT less
than it would when the data block is bigger. Consequently,
the MPCT reduction of ECT over the Hadoop scheme
decreases when the total number of data blocks in-
creases, as shown in Figures 2, 3 and 4 where the curves
of both schemes approach to each other while stretch-
ing to the right.
The processing time traces of one typical case are

shown in Figure 5. It can be seen that the time traces of
both schemes match perfectly except for the tail part.
This is because both schemes keep all slots running in
parallel until the ending stage, when there are not enough
remaining data blocks for the schemes to do so. And both
schemes have fairly close block completion times as
simulation results are the average of ten simulation
runs. The two time traces diverge at the tail. While the
ECT trace rises in slightly accelerated rate, the Hadoop
trace rises sharply. Since there are less and less slots
running in the ending stage, the data processing grad-
ually slows down, which causes the accelerated rising of
the ECT trace. On the other hand, the Hadoop scheme
eous environment, medium remote fetching overhead,

Total number of data blocks

3000 4000 5000 6000 7000 8000

1000 2000 3000 4000 5000 6000

182.6 160.7 146.8 138.2 132.2 130.0

145.7 132.9 123.8 120.0 117.6 116.0

20.2% 17.3% 15.6% 13.2% 11.1% 10.8%

89.6 214.1 306.9 365.5 411.2 443.1

15.0 23.6 36.4 85.0 135.6 176.6

83.3% 89.0% 88.1% 76.7% 67.0% 60.1%

Table 5 Simulation results of scenario three (Slightly heterogeneous environment, high remote fetching overhead, and
less stable slot processing speeds)

RPC = 4.0 Total number of data blocks

VPPT = ± 10% 2500 3000 4000 5000 6000 7000 8000

Number of blocks assigned according to the ECT rule 500 1000 2000 3000 4000 5000 6000

MPCT of Hadoop (time units) 260.1 249.1 210.0 186.9 170.5 160.8 155.3

MPCT of ECT (time units) 148.7 155.8 145.9 140.0 135.9 132.5 128.4

ECT reduction in MPCT 42.8% 37.4% 30.5% 25.1% 20.3% 17.6% 17.3%

NBRP under Hadoop 260.4 95.4 204.8 298.7 358.3 402.1 437.8

NBRP under ECT 0 0 0.1 1.7 6.6 14.6 26.6

ECT reduction in NBRP 100% 100% 100% 99.4% 98.2% 96.4% 93.9%

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 11 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
works reasonably well until most slots run out of local
blocks. From this point on until the end of the map
phase, the majority of the data blocks would be proc-
essed by remote slots, and large amount of remote pro-
cessing causes the sharp rise of the Hadoop trace.
Table 6 also includes the standard deviations of all

simulation results in addition to the averages. It can be
observed that, in scenarios one, two, and three where
there exists remote fetching overhead, the variance of
ECT results is always lower than the one of Hadoop
results for both MPCT and NBRP, and the higher the
overhead, the bigger the difference. The most significant
difference occurs in scenario three, where the standard
deviation of ECT MPCT is 8.8 time units compared
with Hadoop’s 34.7 time units, and the standard devi-
ation of ECT NBRP is 10.9 compared with Hadoop’s
96.4. This is because ECT has the capability to automat-
ically adapt to the congestion (contention) level of the
cluster network (VM disks), which the Hadoop scheme
doesn’t have. When the remote fetching overhead is
sufficiently high, remote processing of data blocks in
Table 6 Simulation results of slightly heterogeneous environm

One

RPC 1.5

VPPT ± 2.5%

Average of Hadoop MPCT (time units) 124.2

Standard deviation of Hadoop MPCT (time units) 9.3

Average of ECT MPCT (time units) 117.2

Standard deviation of ECT MPCT (time units) 7.0

ECT reduction in average MPCT 5.6%

Average NBRP under Hadoop 321.5

Standard deviation of NBRP under Hadoop 99.4

Average NBRP under ECT 226.6

Standard deviation of NBRP under ECT 80.7

ECT reduction in average NBRP 29.5%
the ending stage is mostly rejected by ECT. As shown
in Table 5, compared with the Hadoop scheme, ECT
only allows very limited (if any) number of data blocks
to be processed remotely at different total numbers of
data blocks in scenario three, which causes much more
stable NBRP and hence much more stable MPCT. The
benefit of stable NBRP and MPCT is that better per-
formance can be achieved by splitting the input file
into less number of data blocks, and hence incurring
less overhead.

Highly heterogeneous environment
For the highly heterogeneous environment, it can be rea-
soned out from the simulation settings that the shortest
possible processing time of one data block is 0.9 × 0.5 T =
0.45 T time units, and the longest possible processing
time 1.1 × 1.5 T = 1.65 T time units, which is larger than
three times the shortest time. As a result, ECT needs to
assign more data blocks during its first stage to obtain
the processing time estimates of all slots than it does in
the slightly heterogeneous environment. Therefore, for
ent

Scenario

Two Three Four

2.5 4.0 1.0

± 5% ± 10% ± 2.5%

150.1 192.5 111.9

18.8 34.7 4.9

127.1 137.5 110.4

10.8 8.8 5.1

15.3% 28.6% 1.4%

314.4 306.2 ―

97.4 96.4 ―

82.4 7.5 ―

60.2 10.9 ―

73.8% 97.5% ―

3000 4000 5000 6000 7000 8000 9000
110

120

130

140

150

160

170

180

190

Total Number of Data Blocks

M
ap

 P
h

as
e

C
o

m
p

le
ti

o
n

 T
im

e
(t

im
e

u
n

it
s) ECT

Hadoop

Figure 7 Map phase completion times of scenario two.
(Highly heterogeneous environment)

0 5 10 15 20 25
0

50

100

150

200

250

300

Number of Blocks Processed (in hundreds)

P
ro

ce
ss

in
g

 T
im

e
(t

im
e

u
n

it
s)

ECT
Hadoop

Figure 5 Processing time traces of scenario three. (Slightly
heterogeneous environment, Total Number of Data Blocks = 2500)

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 12 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
each of the four scenarios, we ran the simulation with
the total number of data blocks taking on values of
3000, 3500, 4000, … , 8500, which were slightly larger
than the values in the slightly heterogeneous environment.
Figures 6, 7 and 8 present the MPCT’s achieved by

both schemes at different total numbers of data blocks
in scenarios one, two and three, respectively. Simulation
results of different total numbers of data blocks in sce-
narios one, two and three are shown in Tables 7, 8 and 9,
respectively. (Only partial results are included due to
length limitation. All results are the average of ten simu-
lation runs.) The average results of ALL different total
numbers of data blocks for each scenario is shown in
Table 10, which indicate that the average MPCT achieved
by ECT is 12.2%, 22.0% and 33.7% less than the one
achieved by the Hadoop scheme, and the average NBRP
under ECT is 11.4%, 31.4% and 53.7% less than the one
under the Hadoop scheme in scenarios one, two and
3000 4000 5000 6000 7000 8000 9000
100

105

110

115

120

125

130

135

140

145

Total Number of Data Blocks

M
ap

 P
h

as
e

C
o

m
p

le
ti

o
n

 T
im

e
(t

im
e

u
n

it
s) ECT

Hadoop

Figure 6 Map phase completion times of scenario one.
(Highly heterogeneous environment)
three, respectively. Even in scenario four, where the remote
fetching overhead is zero, the average MPCT achieved by
ECT is still 7.0% less than the one achieved by the Hadoop
scheme. The MPCT reduction in this case is solely attrib-
uted to the ECT rule, which can yield better results than
the simple Hadoop strategy even when the slot processing
speeds fluctuate over time. And, the stabler the slot pro-
cessing speeds, the less the MPCT achieved by ECT is
expected to be due to the optimality of the ECT rule.
When comparing the results in Table 10 with the ones

in Table 6, we can see that both schemes assigned more
data blocks to remote slots in the highly heterogeneous
environment due to the increased heterogeneity. As a re-
sult, the average MPCT of the Hadoop scheme increases
slightly in scenarios one, two and three, where there
exists remote fetching overhead. There is no remote
fetching overhead in scenario four, hence the faster slots
would get assigned more remote blocks than they would
3000 4000 5000 6000 7000 8000 9000
120

140

160

180

200

220

240

260

Total Number of Data Blocks

M
ap

 P
h

as
e

C
o

m
p

le
ti

o
n

 T
im

e
(t

im
e

u
n

it
s) ECT

Hadoop

Figure 8 Map phase completion times of scenario three.
(Highly heterogeneous environment)

Table 7 Simulation results of scenario one (Highly heterogeneous environment, low remote fetching overhead, and
stable slot processing speeds)

RPC = 1.5 Total number of data blocks

VPPT = ± 2.5% 3000 3500 4500 5500 6500 7500 8500

Number of blocks assigned according to the ECT rule 725.1 1225.5 2226.0 3224.3 4225.7 5227.8 6224.3

MPCT of Hadoop (time units) 139.0 140.4 127.0 123.3 120.9 116.1 115.3

MPCT of ECT (time units) 119.8 116.7 111.8 108.5 106.9 105.1 104.1

ECT reduction in MPCT 13.8% 16.9% 11.9% 12.0% 11.6% 9.4% 9.7%

NBRP under Hadoop 435.3 468.4 631.3 733.7 883.4 1030.4 1145.0

NBRP under ECT 394.0 459.0 558.3 664.0 780.4 879.2 993.6

ECT reduction in NBRP 9.5% 2.0% 11.6% 9.5% 11.7% 14.7% 13.2%

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 13 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
in the first three scenarios. In the ending stage of scenario
four, most running slots would be those faster ones pro-
cessing remote blocks. Since the faster slots in the highly
heterogeneous environment are faster than the ones in
the slightly heterogeneous environment due to the simula-
tion settings, the average MPCT of the Hadoop scheme
in the former is less. On the other hand, ECT achieves
smaller MPCT’s in all four scenarios in the highly hetero-
geneous environment than it does in the slightly heteroge-
neous environment. This is because, in the former, the
slot base processing time t’s are evenly distributed within
a wider range compared with the latter, whereas the VPPT
still takes on the same values in all four scenarios. As a re-
sult, the distinction of slot processing times in the former
is larger. Consequently, the estimation error of slot pro-
cessing time impairs the optimality of the ECT rule to a
less extent when ECT projects and compares the comple-
tion times of different slots, which yields less MPCT’s.
Simulation results of the highly heterogeneous envir-

onment confirm again that ECT is much more robust to
network congestion (disk contention) than the Hadoop
scheme. As shown in Table 10, when RPC increases from
1.5 to 4.0, the average NBRP under ECT drops sharply
from 691.6 to 287.7 (a 58.4% decrease), and the average
MPCT achieved by ECT rises from 109.5 to 135.6 time
units (a 23.8% increase). In contrast, the average NBRP
Table 8 Simulation results of scenario two (Highly heterogen
and relatively stable slot processing speeds)

RPC = 2.5

VPPT = ± 5% 3000

Number of blocks assigned according to the ECT rule 700.1

MPCT of Hadoop (time units) 185.4

MPCT of ECT (time units) 138.9

ECT reduction in MPCT 25.1%

NBRP under Hadoop 423.6

NBRP under ECT 241.2

ECT reduction in NBRP 43.1%
under Hadoop only decreases from 780.6 to 621.8 (a 20.3%
decrease), and the average MPCT achieved by Hadoop
increases considerably from 124.7 to 204.5 time units
(a 64.0% increase). The processing time traces of one
typical case are shown in Figure 9, which exhibit the
similar pattern as the ones in Figure 5 due to the same
reason discussed in the previous section. Table 10 also
includes the standard deviations of all simulation results
in addition to the averages, which indicate again that
the ECT results are more stable than the Hadoop results.

ECT limitations
The proposed ECT scheme has its limitations. First, the
performance improvement of MPCT decreases when the
total number of data blocks increases for the reason ex-
plained earlier. Secondly, the performance improvement
of MPCT decreases when the remote fetching overhead
decreases. As discussed earlier, after most task slots run
out of local blocks, the Hadoop scheme will incur large
amount of remote processing which accounts for most
part of the MPCT performance difference between ECT
and the Hadoop scheme. Therefore, when the remote
fetching overhead decreases, the performance difference
decreases as well. Finally, the performance improvement
of NBRP decreases when the remote fetching overhead
decreases. This is because ECT will assign more data blocks
eous environment, medium remote fetching overhead,

Total number of data blocks

3500 4500 5500 6500 7500 8500

1199.5 2198.2 3200.3 4196.4 5200.1 6195.4

187.8 163.5 151.8 149.9 141.8 135.9

130.7 125.1 121.4 117.4 116.0 114.9

30.4% 23.5% 20.0% 21.7% 18.2% 15.5%

427.7 571.7 665.9 742.7 878.7 984.0

273.3 378.4 455.3 527.5 625.1 699.8

36.1% 33.8% 31.6% 29.0% 28.9% 28.9%

Table 9 Simulation results of scenario three (Highly heterogeneous environment, high remote fetching overhead, and
less stable slot processing speeds)

RPC = 4.0 Total number of data blocks

VPPT = ± 10% 3000 3500 4500 5500 6500 7500 8500

Number of blocks assigned according to the ECT rule 645.2 1140.3 2138.2 3142.3 4140.6 5136.1 6139.9

MPCT of Hadoop (time units) 256.0 254.7 219.7 195.9 190.5 177.8 169.0

MPCT of ECT (time units) 155.5 147.8 139.5 134.2 129.9 127.4 125.9

ECT reduction in MPCT 39.3% 42.0% 36.5% 31.5% 31.8% 28.3% 25.5%

NBRP under Hadoop 417.9 418.9 536.8 607.6 672.7 758.4 845.8

NBRP under ECT 119.1 151.2 206.7 268.4 340.5 400.7 457.3

ECT reduction in NBRP 71.5% 63.9% 61.5% 55.8% 49.4% 47.2% 45.9%

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 14 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
to remote task slots when the remote fetching overhead
decreases. Although the Hadoop scheme will do so as
well, ECT is much more sensitive to the remote fetching
overhead, and hence will assign more data blocks than
the Hadoop scheme.

Related work
Dean et al. introduced the MapReduce programming
model, implementation details, and various refinements
in [2]. Their work served as the fundamental basis for
the development of Hadoop, as well as all the following
research on both MapReduce and Hadoop.
Jiang et al. presented a comprehensive performance

study of Hadoop on Amazon EC2 in [12]. They identified
certain design factors of Hadoop and discussed alternative
methods for these factors. Their study indicated that
the performance of Hadoop could be remarkably im-
proved by tuning the design factors in a correct way.
Lee et al. presented a comprehensive survey on MapReduce
Table 10 Simulation results of highly heterogeneous environ

One

RPC 1.5

VPPT ± 2.5%

Average of Hadoop MPCT (time units) 124.7

Standard deviation of Hadoop MPCT (time units) 8.7

Average of ECT MPCT (time units) 109.5

Standard deviation of ECT MPCT (time units) 5.0

ECT reduction in average MPCT 12.2%

Average NBRP under Hadoop 780.6

Standard deviation of NBRP under Hadoop 242.3

Average NBRP under ECT 691.6

Standard deviation of NBRP under ECT 195.4

ECT Reduction in Average NBRP 11.4%
in [13]. They discussed the merits and drawbacks of
MapReduce, various improvement contributions in literature,
and remaining open issues regarding parallel processing
with MapReduce. Vijayalakshmi et al. introduced various
implementations of MapReduce in [14] including Hadoop.
They evaluated and compared the performance of different
implementations. The insights and experimental results
provided in the above papers are very helpful to the in-
depth understanding of Hadoop as well as the further
improvement on the framework.
Zaharia et al. [10] focused on the speculative execution

mechanism of Hadoop to reduce the job completion time.
They discussed all the Hadoop assumptions related to
speculative execution, and explained why these assump-
tions broke down in the clouds. They suggested a new
strategy of speculative execution, which always specula-
tively executed the task that was predicted to finish the
farthest into the future. The strategy launched a specu-
lative copy of any potential straggler tasks, before they
ment

Scenario

Two Three Four

2.5 4.0 1.0

± 5% ± 10% ± 2.5%

156.4 204.5 108.1

17.0 29.9 5.3

122.1 135.6 100.5

7.3 9.5 3.4

22.0% 33.7% 7.0%

685.1 621.8 ―

189.3 145.7 ―

469.7 287.7 ―

151.6 113.1 ―

31.4% 53.7% ―

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

Number of Blocks Processed (in hundreds)

P
ro

ce
ss

in
g

 T
im

e
(t

im
e

u
n

it
s)

ECT
Hadoop

Figure 9 Processing time traces of scenario three. (Highly
heterogeneous environment, Total Number of Data Blocks = 3500).

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 15 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
could actually prolong the completion of the whole
MapReduce job at the expense of extra resource expenses.
Whereas ECT works in a different way: it strives to
minimize the completion time of each processing step
of the map phase without any duplicated execution.
Pinedo discussed various deterministic scheduling models

in the first part of [15], including the model of uniform par-
allel machines that was related to the map task assignment
problem. Lawler et al. [16] pointed out that the problem
of scheduling identical jobs on uniform parallel machines
could be formulated as linear assignment problem and
solved accordingly in polynomial time. Dessouky et al.
[11] proposed a priority queue procedure for solving the
same problem, which was an optimal and more efficient
algorithm. The algorithm served as the basis of our im-
proved task assignment scheme.

Conclusion
In this paper, we discussed the issues with the Hadoop
task assignment scheme when Hadoop running in the
clouds. We presented an improved scheme ECT based on
an optimal algorithm for a related deterministic schedul-
ing problem. We further conducted extensive simulation
to evaluate the performance of ECT compared with the
Hadoop scheme. The simulation results confirmed that
ECT could significantly outperform the Hadoop scheme
with respect to both the completion time of map phase
and the amount of remote processing employed.
In future research, we plan to continue to address the

map task assignment problem based on other related
scheduling models. Also, we only focused on the task
assignment aspect of Hadoop in this paper. We plan to
address the job scheduling aspect, more specifically how
to shorten the overall map phase completion time of
multiple MapReduce jobs, which have different input
data block sizes.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The research presented in this paper is part of the Ph.D. dissertation of the
first author under the supervision of the second author. The two authors
read and approved the final manuscript.

Authors’ information
Wei Dai received the Bachelor of Engineering degree in Computer
Engineering in 1999 from Zhejiang University and the MS degree in
Computer Engineering in 2009 from the University of Central Florida. He is
currently a Ph.D. student in Computer Engineering at the University of
Central Florida, Orlando. His research interests include cloud computing,
data-intensive computing, and computer networks.
Mostafa Bassiouni received his BS and MS degrees in Computer Science
from Alexandria University and received the Ph.D. degree in Computer
Science from the Pennsylvania State University in 1982. He is currently a
professor of Computer Science at the University of Central Florida, Orlando.
His research interests include computer networks, distributed systems, real-time
protocols and concurrency control. He has authored and coauthored over 190
papers published in various computer journals, book chapters and conference
proceedings. His research has been supported by grants from ARO, ARPA, NSF,
STRICOM, PM-TRADE, CBIS, Harris, and the State of Florida. He is an Associate
Editor of the Computer Journal- Oxford University Press, Editor-in-Chief of
Electronics-MDPI, and an Editorial Board Member of four other journals. He
has served as member of the program committee of several conferences,
as the program committee chair of CSMA’98 and CSMA’2000 and as the
guest co-editor of a special issue of the Journal of Simulation Practice
and Theory, 2002.

Received: 1 October 2013 Accepted: 6 December 2013
Published: 18 December 2013

References
1. Gantz JF, Chute C, Manfrediz A, Minton S, Reinsel D, Schlichting W,

Toncheva A (2008) The Diverse and Exploding Digital Universe: An updated
forecast of worldwide information growth through 2011. IDC White Paper –
sponsored by EMC, Framingham, MA, USA

2. Dean J, Ghemawat S (2004) MapReduce: Simplified Data Processing on
Large Clusters. Proceedings of the 6th conference on Symposium on
Operating Systems Design & Implementation, Berkeley, CA, USA

3. Official Apache Hadoop Website. http://hadoop.apache.org. Accessed
30 Sep 2013

4. Hadoop Wiki. http://wiki.apache.org/hadoop/PoweredBy. Accessed 30
Sep 2013

5. Wikipedia: Apache Hadoop. http://en.wikipedia.org/wiki/Hadoop. Accessed
30 Sep 2013

6. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.
Accessed 30 Sep 2013

7. Gottfrid D (2007) Self-service, prorated supercomputing fun. http://open.
blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/.
Accessed 30 Sep 2013

8. White T (2012) Hadoop: The Definitive Guide, 3rd edition. O'Reilly Media,
Sebastopol, CA, USA

9. Lin J, Dyer C (2010) Data-Intensive Text Processing with MapReduce.
Morgan and Claypool Publishers, San Rafael, CA, USA

10. Zaharia M, Konwinski A, Joseph A, Katz R, Stoica I (2008) Improving
MapReduce Performance in Heterogeneous Environments. Proceedings of
the 8th USENIX conference on Operating Systems Design and
Implementation, Berkeley, CA, USA, pp 29–42

11. Dessouky M, Lageweg B, Lenstra J, van de Velde S (1990) Scheduling
identical jobs on uniform parallel machines. Statistica Neerlandica
44:115–123

12. Jiang D, Ooi BC, Shi L, Wu S (2010) The performance of MapReduce: an
in-depth study. Proc VLDB Endowment 3(1–2):472–483

13. Lee K, Lee Y, Choi H, Chung YD, Moon B (2011) Parallel data processing
with MapReduce: a survey. ACM SIGMOD Rec 40(4):11–20

14. Vijayalakshmi V, Akila A, Nagadivya S (2012) The Survey on MapReduce. Int J
Eng Sci Technol 4:07

http://hadoop.apache.org
http://wiki.apache.org/hadoop/PoweredBy
http://en.wikipedia.org/wiki/Hadoop
http://aws.amazon.com/ec2/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/

Dai and Bassiouni Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:23 Page 16 of 16
http://www.journalofcloudcomputing.com/content/2/1/23
15. Pinedo M (2012) Scheduling: Theory, Algorithms, and Systems. Springer,
New York, NY, USA

16. Lawler E, Lenstra J, Rinnooy Kan A (1982) Recent Developments in
Deterministic Sequencing and Scheduling. Deterministic and Stochastic
Scheduling. Springer Netherlands, Dordrecht, Netherlands,
pp 35–73

doi:10.1186/2192-113X-2-23
Cite this article as: Dai and Bassiouni: An improved task assignment
scheme for Hadoop running in the clouds. Journal of Cloud Computing:
Advances, Systems and Applications 2013 2:23.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Introduction
	Background: MapReduce and Hadoop
	Hadoop fault tolerance mechanisms

	Issues with the Hadoop task assignment scheme
	Related mathematical model
	The ECT task assignment scheme
	Evaluation
	Slightly heterogeneous environment
	Highly heterogeneous environment
	ECT limitations

	Related work
	Conclusion
	Competing interests
	Authors’ contributions
	Authors’ information
	References

