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Abstract
In this paper, we establish a general result on spherical maxima sharing the same
Lagrange multiplier of which the following is a particular consequence: Let X be a real
Hilbert space. For each r > 0, let Sr = {x ∈ X : ‖x‖2 = r}. Let J : X → R be a sequentially
weakly upper semicontinuous functional which is Gâteaux differentiable in X \ {0}.
Assume that lim supx→0

J(x)
‖x‖2 = +∞. Then, for each ρ > 0, there exists an open interval

I ⊆ ]0, +∞[ and an increasing function ϕ : I → ]0,ρ[ such that, for each λ ∈ I, one has
∅ �= {x ∈ Sϕ(λ) : J(x) = supSϕ(λ) J} ⊆ {x ∈ X : x = λJ′(x)}.

Here and in what follows, X is a real Hilbert space and J : X → R is a functional, with
J() = . For each r > , set

Sr =
{
x ∈ X : ‖x‖ = r

}
,

Br =
{
x ∈ X : ‖x‖ ≤ r

}
.

A point x̂ ∈ Sr such that

J(x̂) = sup
Sr

J

is called a spherical maximum of J . Assuming that J is C, spherical maxima are important
in connection with the eigenvalue problem

J ′(x) = μx. ()

Actually, if x̂ is a spherical maximum of J , by the classical Lagrange multiplier theorem,
there exists μx̂ ∈ R such that

J ′(x̂) = μx̂x̂.

More specifically, one could be interested in the multiplicity of solutions for (), in the
sense of finding someμ ∈ R for which there aremore points x satisfying (). In this connec-
tion, however, just because of dependence ofμx̂ on x̂, the existence ofmore spherical max-
ima in Sr does not imply automatically the existence of some μ ∈ R for which () has more
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solutions. So, in order to the multiplicity of solutions of (), it is important to know when,
at least for some r > , the spherical maxima in Sr share the same Lagrange multiplier.
The aim of the present note is to give a contribution along such a direction.
Here is our basic result.

Theorem  For some ρ > , assume that J is Gâteaux differentiable in int(Bρ) \ {} and
that

βρ

ρ
< δρ , ()

where

βρ = sup
Bρ

J

and

δρ = sup
x∈Bρ\{}

J(x)
‖x‖ .

Assume also that, for some a > , with

a >
ρ

ρδρ – βρ

if δρ < +∞, the restriction of the functional ‖ · ‖ – aJ(·) to Bρ is sequentially weakly lower
semicontinuous.
For each r ∈ ]βρ , +∞[, put

η(r) = sup
y∈Bρ

ρ – ‖y‖
r – J(y)

and

�(r) =
{
x ∈ Bρ :

ρ – ‖x‖
r – J(x)

= η(r)
}
.

Then the following assertions hold:
(i) the function η is convex and decreasing in ]βρ , +∞[, with limr→+∞ η(r) = ;
(ii) for each r ∈ ]βρ + ρ

a ,ρδρ[, the set �(r) is non-empty and, for every x̂ ∈ �(r), one has

 < ‖x̂‖ < ρ

and

x̂ ∈
{
x ∈ S‖x̂‖ : J(x) = sup

S‖x̂‖
J
}

⊆
{
x ∈ int(Bρ) : ‖x‖ – η(r)J(x) = inf

y∈Bρ

(‖y‖ – η(r)J(y)
)}

⊆
{
x ∈ X : x =

η(r)


J ′(x)
}
;
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(iii) for each r, r ∈ ]βρ + ρ

a ,ρδρ[, with r < r, and each x̂ ∈ �(r), ŷ ∈ �(r), one has

‖ŷ‖ < ‖x̂‖;

(iv) if A denotes the set of all r ∈ ]βρ + ρ

a ,ρδρ[ such that �(r) is a singleton, then the
function r → �(r) (r ∈ A) is continuous with respect to the weak topology; if, in
addition, J is sequentially weakly upper semicontinuous in Bρ , then �|A is
continuous with respect to the strong topology.

Before proving Theorem , let us recall a proposition from [] that will be used in the
proof.

Proposition  Let Y be a non-empty set, f , g : Y → R two functions, and a, b two real
numbers, with a < b. Let ya be a global minimum of the function f + ag and yb a global
minimum of the function f + bg .
Then one has g(yb) ≤ g(ya).

Proof of Theorem  By definition, the function η is the upper envelope of a family of func-
tions which are decreasing and convex in ]βρ , +∞[. So, η is convex and non-increasing.
We also have

η(r) ≤ ρ

r – βρ

()

for all r > βρ and so

lim
r→+∞η(r) = .

In turn, this implies that η is decreasing as it never vanishes. Now, fix r ∈ ]βρ + ρ

a ,ρδρ[. So,
we have

ρ

r – βρ

< a.

Consequently, by (),

η(r) < a.

Observe that, for each λ ∈ ],a[, the restriction to Bρ of the functional ‖ · ‖ – λJ(·) is
sequentially weakly lower semicontinuous. In this connection, it is enough to notice that

a
a – λ

(‖x‖ – λJ(x)
)
= ‖x‖ + λ

a – λ

(‖x‖ – aJ(x)
)
.

Fix a sequence {xn} in Bρ such that

lim
n→∞

ρ – ‖xn‖
r – J(xn)

= η(r).
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Up to a subsequence, we can suppose that {xn} converges weakly to some x̂r ∈ Bρ . Fix
ε ∈ ],η(r)[. For each n ∈N large enough, we have

ρ – ‖xn‖
r – J(xn)

> η(r) – ε

and so

‖xn‖ +
(
η(r) – ε

)(
r – J(xn)

)
< ρ.

But then, by sequential weak lower semicontinuity, we have

‖x̂r‖ +
(
η(r) – ε

)(
r – J(x̂r)

) ≤ lim inf
n→∞

(‖xn‖ + (
η(r) – ε

)(
r – J(xn)

)) ≤ ρ.

Hence, since ε is arbitrary, we have

‖x̂r‖ + η(r)
(
r – J(x̂r)

) ≤ ρ

and so

ρ – ‖x̂r‖
r – J(x̂r)

= η(r),

that is, x̂r ∈ �(r). Now, let x̂ be any point of �(r). Let us show that x̂ �= . Indeed, since
r
ρ
< δρ , there exists x̃ ∈ Bρ \ {} such that

J(x̃)
‖x̃‖ >

r
ρ
.

Clearly, this is equivalent to

ρ

r
<

ρ – ‖x̃‖
r – J(x̃)

.

So

ρ

r
<

ρ – ‖x̂‖
r – J(x̂)

and hence, since J() = , we have x̂ �= , as claimed. Clearly, ‖x̂‖ < ρ as η(r) > .Moreover,
if x ∈ S‖x̂‖ , we have


r – J(x)

≤ 
r – J(x̂)

from which we get

J(x̂) = sup
S‖x̂‖

J .
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Now, let u be any global maximum of J|S‖x̂‖ . Then we have

ρ – ‖u‖
r – J(u)

= η(r)

and so

‖u‖ – η(r)J(u) = ρ – rη(r)≤ ‖x‖ – η(r)J(x)

for all x ∈ Bρ . Hence, as ‖u‖ < ρ , the point u is a local minimum of the functional ‖ · ‖ –
η(r)J(·). Consequently, we have

u =
η(r)


J ′(u),

and the proof of (ii) is complete. To prove (iii), observe that


η(r)

= inf
‖x‖<ρ

r – J(x)
ρ – ‖x‖ .

As a consequence, for each r, r ∈ ]βρ + ρ

a ,ρδρ[, with r < r, and for each x̂ ∈ �(r),
ŷ ∈ �(r), we have

r – J(x̂)
ρ – ‖x̂‖ = inf

‖x‖<ρ

r – J(x)
ρ – ‖x‖

and

r – J(ŷ)
ρ – ‖ŷ‖ = inf

‖x‖<ρ

r – J(x)
ρ – ‖x‖ .

Therefore, in view of Proposition , we have


ρ – ‖ŷ‖ ≤ 

ρ – ‖x̂‖

and so

‖ŷ‖ ≤ ‖x̂‖.

We claim that

‖ŷ‖ < ‖x̂‖.

Arguing by contradiction, assume that ‖ŷ‖ = ‖x̂‖. In view of (ii), this would imply that
J(ŷ) = J(x̂) and so, at the same time,

ŷ =
η(r)


J ′(ŷ)

and

ŷ =
η(r)


J ′(ŷ).
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In turn, this would imply η(r) = η(r) and hence r = r, a contradiction. So, (iii) holds.
Finally, let us prove (iv). For each r ∈ A, continue to denote by�(r) the unique point of�(r).
Let r ∈ A and let {rk} be any sequence in A converging to r. Up to a subsequence, {�(rk)}
converges weakly to some x̃ ∈ Bρ . Moreover, for each k ∈N, x ∈ Bρ , one has

ρ – ‖x‖
rk – J(x)

≤ ρ – ‖�(rk)‖
rk – J(�(rk))

.

From this, after easy manipulations, we get

∥∥�(rk)
∥∥ –

ρ – ‖x‖
r – J(x)

J
(
�(rk)

)
–

(
ρ – ‖x‖
rk – J(x)

–
ρ – ‖x‖
r – J(x)

)
J
(
�(rk)

)

≤ ρ –
ρ – ‖x‖
rk – J(x)

rk . ()

Since the sequence {J(�(rk))} is bounded above, we have

lim sup
k→∞

(
ρ – ‖x‖
rk – J(x)

–
ρ – ‖x‖
r – J(x)

)
J
(
�(rk)

) ≤ . ()

On the other hand, by sequential weak semicontinuity, we also have

‖x̃‖ – ρ – ‖x‖
r – J(x)

J(x̃) ≤ lim inf
k→∞

(∥∥�(rk)
∥∥ –

ρ – ‖x‖
r – J(x)

J
(
�(rk)

))
. ()

Now, passing in () to the lim inf, in view of () and (), we obtain

‖x̃‖ – ρ – ‖x‖
r – J(x)

J(x̃) ≤ ρ –
ρ – ‖x‖
r – J(x)

r,

which is equivalent to

ρ – ‖x‖
r – J(x)

≤ ρ – ‖x̃‖
r – J(x̃)

.

Since this holds for all x ∈ Bρ , we have x̃ = �(r). So,�|A is continuous at rwith respect to the
weak topology. Now, assuming also that J is sequentially weakly upper semicontinuous, in
view of the continuity of η in ]βρ , +∞[, we have

lim
k→∞

ρ – ‖�(rk)‖
rk – J(�(rk))

=
ρ – ‖�(r)‖
r – J(�(r))

,

and hence

lim inf
k→∞

(
ρ –

∥∥�(rk)
∥∥) =

ρ – ‖�(r)‖
r – J(�(r))

lim inf
k→∞

(
rk – J

(
�(rk)

))

=
ρ – ‖�(r)‖
r – J(�(r))

(
r – lim sup

k→∞
J
(
�(rk)

))

≥ ρ – ‖�(r)‖
r – J(�(r))

(
r – J

(
�(r)

))
= ρ –

∥∥�(r)
∥∥
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from which

lim sup
k→∞

∥∥�(rk)
∥∥ ≤ ∥∥�(r)

∥∥.

Since X is a Hilbert space and {�(rk)} converges weakly to �(r), this implies that

lim
k→∞

∥∥�(rk) – �(r)
∥∥ = ,

which shows the continuity of �|A at r in the strong topology. �

Remark  Clearly, when J is sequentially weakly upper semicontinuous in Bρ , the asser-
tions of Theorem  hold in thewhole interval ]βρ ,ρδρ[, since a can be any positive number.

Remark  The simplest way to satisfy condition () is, of course, to assume that

lim sup
x→

J(x)
‖x‖ = +∞.

Another reasonable way is provided by the following proposition.

Proposition  For some s > , assume that J is Gâteaux differentiable in Bs \ {} and that
there exists a global maximum x̂ of J|Bs such that

〈
J ′(x̂), x̂

〉
< J(x̂).

Then () holds with ρ = ‖x̂‖.

Proof For each t ∈ ], ], set

ω(t) =
J(tx̂)
‖tx̂‖ .

Clearly, ω is derivable in ], ]. In particular, one has

ω′() =
〈J ′(x̂), x̂〉 – J(x̂)

‖x̂‖ .

So, by assumption, ω′() <  and hence, in a left neighborhood of , we have

ω(t) > ω(),

which implies the validity of () with ρ = ‖x̂‖. �

Also, notice the following consequence of Theorem .

Theorem  For some ρ > , let the assumptions of Theorem  be satisfied.
Then there exists an open interval I ⊆ ], +∞[ and an increasing function ϕ : I → ],ρ[

such that, for each λ ∈ I , one has

∅ �=
{
x ∈ Sϕ(λ) : J(x) = sup

Sϕ(λ)

J
}

⊆ {
x ∈ X : x = λJ ′(x)

}
.
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Proof Take

I =


η

(]
βρ +

ρ

a
,ρδρ

[)
.

Clearly, I is an open interval since η is continuous and decreasing. Now, for each r ∈ ]βρ +
ρ

a ,ρδρ[, pick vr ∈ �(r). Finally, set

ϕ(λ) = ‖vη–(λ)‖

for all λ ∈ I . Taking (iii) into account, we then realize that the function ϕ (whose range is
contained in ],ρ[) is the composition of two decreasing functions, and so it is increasing.
Clearly, the conclusion follows directly from (ii). �

We conclude deriving from Theorem  the following multiplicity result.

Theorem  For some ρ > , assume that J is sequentially weakly upper semicontinuous
in Bρ , Gâteaux differentiable in int(Bρ) \ {} and satisfies ().Moreover, assume that there
exists ρ̃ satisfying

inf
x∈D‖x‖ < ρ̃ < sup

x∈D
‖x‖, ()

where

D =
⋃

r∈]βρ ,ρδρ [

�(r),

such that J|Sρ̃
has either two global maxima or a global maximum at which J ′ vanishes.

Then there exists λ̃ >  such that the equation

x = λ̃J ′(x)

has at least two non-zero solutions which are global minima of the restriction of the func-
tional 

‖ · ‖ – λ̃J(·) to int(Bρ).

Proof For each r ∈ ]βρ ,ρδρ[, in view of (), we can pick vr ∈ �(r) (recall Remark ), so that

inf
]βρ ,ρδρ [

ψ < ρ̃ < sup
]βρ ,ρδρ [

ψ , ()

where

ψ(r) = ‖vr‖.

Two cases can occur. First, assume that ρ̃ ∈ ψ(]βρ ,ρδρ[). So, ψ(r̃) = ρ̃ for some r̃ ∈
]βρ ,ρδρ[. So, by (ii), for each globalmaximumu of J|Sρ̃

, we have J ′(u) �= .As a consequence,
in this case, J|Sρ̃

has at least two global maxima which, by (ii) again, satisfies the conclusion
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with λ̃ = 
η(r̃). Now, suppose that ρ̃ /∈ ψ(]βρ ,ρδρ[). In this case, in view of (), the func-

tionψ is discontinuous and hence, in view of (iv), there exists some r∗ ∈ ]βρ ,ρδρ[ such that
�(r∗) has at least two elements which, by (ii), satisfy the conclusion with λ̃ = 

η(r
∗). �
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