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Abstract
Background: Microarray data analysis is notorious for involving a huge number of genes
compared to a relatively small number of samples. Gene selection is to detect the most significantly
differentially expressed genes under different conditions, and it has been a central research focus.
In general, a better gene selection method can improve the performance of classification
significantly. One of the difficulties in gene selection is that the numbers of samples under different
conditions vary a lot.

Results: Two novel gene selection methods are proposed in this paper, which are not affected by
the unbalanced sample class sizes and do not assume any explicit statistical model on the gene
expression values. They were evaluated on eight publicly available microarray datasets, using leave-
one-out cross-validation and 5-fold cross-validation. The performance is measured by the
classification accuracies using the top ranked genes based on the training datasets.

Conclusion: The experimental results showed that the proposed gene selection methods are
efficient, effective, and robust in identifying differentially expressed genes. Adopting the existing
SVM-based and KNN-based classifiers, the selected genes by our proposed methods in general give
more accurate classification results, typically when the sample class sizes in the training dataset are
unbalanced.

Background
DNA microarray is a technology that can simultaneously
measure the expression levels of thousands of genes in a
single experiment. It is commonly used for comparing the
gene expression levels in tissues under different condi-
tions, such as wild-type versus mutant, or healthy versus
diseased [1]. Some of the genes are expected to be differ-
entially modulated in tissues under different conditions,
with their expression levels increased or decreased to sig-
nify the experimental conditions. These discriminatory
genes are very useful in clinical applications such as recog-

nizing diseased profiles. However, due to high cost, the
number of experiments that can be used for classification
purpose is usually limited. This small number of experi-
ments, compared to the large number of genes in an
experiment, wakes up "the curse of dimensionality" and
challenges the classification task and other data analysis
in general. It is well-known that quite a number of genes
are house-keeping genes and many others could be unre-
lated to the classification task [2]. Therefore, an important
step to effective classification is to identify the discrimina-
tory genes thus to reduce the number of genes used for
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classification purpose. This step of discriminatory gene
identification is generally referred to as gene selection. Gene
selection is a pre-requisite in many applications [3]. It
should be noted that, often, the number of unrelated
genes is much larger than the number of discriminatory
genes.

There are a variety of gene selection methods proposed in
the last a few years [2,4,5]. Among them, some methods
assume explicit statistical models on the gene expression
data. For example, Baldi and Long [4] developed a Gaus-
sian gene-independent model on the gene expression
data, and implemented a t-test combined with a full Baye-
sian treatment for gene selection. These methods assum-
ing certain models are referred to as model-based gene
selection methods. Other methods do not assume any
specific distribution model on the gene expression data
and they are referred to as model-free gene selection meth-
ods. For example, Xiong et al. [2] suggested a method to
select genes through the space of feature subsets using
classification errors. Guyon et al. [5] proposed a gene
selection approach utilizing support vector machines
based on recursive feature elimination. It has been
reported that the results of model-free gene selection
methods may be influenced by the classification methods
chosen for scoring the genes [6]. Nonetheless, model-
based gene selection methods lack of adaptability,
because it is unlikely possible to construct a universal
probabilistic analysis model that is suitable for all kinds of
gene expression data, where noise and variance may vary
dramatically across different gene expression data [6]. In
this sense, model-free gene selection methods are more
desirable than model-based ones.

Gene selection is to provide a subset of a small number of
discriminatory, or the most relevant, genes that can effec-
tively recognize the class to which a testing sample
belongs. That is, it is to provide a classifier such that the
classification error is minimized. The known dataset that
is used for learning the classifier, or equivalently for gene
selection, is referred to as the training dataset. In a training
dataset, every sample is labeled with its known class.
Notice that if one class is significantly larger than the oth-
ers, then the trained classifier might be biased. Therefore,
the desired gene selection methods are those that are not
affected by the sizes of classes in the training dataset. A
gene selection method is called stable if the selected genes
are kept the same when duplicating all the samples in any
class in the training dataset.

In this paper, we propose two novel gene scoring func-
tions s1(·) and s2(·) to design two stable gene selection
methods GS1 and GS2 [see Additional file 5], respectively,
to be detailed in the Methods section. According to the
classification scheme proposed in [6], our proposed gene

selection methods are single gene scoring approaches.
These two gene scoring functions non-trivially incorpo-
rate the means and the variations of the expression values
of genes in the samples belonging to a common class,
based on a very general assumption that discriminatory
genes are those having different means across different
classes, small intra-class variations and relatively large inter-
class variations. This spherical data assumption does not
involve any specific statistical model, and in this sense,
the resultant gene selection methods GS1 and GS2 could
be regarded as model-free. They are also shown to be sta-
ble theoretically.

Results and discussion
We have applied our gene selection methods GS1 and
GS2 based on the gene scoring functions s1(·) and s2(·),
respectively, to a total of 8 publicly available microarray
datasets [7]: the leukemia (LEU) dataset [8], the small round
blue cell tumors (SRBCT) dataset [9], the malignant glioma
(GLIOMA) dataset [10], the human lung carcinomas
(LUNG) dataset [11], the human carcinomas (CAR) dataset
[12], the mixed-lineage leukemia (MLL) dataset [13], the
prostate (PROSTATE) dataset [14], and the diffuse large B-
cell lymphoma (DLBCL) dataset [15], the first two of which
have been used for several similar testings of gene selec-
tion methods. On each dataset, one portion was used as
the training dataset for our methods to score the genes
and the other portion was used as the testing dataset. For
each specified number x we reported the classification
accuracy, on the testing dataset, of the classifier based on
the top ranked x genes using the training dataset. The
quality of these top ranked x genes is justified on two
aspects: 1) the classification accuracy of the resultant clas-
sifier on the testing datasets, and 2) for the first two data-
sets LEU and SRBCT, the stability when the training
datasets were partially changed. All the experiments were
conducted in MATLAB [16] environment on a Pentium IV
PC with a 2.4 GHz processor and a 512 MB RAM.

The datasets
The LEU dataset contains in total 72 samples in two
classes, acute lymphoblastic leukemia (ALL) and acute mye-
loid leukemia (AML), which contain 47 and 25 samples,
respectively. Every sample contains 7,129 gene expression
values. We adopted the pretreatment method proposed in
[1] to remove about half the genes and subsequently every
sample contains only 3, 571 gene expression values.

The SRBCT dataset contains in total 83 samples in four
classes, the Ewing family of tumors (EWS), Burkitt lymphoma
(BL), neuroblastoma (NB) and rhabdomyosarcoma (RMS)
[9]. Every sample in this dataset contains only 2,308 gene
expression values. Among the 83 samples, 29, 11, 18, and
25 samples belong to classes EWS, BL, NB and RMS,
respectively.
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The GLIOMA dataset [10] contains in total 50 samples in
four classes, cancer glioblastomas (CG), non-cancer glioblast-
omas (NG), cancer oligodendrogliomas (CO) and non-cancer
oligodendrogliomas (NO), which have 14,14, 7,15 samples,
respectively. Each sample has 12625 genes. We adopted a
standard filtering method [10], that is, genes with mini-
mal variations across the samples were removed. For this
dataset, intensity thresholds were set at 20 and 16,000
units. Genes whose expression levels varied < 100 units
between samples, or varied < 3 fold between any two sam-
ples, were excluded. After preprocessing, we obtained a
dataset with 50 samples and 4433 genes.

The LUNG dataset [11] contains in total 203 samples in
five classes, adenocarcinomas, squamous cell lung carcinomas,
pulmonary carcinoids, small-cell lung carcinomas and normal
lung, which have 139, 21, 20, 6,17 samples, respectively.
Each sample has 12600 genes. The genes with standard
deviations smaller than 50 expression units were removed
and we obtained a dataset with 203 samples and 3312
genes [11].

The CAR dataset [12] contains in total 174 samples in
eleven classes, prostate, bladder/ureter, breast, colorectal, gas-
troesophagus, kidney, liver, ovary, pancreas, lung adenocarci-
nomas, and lung squamous cell carcinoma, which have 26, 8,
26, 23,12,11, 7, 27, 6,14,14 samples, respectively. Each
sample contains 12533 genes. In our experiment, we pre-
processed dataset as described in [12]. We included only
those probe sets whose maximum hybridization intensity
(AD) in at least one sample was 200, all AD values ≤ 20,
including negative AD values, were raised to 20, and the
data were log transformed. After preprocessing, we
obtained a dataset with 174 samples and 9182 genes.

The MLL dataset [13] contains in total 72 samples in three
classes, acute lymphoblastic leukemia (ALL), acute myeloid
leukemia (AML), and mixed-lineage leukemia gene (MLL),
which have 24, 28, 20 samples, respectively. In our exper-
iment, intensity thresholds were set at 100 – 16000 units.
Then the relative variation of expressions for each gene
was determined by dividing the maximum expression for
the gene among all samples (max) over the minimum
expression (min), i.e. max/min. We filtered out the genes
with max/min ≤ 5 or (max - min) ≤ 500, that is, for max/
min fold variation, we excluded genes with less than 5-
fold variation and, for (max - min) absolute variation, we
excluded genes with less than 500 units absolute. After
preprocessing, we obtained a dataset with 72 samples and
8685 genes.

The PROSTATE dataset [14] contains in total 102 samples
in two classes tumor and normal, which have 52 and 50
samples, respectively. The original dataset contains 12600
genes. In our experiment, intensity thresholds were set at

100 – 16000 units, the same as in the MLL dataset. Then
we filtered out the genes with max/min ≤ 5 or (max - min)
≤ 50. After preprocessing, we obtained a dataset with 102
samples and 5966 genes.

The DLBCL dataset [15] contains in total 77 samples in
two classes, diffuse large B-cell lymphomas (DLBCL) and fol-
licular lymphoma (FL) which have 58 and 19 samples,
respectively. The original dataset contains 7129 genes. We
set intensity thresholds at 20 – 16000 units, then we fil-
tered out genes with max/min ≤ 3 or (max - min) ≤ 100.
After preprocessing, we obtained a dataset with 77 sam-
ples and 6285 genes.

Among the above 8 datasets [see Additional files 3 and 4],
the first two, LEU and SRBCT, have been used frequently
for testing gene selection methods and classifiers. For each
of them, if we use the ratio of the largest class size divided
by the smallest class size to represent the level of unbal-
ance, then the fifth dataset CAR is the most unbalanced.
In our experiments, we have run every gene selection
method on each of the 8 datasets to rank the genes, and
for every x ≤ 100, the classification accuracies of the clas-
sifier built using the top ranked x genes have been col-
lected [see Additional file 1]. We chose to present part of
the classification accuracies on datasets SRBCT and CAR
in details (as plots) and to present only three values for x,
30, 60, and 100, for all eight datasets (as tables).

Classification accuracies
Using the top ranked genes selected by a gene selection
method, together with their expression values in the train-
ing dataset, one can build a classifier that will decide for
each testing sample the class it belongs to. Only the
expression values for those selected genes in the testing
sample are used for such a decision making. This is a
standard way to test the quality of those selected genes, to
examine how well the resulting classifier performs. Note
that testing samples are not included in the training data-
set. To this purpose, we define the classification accuracy to
be the percentage of the correct decisions made by the
classifier on the testing samples. We have compared our
methods GS1 and GS2 with two other model-free gene
selection methods Cho's [17] and F-test [1]. In our exper-
iments, we have adopted two ways to build a classifier
using the selected genes, one is through Support Vector
Machines (SVMs) [5] and the other is through K-Nearest-
Neighbor (KNN) search [1]. Essentially, SVMs compute a
decision plane to separate the set of chips (in the training
dataset) having different class memberships, and use this
plane to predict the class memberships for testing chips.
There are a number of kernels used in SVMs models for
decision plane computing and we chose a linear kernel as
described in [5]. A KNN classifier ascertains the class of a
testing sample by analyzing its K nearest neighbors in the
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training dataset [1]. We chose the Euclidean distance in
our KNN classifier with K = 5 and predicted the class by
majority vote [1]. The SVM we used in MATLAB is from
[18] and we coded the KNN by ourselves. For ease of pres-
entation, the achieved classifiers are referred to as the
SVM-classifier and the KNN-classifier, respectively.

Figures 1 and 2 plot the classification accuracies of the
SVM-classifier based on four gene selection methods GS1,
GS2, Cho's, and F-test, on the SRBCT and CAR datasets,
respectively. These classification accuracies were obtained
through Leave-One-Out (LOO) cross validation. In LOO
cross validation, one sample was left out as a testing sam-
ple and the remaining were used as the training dataset,
and this was done for every sample in the dataset. We have
also conducted 5-Fold cross validation, in which each
dataset was randomly partitioned into 5 parts of equal
size and in every experiment four parts were used as the
training dataset (the fifth part was used as the testing data-
set). This was done for every four parts in the dataset and
the process (that is, random partition, training, and test-
ing) was repeated for 100 times. The average accuracy over
all these 500 testing datasets was taken as the 5-Fold cross
validation classification accuracy. All plots of the 5-Fold
(and the other LOO) cross validation classification accu-
racies of the SVM-classifier and the KNN-classifier based
on four gene selection methods GS1, GS2, Cho's, and F-
test, on the eight datasets are included in Additional file 1.
Especially, columns 2-4 (and 6–8) in Tables 1, 2, 3, 4, 5,
6, 7, 8 record these cross validation classification accura-
cies, for only three numbers of top ranked genes, that is,
30, 60, and 100. Column 5 (and column 9) records the
highest cross validation classification accuracies on these

eight datasets ever achieved by the SVM-classifier and the
KNN-classifier, respectively, as well as the associated num-
bers of selected genes (no more than 100 genes were
used).

Note that in the 5-fold cross validation, the classification
accuracy is calculated as the average of 500 classification
accuracies on 500 testing datasets. We have also collected
their standard deviations [see Additional file 2]. For three
numbers 30, 60, and 100, the standard deviations are
included in Tables 1, 2, 3, 4, 5, 6, 7, 8. Essentially, all these
four gene selection methods, GS1, GS2, Cho's, and F-test,
have very close standard deviations, and these standard
deviations seem to be independent of classifier and data-
set. Consequently, looking at all the classification accura-
cies as shown in Figures 1, 2 and Tables 1, 2, 3, 4, 5, 6, 7,
8, one general conclusion is that our gene selection meth-
ods, GS1 and GS2, perform at least comparably well to F-
test and Cho's, on all 8 datasets using both the SVM-clas-
sifier and the KNN-classifier. Typically, our methods out-
perform significantly the other two methods on datasets
SRBCT, GLIOMA, LUNG, and CAR, which have unbal-
anced class sizes.

Stability of the gene selection methods
Given a training dataset (in this case, we take the whole
dataset as the training dataset), to test the stability of a
gene selection method we duplicated all the samples in
one class to produce a duplicated dataset. Our gene selec-
tion methods GS1 and GS2 are shown to be stable theo-
retically (cf. Methods section) and therefore are not
subjects to such a test. For each of Cho's and F-test, it was
applied on the duplicated datasets to report the same

The leave-one-out cross validation classification accuracies of the SVM-classifier on four gene selection methods, GS1, GS2, Cho's, and F-test, on the SRBCT datasetFigure 1
The leave-one-out cross validation classification accuracies of the SVM-classifier on four gene selection methods, GS1, GS2, 
Cho's, and F-test, on the SRBCT dataset.
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numbers of genes as it was applied to the original training
dataset, and then the percentages of the common genes
were recorded. Note that the LEU dataset and the SRBCT
dataset give 2 and 4 duplicated datasets, respectively.
Table 9 collects these percentages.

We have also performed a similar experiment to test the
stability when a small portion of the samples were

removed from the training dataset. For each class in a
training dataset, it was divided into three parts of equal
size and every time one part was removed from the dataset
to obtain a reduced dataset. Then again, the percentages of
the common selected genes using the original dataset and
the reduced datasets were recorded. We tried in total 1000
random divisions and the average of 3000 percentages
was taken to be the stability for this class. Table 10 collects

Table 1: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the SRBCT dataset. Listed are the accuracies when the numbers of 
selected genes are 30, 60, and 100, respectively, together with their standard deviations for 5-fold cross validation, and the best 
accuracy together with the number of selected genes.

SRBCT 5-
Fold

KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.953 ± 0.048 0.971 ± 0.041 0.980 ± 0.038 0.981/90 0.949 ± 0.047 0.976 ± 0.040 0.990 ± 0.026 0.990/99
GS1 0.941 ± 0.047 0.961 ± 0.045 0.977 ± 0.041 0.980/88 0.959 ± 0.054 0.978 ± 0.040 0.988 ± 0.030 0.979/93

Cho's 0.820 ± 0.096 0.864 ± 0.093 0.896 ± 0.087 0.902/98 0.835 ± 0.088 0.918 ± 0.069 0.943 ± 0.062 0.943/98
F-test 0.963 ± 0.050 0.973 ± 0.046 0.978 ± 0.040 0.980/90 0.970 ± 0.042 0.980 ± 0.039 0.992 ± 0.021 0.992/95

SRBCT LOO KNN SVMs

30 60 100 Best 
Accuracy/
#Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.964 0.976 0.964 0.988/77 0.952 0.976 1.000 1.000/96
GS1 0.964 0.988 0.988 0.988/57 0.976 0.988 0.988 0.988/34

Cho's 0.831 0.880 0.892 0.928/82 0.819 0.928 0.964 0.988/80
F-test 0.976 0.976 0.988 0.988/89 0.976 0.980 0.988 1.000/78

The leave-one-out cross validation classification accuracies of the SVM-classifier on four gene selection methods, GS1, GS2, Cho's, and F-test, on the CAR datasetFigure 2
The leave-one-out cross validation classification accuracies of the SVM-classifier on four gene selection methods, GS1, GS2, 
Cho's, and F-test, on the CAR dataset.
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Table 3: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the LEU dataset.

LEU 5-Fold KNN SVMs

30 60 100 Best 
Accuracy/
#Genes

30 60 100 Best 
Accuracy/
#Genes

GS2 0.961 ± 0.048 0.968 ± 0.044 0.971 ± 0.040 0.971/85 0.958 ± 0.052 0.967 ± 0.047 0.974 ± 0.039 0.974/98
GS1 0.965 ± 0.048 0.973 ± 0.040 0.979 ± 0.034 0.979/100 0.965 ± 0.050 0.970 ± 0.043 0.979 ± 0.037 0.979/93

Cho's 0.958 ± 0.049 0.963 ± 0.046 0.968 ± 0.043 0.968/100 0.953 ± 0.054 0.962 ± 0.053 0.970 ± 0.043 0.970/98
F-test 0.960 ± 0.049 0.966 ± 0.045 0.974 ± 0.038 0.974/96 0.957 ± 0.055 0.968 ± 0.049 0.975 ± 0.039 0.975/99

LEU LOO KNN SVMs

30 60 100 Best 
Accuracy/
#Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.944 0.972 0.958 0.986/10 0.958 0.958 0.972 0.986/25
GS1 0.958 0.986 0.972 0.986/60 0.972 0.986 0.986 0.986/4

Cho's 0.944 0.944 0.958 0.972/9 0.958 0.958 0.986 0.986/80
F-test 0.944 0.944 0.972 0.986/25 0.958 0.958 0.972 0.986/33

Table 2: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the CAR dataset.

CAR 5-Fold KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.578 ± 0.118 0.810 ± 0.084 0.865 ± 0.059 0.865/100 0.528 ± 0.116 0.812 ± 0.080 0.870 ± 0.053 0.870/100
GS1 0.634 ± 0.136 0.831 ± 0.079 0.874 ± 0.058 0.874/100 0.600 ± 0.140 0.824 ± 0.076 0.885 ± 0.050 0.885/100

Cho's 0.471 ± 0.091 0.676 ± 0.083 0.797 ± 0.070 0.797/100 0.437 ± 0.089 0.651 ± 0.085 0.821 ± 0.066 0.821/100
F-test 0.681 ± 0.091 0.788 ± 0.071 0.851 ± 0.065 0.851/100 0.649 ± 0.093 0.802 ± 0.071 0.868 ± 0.056 0.868/100

CAR LOO KNN SVMs

30 60 100 Best 
Accuracy/
#Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.621 0.828 0.885 0.885/99 0.557 0.822 0.868 0.874/71
GS1 0.718 0.822 0.868 0.879/97 0.695 0.828 0.902 0.902/100

Cho's 0.448 0.661 0.787 0.805/88 0.466 0.661 0.851 0.879/97
F-test 0.707 0.776 0.856 0.862/85 0.626 0.793 0.874 0.885/97
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Table 5: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the LUNG dataset.

LUNG 5-Fold KNN SVMs

30 60 100 Best 
Accuracy/
#Genes

30 60 100 Best 
Accuracy/
#Genes

GS2 0.884 ± 0.053 0.916 ± 0.041 0.928 ± 0.037 0.928/100 0.858 ± 0.061 0.913 ± 0.035 0.931 ± 0.033 0.931/99
GS1 0.890 ± 0.046 0.919 ± 0.041 0.937 ± 0.034 0.937/99 0.871 ± 0.051 0.922 ± 0.038 0.938 ± 0.031 0.938/98

Cho's 0.843 ± 0.053 0.897 ± 0.044 0.924 ± 0.038 0.924/100 0.803 ± 0.065 0.894 ± 0.044 0.924 ± 0.035 0.924/100
F-test 0.873 ± 0.049 0.882 ± 0.044 0.918 ± 0.044 0.918/100 0.852 ± 0.055 0.901 ± 0.042 0.930 ± 0.036 0.930/100

LUNG LOO KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.892 0.906 0.921 0.931/44 0.867 0.892 0.931 0.931/73
GS1 0.887 0.941 0.941 0.951/49 0.862 0.941 0.941 0.951/51

Cho's 0.837 0.897 0.921 0.926/86 0.773 0.892 0.931 0.941/88
F-test 0.872 0.877 0.901 0.921/89 0.857 0.901 0.926 0.936/94

Table 4: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the GLIOMA dataset.

GLIOMA 5-
Fold

KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.660 ± 0.141 0.670 ± 0.140 0.671 ± 0.140 0.676/90 0.651 ± 0.134 0.679 ± 0.133 0.699 ± 0.131 0.701/97
GS1 0.674 ± 0.143 0.677 ± 0.148 0.679 ± 0.141 0.684/97 0.659 ± 0.145 0.698 ± 0.137 0.720 ± 0.138 0.722/99

Cho's 0.659 ± 0.145 0.660 ± 0.141 0.652 ± 0.131 0.664/31 0.618 ± 0.141 0.662 ± 0.131 0.668 ± 0.132 0.670/96
F-test 0.647 ± 0.140 0.663 ± 0.142 0.667 ± 0.133 0.674/91 0.639 ± 0.138 0.672 ± 0.131 0.684 ± 0.130 0.685/84

GLIOMA 
LOO

KNN SVMs

30 60 100 Best 
Accuracy/
#Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.760 0.700 0.660 0.780/28 0.700 0.660 0.760 0.760/96
GS1 0.700 0.760 0.740 0.780/35 0.680 0.700 0.760 0.760/45

Cho's 0.720 0.640 0.640 0.820/20 0.640 0.680 0.620 0.720/2
F-test 0.700 0.660 0.700 0.780/70 0.640 0.620 0.740 0.740/100
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Table 7: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the MLL dataset.

MLL 5-Fold KNN SVMs

30 60 100 Best 
Accuracy/
#Genes

30 60 100 Best 
Accuracy/
#Genes

GS2 0.937 ± 0.056 0.947 ± 0.055 0.948 ± 0.053 0.949/91 0.926 ± 0.058 0.941 ± 0.052 0.947 ± 0.051 0.947/87
GS1 0.946 ± 0.054 0.940 ± 0.057 0.942 ± 0.058 0.948/29 0.932 ± 0.059 0.947 ± 0.053 0.952 ± 0.050 0.952/99

Cho's 0.950 ± 0.048 0.954 ± 0.048 0.960 ± 0.045 0.960/93 0.942 ± 0.051 0.946 ± 0.050 0.955 ± 0.048 0.955/89
F-test 0.949 ± 0.050 0.950 ± 0.050 0.953 ± 0.051 0.954/99 0.943 ± 0.051 0.945 ± 0.053 0.948 ± 0.051 0.948/100

MLL LOO KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.944 0.958 0.972 0.972/90 0.917 0.958 0.944 0.972/91
GS1 0.958 0.944 0.958 0.972/97 0.958 0.958 0.958 0.972/56

Cho's 0.944 0.944 0.958 0.972/23 0.944 0.931 0.944 0.958/44
F-test 0.944 0.944 0.958 0.958/65 0.944 0.931 0.944 0.958/31

Table 6: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the DLBCL dataset.

DLBCL 5-
Fold

KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.881 ± 0.081 0.906 ± 0.078 0.914 ± 0.074 0.916/98 0.872 ± 0.081 0.918 ± 0.068 0.933 ± 0.054 0.933/98
GS1 0.878 ± 0.078 0.895 ± 0.075 0.903 ± 0.076 0.903/100 0.861 ± 0.079 0.895 ± 0.075 0.917 ± 0.066 0.918/98

Cho's 0.874 ± 0.085 0.909 ± 0.075 0.920 ± 0.072 0.920/99 0.869 ± 0.085 0.915 ± 0.068 0.930 ± 0.061 0.930/99
F-test 0.877 ± 0.079 0.893 ± 0.078 0.902 ± 0.080 0.902/100 0.869 ± 0.079 0.910 ± 0.074 0.925 ± 0.063 0.926/95

DLBCL LOO KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/# 

Genes

GS2 0.883 0.922 0.922 0.935/70 0.896 0.961 0.948 0.961/55
GS1 0.896 0.896 0.922 0.922/85 0.870 0.883 0.961 0.961/81

Cho's 0.883 0.922 0.922 0.935/69 0.909 0.896 0.948 0.961/74
F-test 0.896 0.896 0.883 0.922/61 0.857 0.935 0.948 0.961/92
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Table 9: The percentages of genes that were re-selected by Cho's and F-test on duplicated datasets, of the whole LEU and the SRBCT 
datasets, respectively.

Method x Whole Dataset

SRBCT LEU

EWS BL NB RMS ALL AML

Cho's 30 90.0% 93.3% 90.0% 86.7% 96.7% 83.0%
74 90.5% 89.2% 91.9% 91.9% 93.2% 86.5%
100 90.0% 94.0% 92.0% 91.0% 92.0% 90.0%

F-test 30 90.7% 85.3% 86.7% 89.3% 83.3% 83.3%
74 90.7% 85.3% 86.7% 83.3% 86.7% 89.3%
100 89.0% 87.0% 88.0% 86.0% 92.0% 87.0%

Table 8: The leave-one-out and 5-fold cross validation classification accuracies of the SVM-classifier and the KNN-classifier based on 
four gene selection methods, GS1, GS2, Cho's, and F-test, on the PROSTATE dataset.

PROSTATE 
5-Fold

KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/
#Genes

GS2 0.917 ± 0.073 0.916 ± 0.056 0.913 ± 0.057 0.921/39 0.884 ± 0.080 0.908 ± 0.057 0.909 ± 0.060 0.911/91
GS1 0.918 ± 0.073 0.917 ± 0.056 0.907 ± 0.062 0.922/35 0.887 ± 0.082 0.901 ± 0.060 0.914 ± 0.058 0.914/99

Cho's 0.870 ± 0.144 0.918 ± 0.055 0.914 ± 0.058 0.918/10 0.841 ± 0.149 0.890 ± 0.069 0.904 ± 0.061 0.904/4
F-test 0.921 ± 0.053 0.915 ± 0.056 0.913 ± 0.057 0.935/61 0.893 ± 0.060 0.907 ± 0.062 0.914 ± 0.058 0.918/92

PROSTATE 
LOO

KNN SVMs

30 60 100 Best 
Accuracy/# 

Genes

30 60 100 Best 
Accuracy/
#Genes

GS2 0.931 0.922 0.922 0.941/8 0.902 0.902 0.941 0.951/47
GS1 0.931 0.922 0.902 0.951/8 0.931 0.912 0.922 0.951/49

Cho's 0.931 0.912 0.912 0.941/8 0.941 0.912 0.912 0.941/20
F-test 0.931 0.922 0.922 0.941/10 0.892 0.931 0.931 0.941/4
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these stability results for GS1, GS2, Cho's, and F-test.
From these results, we can see that GS1, GS2, and F-test
had very close stabilities on the reduced datasets, while
Cho's had the least over all classes.

Conclusion
In this paper, we proposed two stable gene selection
methods GS1 and GS2, which could also be regarded as
model-free. From the comparisons made to one most
recent method Cho's and one most classic method F-test
on eight publicly available datasets, GS1 and GS2 selected
genes whose resultant classifiers achieved at least equally
good and most of the time better classification accuracies.
Both leave-one-out and 5-fold cross validations con-
firmed our conclusion. We haven't run any biological
experiments to verify each of the top ranked genes by our
methods yet inconsistent to other methods. Nonetheless,
we believe that our methods would be good potential sub-
stitutes to the ones currently in use as our methods are
model-free and stable.

Methods
Assume in the training dataset there are in total p genes in
the microarray chips, and assume we have in total n chips/
samples that have been grouped into L classes. Let aij
denote the expression value of gene j in sample i. The
training dataset can thus be represented as a matrix

An×p = (aij)n×p.

We will define two gene scoring functions using entry val-
ues in matrix An×p. These two scoring functions might be
considered to better use the means and the variations of
the gene expression values.

Let nk denote the number of samples in class Ck, for k = 1,

2,..., L (i.e., ). Let , which is

the average expression value of gene j in class Ck, for k = 1,

2,..., L. The expression vector ( ) is the cen-

troid of class Ck. Correspondingly, the centroid matrix is

The mean of these centroids is , where

.

For sample i belonging to class Ck, the difference between

the expression value of gene j and the class mean is xij = |aij

- |. The matrix

Xn×p = (xij)n×p

is the deviation matrix of the training dataset. Let

 denote the average deviation for sam-

ples in class Ck with respect to the centroid. The centroid

deviation matrix is

n nkk
L ==∑ 1

a akj n iji Ck k
= ∈∑1

a a ak k kp1 2, , ,…

A aL p kj L p× ×= ( ) .

ˆ ˆ , ˆ , , ˆA a a ap= ( )1 2 …

â aj L kjk
L= =∑1

1

akj

x xkj n iji Ck k
= ∈∑1

X xL p kj L p× ×= ( ) .

Table 10: The percentages of genes that were re-selected by GS1, GS2, Cho's, and F-test on reduced datasets, of the whole LEU and 
the SRBCT datasets, respectively.

x Method Whole Dataset

SRBCT LEU

EWS BL NB RMS ALL AML

30 GS2 87.5% 81.3% 85.0% 83.8% 87.4% 84.9%
GS1 82.9% 73.9% 80.4% 81.8% 85.5% 80.4%

Cho's 83.2% 79.9% 85.5% 83.4% 75.0% 79.0%
F-test 92.2% 92.1% 90.8% 93.3% 84.4% 80.1%

74 GS2 85.5% 82.6% 86.4% 83.9% 84.5% 80.8%
GS1 84.6% 80.2% 84.3% 85.2% 83.0% 80.9%

Cho's 87.5% 86.9% 88.3% 85.0% 75.8% 77.0%
F-test 87.6% 92.2% 89.3% 88.0% 83.6% 80.7%

100 GS2 86.6% 83.9% 87.6% 86.3% 83.7% 80.8%
GS1 84.9% 79.2% 84.1% 82.9% 83.6% 80.9%

Cho's 88.7% 84.5% 89.5% 86.0% 77.4% 75.8%
F-test 89.3% 92.0% 89.5% 89.2% 83.0% 83.9%
Page 10 of 16
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Intuitively, gene j has a strong discriminating power if the

means , k = 1, 2,..., L, differ significantly and , k = 1,

2,..., L, indicating the intra-class variations, are all small.

For example, suppose we have a microarray expression
matrix A12×4 as shown, in which 12 samples have been
known in 3 classes:

Then the centroid matrix  is

and the mean of the centroids is

 = (1.2, 1.2, 1.2, 1.0).

The deviation matrix X12×4 is

and the intra-class average deviations are

Figures 3, 4, 5, 6 illustrate the expression values of these
four genes across all 12 samples, with the intra-class
means and average deviations also shown. There are three
key ideas in our design of gene scoring functions, which
will be exemplified through these four genes. First of all,
gene 1 has quite different mean expression values across
three classes, compared to gene 4 that has the same
means. Therefore, gene 1 is intuitively better than gene 4
in terms of discriminating power. Note that the goal of
gene selection is to select genes that have significantly dif-
ferent means across different classes. For each gene j, the

quantity  is the mean of all the centroids on gene j and

it represents all the samples.  is stable, that is, it would

not change when the samples in one class are duplicated

(since the number of classes, L, and all the means, , for

k = 1, 2,..., L, do not change). We define the scatter of gene

j to capture the inter-class variations, which takes in  as

a component:

in which the square root is the standard (estimated) devi-
ation of all the centroids on gene j. Clearly seen, scatter(j)
is a stable function. More discriminatory genes are
expected to have bigger scatter-values. In the following, we
prove an upper bound and a lower bound for scatter(j).

Lemma 1 Given n arbitrary nonnegative numbers a1, a2,...,an,

the inequality (a1 + a2 + ... + an) ≤

holds, and it becomes equality if and

only if a1 = a2 = ... = an.

Lemma 1 can be proven by a mathematical induction.
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Lemma 2 Given n arbitrary nonnegative numbers sorted in

order a1 ≤ a2 ≤ ... ≤ an, define ,  min1≤i≤n-

1(ai+1 - ai), and . Then,

 ≤ S ≤ (an - a1) - .

PROOF. Note that both S and  are nonnegative. There-

fore, if  = 0, then S ≥  holds trivially. In the other case,
we have a1 <a2 < ... <an. Assume without loss of generality

that the minimum is achieved at i = k, that is,  (ak+1

- ak). If  ∈ [ak, ak+1], from Lemma 1, we have

For i ≠ k, k + 1, (ai ≥ )2 ≥ 2. Therefore,

. if  ∈ [ap, ap+1] but p ≠ k, sim-

ilarly we will have ((ap - )2 + (ap+1 - )2) ≥ (ap+1 - ap)2

≥ 2 and for i ≠ p, p + 1, (ai - )2 ≥ 2. This proves that 

≤ S.

Inequality S +  ≤ an - a1 holds again if  = 0, since (ai -

)2 ≤ (an - a1)2 for every i. Therefore, we may assume that

a1 <a2 < ... <an. A similar enlarging process gives S ≤

max{an - ,  - a1}. Since

and

we conclude that S +  ≤ an - a1.  

According to Lemma 2, the following theorem on the
bounds on scatter(j) holds.
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The plot of the expression values of gene 1 across all 12 samples in the example dataset, with both intra-class means and aver-age deviations calculatedFigure 3
The plot of the expression values of gene 1 across all 12 samples in the example dataset, with both intra-class means and aver-
age deviations calculated.
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Theorem 3 For gene j, define max(j) = maxw≠v 

and min(j) = minw≠v . We have min(j) ≤ scatter

(j) ≤ max(j).

A differentially expressed gene is expected to have not
only large inter-class variations, which can be represented
by its scatter-value, but also small intra-class variations.
Secondly, we define a function based on the deviation

matrix Xn×p and the centroid deviation matrix L×p:

which is stable. Intuitively, discriminatory genes are

expected to have smaller μ-values. In the example dataset,
genes 1 and 2 have the same mean expression values
across all three classes, that is, they have the equal scatter

values. Nonetheless, μ( 3×4, 1) = 0.167 and μ( 3×4, 2) =

0.4, and thus gene 1 is better than gene 2 in this sense.

In the same example, we have μ( 3×4, 3) = μ( 3×4, 4) =

0.4. However, for gene 3, the centroids of three intra-class
average deviations are the same, that is, k3 = 0.4 for k =

1, 2, 3; for gene 4, the scenario is totally different, x4 =

0.2, 0.4, 0.6 for k = 1, 2, 3. This raises a question of, basing

on μ( L×p, j), what we can tell about the quality of gene

j. The contradictory fact is that gene 3 has a smaller maxi-
mum intra-class average deviation and a larger minimum
intra-class average deviation. To further differentiate the
genes, thirdly, we define function d1(j):

From Lemma 1, d1(j) ≥ μ( L×p, j). d1(j) is also stable, and

in the above example we have d1(3) <d1(4), which indi-

cates that function d1(j) could be more sensitive and con-

servative than function μ( L×p, j) on judgment ability.

Another stable function can be defined based on

μ( L×p,j) is
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The plot of the expression values of gene 2 across all 12 samples in the example dataset, with both intra-class means and aver-age deviations calculatedFigure 4
The plot of the expression values of gene 2 across all 12 samples in the example dataset, with both intra-class means and aver-
age deviations calculated.
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Intuitively, d2(j) includes more details in its calculation

than d1(j) does. In the above example, gene 2 and gene 3

have the same mean expression values across all three
classes: 1j = 2j = 3j. Therefore, we have d1(2) = d1(3)

but d2(2) <d2(3). Since intuitively gene 2 has a stronger

separability than gene 3, d2(j) could be even more sensi-

tive than d1(j).

The above two functions d1(·) and d2(·) basically con-
sider the means of intra-class variations. The following
two functions δ1(j) and δ2(j) are introduced to capture the
variations of intra-class deviations, corresponding to
d1(·) and d2(·), respectively:

Theorem 4 

PROOF. The proof is easily done by simplifying the defi-
nition formulae for δ1(j) and δ2(j).  

Similar to functions d1(j) and d2(j), for an ideal differen-
tially expressed gene j, both δ1(j) and δ2(j) are expected to
have small values. Moreover, similar to the relation
between d1(j) and d2(j), δ2(j) is considered more sensitive
than δ1(j). We define function compactk(j) = dk(j) + δk(j),
for k = 1, 2, to evaluate the intra-class variations for gene
j. And we define the gene scoring function sk(j) = com-
pactk(j)/scatter(j) to rank the genes according to their dif-
ferentiability. Note that a smaller value of sk(j) indicates a
higher differentiability.

We denote the gene selection method using compact1(j) =
d1(j) + δ1(j) as GS1, and the other using compact2(j) = d2(j)
+ δ2(j) as GS2. Both GS1 and GS2 are model-free and sta-
ble. In each of them, the scores for all genes are calculated
and genes are sorted in non-decreasing order of their
scores. Since the number of genes, p, is typically much
larger than the number of samples, n, the overall running
time to compute this order is O(p log p). In practice, there
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The plot of the expression values of gene 3 across all 12 samples in the example dataset, with both intra-class means and aver-age deviations calculatedFigure 5
The plot of the expression values of gene 3 across all 12 samples in the example dataset, with both intra-class means and aver-
age deviations calculated.
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are several ways to select the informative genes using this
order. For example, one may select the top ranked x genes
for further analysis, or the top ranked x% genes, or all the
genes with score no larger than some constant, among
others.

F-test method

F-test method [1,19] is also a single gene scoring
approach. Besides the notations used in our methods, it

uses  to denote the variance of expression value of gene

j in the k-th class:

and  to denote the variance in

the whole dataset. Gene j has a score defined to be:

Cho's method

Using the same notations used as in the above, Cho's
method [17] defines a weight factor wi for sample i, which

is  if sample i belongs to class k. Let . The

weighted mean(j) for gene j is defined as

The weighted standard deviation is defined as

Then the score of gene j is calculated as

where std( ) is the standard deviation of centroid expres-

sion values ( ).
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