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enforcing the divergence-free constraint is found to result 
in a significantly more accurate reconstructed pressure 
field. The estimated uncertainty confirms this result.

1  Introduction

Particle image velocimetry (PIV) is nowadays recognized 
as a reliable tool for the determination of the instantane-
ous static pressure in two- or three-dimensional flow fields 
(van Oudheusden 2013). The main advantage of the PIV-
based pressure reconstruction with respect to conventional 
pressure probes (e.g., pressure transducers or microphones) 
is the instantaneous 2D or 3D pressure field determination, 
without the need of an expensive design and manufacturing 
of models where densely distributed sensors are installed 
(Ragni et  al. 2011). PIV-based pressure measurements 
are made possible for applications where probes cannot 
be installed, such as microaerial vehicles (Tronchin et  al. 
2015). Additionally, they convey a quantitative visualiza-
tion of the flow structures responsible for the aerodynamic 
forces acting on the model. Industrial tests typically require 
pressure information, for the evaluation of forces. Pressure 
fluctuations are important when dealing with fatigue stud-
ies and aeroacoustic source measurements (Haigermoser 
2009; Liu and Katz 2013; Pröbsting et al. 2013).

The computation of the pressure field relies upon PIV 
measurement of the velocity and acceleration. Provided 
appropriate boundary conditions, it is conventionally per-
formed by spatial integration of the pressure gradient or by 
solution of the Poisson equation, though recently alterna-
tive methods have been investigated as well (Auteri et  al. 
2015; Neeteson and Rival 2015). The formulation of the 
problem in terms of the Poisson equation is often employed 
because it limits accumulation of errors in the reconstructed 
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pressure (van Oudheusden 2013). Applying the divergence 
operator to the momentum equation and assuming incom-
pressible flow, the Poisson equation for pressure follows:

To solve Eq. 1, appropriate boundary conditions on the 
pressure (Dirichlet) or its spatial gradient (Neumann) must 
be specified. It is important to remark that, although no 
temporal derivative appears in Eq.  1, its boundary condi-
tions are time dependent and require the computation of 
the flow acceleration at the boundary of the computational 
domain. In practice, the discretization of Eq. 1 results in an 
algebraic system of equations:

which is then solved. A is a discrete representation of the 
Laplace operator, obtained, for example, by finite differ-
ences and f will be referred to as the source term.

When solving Eq.  2 to determine the static pressure 
field, several factors contribute to the overall uncertainty. 
According to van Oudheusden (2013), the most relevant for 
the accuracy of the reconstructed pressure field are:

•	 the accuracy of the underlying velocity data;
•	 the spatial and temporal resolutions, which affect the 

accuracy of velocity derivatives;
•	 the approach used to evaluate the velocity material 

acceleration (Eulerian or Lagrangian approach);
•	 the boundary conditions;
•	 the pressure gradient integration procedure;
•	 for PIV-based pressure reconstruction of planar PIV 

data, application of a 2D model to a 3D flow.

As a result, the uncertainty of the static pressure is a 
complex function of the parameters above. Quantifying 
the uncertainty of the pressure measurement is of pri-
mary importance for the determination of a confidence 
interval where the true pressure value lies. Furthermore, 
it constitutes the basis for estimating the uncertainty of 
the aerodynamic forces (e.g., lift and drag) acting on a 
model.

Several works have focused on evaluating the contribu-
tion of the above mentioned factors to the error of the recon-
structed pressure. For example, de  Kat and van Oudheus-
den (2012) derived an analytical expression of the error of 
the material acceleration for both Eulerian and Lagrangian 
approaches. In both approaches, the laser pulse separation 
�t has opposite effects on truncation and random error. 
Increasing �t increases truncation error, but decreases the 
relative random error. Furthermore, the error of the material 
acceleration is typically smaller when it is calculated with 
the Lagrangian approach. Violato et al. (2011) introduced a 
criterion for the selection of the minimum and maximum �t 

(1)∇2p = −ρ∇ · (u · ∇)u.

(2)Ap = f ,

that accounts for the maximum allowed error on the mate-
rial acceleration and the effect of the out-of-plane displace-
ment of the particles. The authors found that the Lagrangian 
approach features a random error about 1.5 times smaller 
than that estimated for the Eulerian approach. The differ-
ence between the two approaches is less pronounced when 
looking at the resulting pressure field, due to the error sup-
pression during the pressure gradient integration. Several 
schemes for the integration of the pressure gradient have 
been proposed, including the space-marching integration 
(Baur and Köngeter 1999), the omnidirectional integration 
(Liu and Katz 2006) and the Poisson equation for pressure 
(Gurka et al. 1999). In de Kat and van Oudheusden (2010), 
a comparative assessment of pressure integration methods 
is conducted. Although the upshot was that the integration 
method has minor impact, and only the space-marching 
approach is clearly inferior, their conclusions were based 
on statistical analysis and not on the instantaneous pres-
sure uncertainty. In fact, no quantitative information about 
the uncertainty of computed pressure fields was provided 
in these early studies. In later studies by de  Kat and van 
Oudheusden (2012) and de  Kat and Ganapathisubramani 
(2013), quantitative information was provided. They used 
Gaussian vortices for their numerical verification. Charonko 
et al. (2010) reported that the error of the velocity field has 
a major influence on the accuracy of the reconstructed pres-
sure. In their work, the pressure result became ‘unusable’ as 
soon as very small levels of random error were introduced. 
Extensive data post-processing was required to reduce 
the velocity error and make accurate pressure reconstruc-
tions feasible. However, Murai et  al. (2007) reported that 
a fairly simple smoothing of the velocity data is sufficient 
for accurate pressure results. Charonko et  al. (2010) also 
investigated the effect of off-axis measurement and out-of-
plane velocity. They found that schemes performing well 
in 2D conditions continued to do so for misalignments up 
to 30°. de Kat and van Oudheusden (2012) showed that the 
response to misalignments follows a cosine relation.

In turbulent flows, PIV-based pressure reconstruc-
tion presents two major challenges: the small magnitude 
of the pressure fluctuations and the large dynamic range 
(Ghaemi and Scarano 2013; Joshi et  al. 2014). Ghaemi 
et  al. (2012) conducted time-resolved PIV (TR-PIV) 
measurements to investigate the pressure fluctuations in 
a turbulent boundary layer at Reθ = 2400. The agreement 
between the PIV-based pressure and that measured by a 
surface microphone was evaluated via the cross-correla-
tion coefficient, which was equal to 0.6. The probability 
density functions of the two signals agreed up to 3  kHz 
for tomographic PIV data and up to 1 kHz for planar data. 
Similarly Pröbsting et al. (2013) carried out the PIV-based 
pressure reconstruction in a turbulent boundary layer at 
Reθ = 730. The data were validated by comparison with a 
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surface microphone and with DNS data. Also in this case, 
the PIV-based pressure signal showed fair agreement with 
the microphone signal, but the cross-correlation coeffi-
cient between the two did not exceed 0.6. Despite the rel-
atively high correlation coefficient achieved, those studies 
opened several doubts on the accuracy of the PIV-based 
pressure reconstruction. Acoustic emissions of the flow 
over a rectangular cavity were investigated by Koschatzky 
et  al. (2011). The fluctuating pressure fields computed 
from TR-PIV were used as input for the prediction of the 
sound emission. The authors found that the PIV-based 
pressure data and the direct pressure measurement at the 
cavity walls had a similar frequency spectrum. The main 
frequency tone and the first harmonic were correctly cap-
tured, but the amplitude was significantly underestimated. 
The PIV measurement uncertainty strongly influenced the 
reconstructed pressure at locations with weak pressure 
fluctuations.

From the discussion above, it emerges that PIV-based 
pressure is often highly inaccurate due to the many error 
sources that contribute to the total error. As a result, 
quantifying the uncertainty of the reconstructed pres-
sure is of primary importance to the future use of this 
method. Furthermore, a posteriori uncertainty quantifica-
tion could be used to inform the choice of experimental 
and post-processing parameters, along with the pressure 
reconstruction approach, to maximize the precision of 
the pressure field. The present work discusses the math-
ematical framework for the uncertainty propagation 
from the velocity field to the pressure field. It is formu-
lated from a Bayesian perspective, to allow the meas-
urement uncertainty of the velocity field from PIV to be 
naturally combined with prior knowledge of the velocity 
field (e.g., divergence-free) (Wikle and Berliner 2007). 
Therefore, it is suitable for the quantification of the ran-
dom uncertainty of pressure, which stems from the ran-
dom uncertainty of the velocity. A number of a posteriori 
approaches have recently been proposed to quantify the 
PIV measurement uncertainty. Sciacchitano et al. (2015) 
have provided a comparison of these methods. The pre-
sent framework can also propagate the uncertainty of the 
velocity spatial and temporal derivatives, when infor-
mation on the latter is available. The uncertainty due to 
the application of a 2D model to a 3D flow—i.e., pres-
sure from planar PIV—is not addressed here. We refer to 
Charonko et al. (2010) and de Kat and van Oudheusden 
(2012), who investigated the error resulting from apply-
ing planar PIV in a 3D flow.

The outline of this paper is as follows: Sect. 2 introduces 
the proposed methodology. Section  3 presents a numeri-
cal assessment with an analytical test case, where the pro-
posed method is compared with Monte Carlo simulations 
and linear uncertainty propagation (JCGM 2008). Section 4 

applies the method to the turbulent boundary layer experi-
ment done by Pröbsting et  al. (2013), where microphone 
measurements are available to assess the PIV-based pres-
sure field and the usefulness of the confidence inter-
vals obtained from the present uncertainty quantification 
method. Conclusions are drawn in Sect. 5.

2 � Methodology

The method to propagate the uncertainty from the velocity 
field to the pressure field is split into three successive steps 
and explained in their respective sections:

•	 characterize the uncertainty in the velocity field u 
(Sect. 2.1);

•	 propagate the uncertainty from the velocity field to the 
source term f (Sect. 2.2);

•	 propagate the uncertainty from the source term to the 
pressure field p (Sect. 2.3).

Section 2.4 illustrates the complete methodology for a sim-
ple one-dimensional example. The uncertainty of a variable 
will be expressed through a probability density function 
(pdf) ρ(·).

2.1 � The velocity field uncertainty

To characterize the uncertainty in the velocity field, we 
do not have to solely rely on the PIV measurement uncer-
tainty. First of all, we may have some additional knowledge 
about the underlying velocity field. Secondly, factors other 
than the PIV measurement uncertainty contribute to the 
overall uncertainty of the pressure field, as listed in Sect. 1. 
The Bayesian framework provides a mathematically and 
statistically consistent formulation for combining measure-
ments with prior knowledge. Ultimately, we are interested 
in the probability distribution of the true velocity field u 
conditioned on the measured velocity field uPIV. This can 
be expressed through the pdf ρ(u|uPIV). It is known as the 
posterior. By Bayes’ rule,

where ρ0(u) is the prior and represents the uncertainty in 
the velocity field before including any measurements. The 
term ρ(uPIV|u) represents the measurements conditioned 
on the true velocity field. As general as it is, Eq. 3 is not 
straightforward to use for general probability density func-
tions. A number of simplifications will therefore be made. 
Firstly, the pdfs are assumed to be Gaussian. Therefore, the 
complete pdf can be described in terms of its mean E(·) and 
covariance Σ(·). Assuming a Gaussian process may seem 
like a limiting assumption, but in fact this leads to a general 
framework for approximating arbitrary fields (Rasmussen 

(3)ρ(u|uPIV) ∝ ρ(uPIV|u)ρ0(u),
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2004). In the following, we will refer to it as Gaussian 
process regression (GPR). In the field of PIV, Gunes et al. 
(2006) and de Baar et  al. (2014) used GPR to interpolate 
velocity fields, though they did not exploit the posterior 
covariance of the method.

2.1.1 � The prior on the velocity field

We discretize the velocity field at n spatial locations of 
interest x ∈ R

d·n. This gives a vector u ∈ R
d·n, describing 

the d-dimensional velocity components at these locations. 
Due to the assumption of Gaussian processes and the dis-
cretization, we have the following multivariate normal 
distribution:

with µµµ0 and P the prior mean and prior covariance matrix, 
respectively. We start the discussion with the prior mean 
µµµ0 ∈ R

d·n. For simplicity, we assume each velocity com-
ponent to be a constant field. This is not a limiting simpli-
fication since the complexity of the field that can be recon-
structed is determined by the prior covariance used. The 
prior covariance matrix is defined as:

where τ 2 is the prior variance and rij represents the (scaled) 
distance between xi and xj:

where θk is the correlation length in the direction k. φ
(

rij
)

 
is a covariance function and represents the correlation 
between xi and xj. It is a function only of their separa-
tion by the assumption of a stationary process (Rasmus-
sen 2004). The covariance function is 1 at distance 0 and 
at infinitely large distance it should approach 0. In other 
words, at infinite distance the behavior of the two points is 
uncorrelated. Gaussians are popular covariance functions. 
In the present paper, however, we use the Wendland func-
tion with smoothness C4 (Wendland 2005):

where + indicates that 
(

1− rij
)6

+ = 0 for rij ≥ 1. The 
Wendland function is a good approximation to a Gaussian 
function. Due to its compact support, it results in a sparse 
covariance matrix, leading to savings in memory and com-
putational time when inverting it.

Ultimately, one can either setup a prior covariance 
matrix for each velocity component independently, as was 
done by de Baar et al. (2014), or a single covariance matrix 

u ∼ N (µµµ0,P),

(4)Pij = τ 2φ

(

rij
)

,

(5)
(

rij
)2

=
d

∑
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(
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k
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)2

,

(6)φ

(

rij
)

=
(

1− rij
)6

+

(

35

3

(

rij
)2

+ 6rij + 1

)

,

that constrains the velocity components according to mass 
conservation (the divergence-free or solenoidal constraint) 
(Azijli and Dwight 2015). The details can be found in these 
works. Whichever method is used, two parameters result 
that need to be determined, namely the prior variance τ 2 
from Eq. 4 and the correlation length θk from Eq. 5. They 
can either be specified a priori or through a maximum like-
lihood optimization. Azijli and Dwight (2015) followed 
the a priori approach. This was possible because the PIV 
data had sufficient spatial resolution. de Baar et al. (2014) 
followed the optimization route since their PIV data had 
insufficient spatial resolution.

2.1.2 � The PIV measurement uncertainty model

With m measurements, we define the vector uPIV ∈ R
d·m 

at the measurement locations xPIV ∈ R
d·m. We can take 

x = xPIV (i.e., n = m), in which case we will obtain the 
pressure field on the same mesh as the PIV field. Or we 
can take n larger than m, in which case we attempt to 
obtain the pressure field on a finer mesh. The measurement 
uncertainty is also assumed to come from a Gaussian dis-
tribution, where the mean represents the bias error and the 
standard deviation represents the random error (Sciacch-
itano et al. 2015). Once quantified, the estimate of the bias 
error can be subtracted from the measurements. Therefore, 
the measurements

can be represented as a multivariate Gaussian distribution, 
where ǫǫǫ ∼ N (0,R) is the measurement error of the veloc-
ity field, assumed to be Gaussian noise with zero mean 
and covariance matrix R. The matrix H maps the velocities 
from x to xPIV. In the most general case, H would repre-
sent an arbitrary interpolation matrix (representing, for 
example, polynomial or radial basis function interpolation). 
In the present work, the measurement locations are taken 
to be a subset of the locations of interest; therefore, H is 
a Boolean matrix. In particular, if x = xPIV then H is the 
identity matrix, giving

This situation where the pressure field is evaluated at the 
same locations where the velocity measurements are avail-
able is the most common (van Oudheusden 2013), but our 
framework allows generalization.

2.1.3 � The posterior on the velocity field

Having defined the prior and carried out the measure-
ments, they are combined to obtain the posterior distribu-
tion. The prior and likelihood are both Gaussian distrib-
uted, and since all operators defined are linear, the posterior 

uPIV = Hu+ ǫǫǫ ∈ R
d·m

uPIV = u+ ǫǫǫ.
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is Gaussian distributed as well with mean and covariance 
given by (Wikle and Berliner 2007):

respectively. In the present paper, we will also consider the 
situation where we construct the pressure field by com-
pletely relying on the PIV data, i.e., no prior knowledge 
is taken into account and the velocity is only assumed to 
be known at the locations coming from the measurements. 
Mathematically, this can be expressed by taking P = τ 2I, 
where τ = ∞, and H = I. Equation 7 becomes

The term τ 2I
(

R+ τ 2I
)−1

 becomes I for infinitely large 
prior variance, so Eq. 9 reduces to

The posterior covariance from Eq. 8 becomes

With the prior variance approaching infinity, Eq. 11 can 
be rewritten to reveal

In words, Eqs. 10 and 12 state that the posterior mean and 
covariance are equal to the measured velocity field and 
measurement uncertainty, respectively. This makes sense 
intuitively, but it is important that it also follows naturally 
from the framework.

2.2 � Propagating uncertainties to the source term

The posterior distribution of the velocity (see Eqs. 7, 8) must 
be propagated through f to obtain the mean E(f) and covari-
ance Σ(f) of the source term. However, this is not straight-
forward since f, derived from the Navier–Stokes equations, 
has a nonlinear dependence on the velocity. We consider two 
options to obtain the mean and covariance of the source term.

The first is through carrying out Monte Carlo simula-
tions (Metropolis and Ulam 1949), a popular method for 
uncertainty propagation. Briefly, random realizations from 
the posterior distribution ρ(u|uPIV) are generated. In prac-
tice, a random realization with the required covariance 
structure specified by Σ(u|uPIV) can be obtained by com-
puting the Cholesky decomposition

(7)E(u|uPIV) = µµµ+ PHT
(

R+ HPHT
)−1

(uPIV − Hµµµ),

(8)Σ(u|uPIV) = P − PHT
(

R+ HPHT
)−1

HP,

(9)E(u|uPIV) = µµµ+ τ 2I
(

R+ τ 2I
)−1

(uPIV −µµµ).

(10)E(u|uPIV) = uPIV.

(11)Σ(u|uPIV) = τ 2I − τ 2I
(

R+ τ 2I
)−1

τ 2I .

(12)Σ(u|uPIV) = R.

Σ(u|uPIV) = LLT ,

followed by multiplying L with a vector containing uncor-
related random realizations from a standard Gaussian dis-
tribution (Gibbs 2011). Subsequently, for each realization 
the source term f is then evaluated. From this one can con-
struct E(f) and Σ(f).

The second method enables exact uncertainty propaga-
tion in contrast to the Monte Carlo method. A closer look at 
the Navier–Stokes equations reveals that the nonlinear term 
contains a product of at most two variables. As a result, it 
is possible to calculate the expected value and covariance 
exactly. For generality, we define four random variables a, 
b, c and d. For the expected value, one can use the defini-
tion of covariance:

where σ(a, b) represents the covariance between a and b. 
For the covariance between two products of random vari-
ables ab and cd, Bohrnstedt and Goldberger (1969) derived 
the following expression:

Equation 13 is valid irrespective of the distributions of a 
and b, since it is simply a rewrite of the definition of covari-
ance. Equation 14 on the other hand is valid only if the dis-
tributions are Gaussian. Indeed, this is what we have done 
in the present work. The source term, however, is no longer 
Gaussian distributed.

It is important to state that this exact method is only pos-
sible if the material acceleration is evaluated with respect to 
a stationary reference frame, i.e., the Eulerian approach. If 
the Lagrangian approach is used, products arise with more 
than two random variables. Brown and Alexander (1991) 
derived general expressions for the covariance of a product 
of n random variables with a product of m random varia-
bles. However, these contain higher-order moments. If they 
cannot be determined, they need to be neglected, resulting 
in an approximation. The Monte Carlo method can straight-
forwardly be applied no matter which approach is used.

2.3 � Uncertainty in the pressure field

The discretization error arising from solving the discrete 
system in Eq.  2 contributes to the overall uncertainty 
in the calculated pressure. This error can be reduced by 
interpolating the measurements onto a finer numerical 
mesh, which is possible with GPR, and then solving the 
(larger) resulting system. However, there is a moment 
where the interpolation error starts to dominate, thereby 

(13)E(ab) = E(a)E(b)+ σ(a, b),

(14)

σ(ab, cd) = E(a)E(c)σ (b, d)

+ · · ·E(a)E(d)σ (b, c)
+ · · ·E(b)E(c)σ (a, d)
+ · · ·E(b)E(d)σ (a, c)
+ · · · σ(a, c)σ (b, d)+ σ(a, d)σ (b, c).
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limiting the total error reduction. Fortunately, with GPR 
the interpolation is accompanied by confidence intervals 
through the posterior covariance matrix Σ(u|uPIV). The 
interpolation error is therefore included in the pressure 
field uncertainty, provided that the system is solved on a 
sufficiently fine mesh.

The mean and covariance for the pressure follow 
straightforwardly from the identities of the expected value 
and covariance since the Laplace operator given by the left-
hand side of Eq. 2, is a linear operator:

Figure 1 summarizes the steps involved to propagate the 
uncertainty from the velocity to the pressure field.

2.4 � A one‑dimensional example

We use a simple one-dimensional example to clarify each 
step of the proposed methodology. Extension to two- and 
three-dimensional problems is relatively straightforward 
and will be explained in Sects. 3 and 4, covering the syn-
thetic test case and the experimental data, respectively. 
Consider the following one-dimensional example:

Equation 17 is similar to the Poisson equation Eq. 1 in 
that the second derivative of the pressure is taken and the 
right-hand side is nonlinear in the velocity u. For simplic-
ity, we do exclude the dimensions from the variables con-
sidered. The problem is completed with Dirichlet boundary 
conditions. If we take

it can be verified that the pressure is

We take six uniformly distributed measurement loca-
tions (m = 6) but discretize the velocity at 41 points to 

(15)E(p) = A−1
E(f),

(16)Σ(p) = A−1Σ(f)A−T .

(17)
d2p

dx2
= 2u

du

dx
, ∀x ∈ (0, 1), with p(0) = 0, p(1) = π .

u(x) = sin (2π · x),

p(x) = π · x − 1

8π
sin (4π · x).

illustrate the ability of GPR to interpolate the measurement 
points (n = 41).

For the prior mean, we assume the zero vector, so 
µµµ0 = 0. The prior covariance matrix is set up according 
to Eq. 4, where we have used the Wendland function from 
Eq. 6 as the covariance function. The correlation length θ 
and the prior variance τ 2 are found using a cross-valida-
tion approach (Viana et al. 2009) and are set to 2 and 0.48, 
respectively. The black dots in Fig. 2a are the true function 
evaluations at the n locations of interest. The thick blue line 
represents the prior mean. The bottom plot in Fig. 2a shows 
the prior variance, scaled with τ 2.

Measurement noise is included, with a variance of 
σ 2 = 2.5× 10−5. It is assumed that the measurement 
uncertainty at the locations are uncorrelated with each 
other, therefore R = σ 2I, where I is the identity matrix. 
Since there are 6 uniformly distributed measurement loca-
tions and the state contains 41 uniformly distributed points, 
the observation operator H ∈ R

6×41 is simply a Boolean 
matrix with Hij = 1 at j = 8i − 7 (i = 1, 2, . . . , 6) and 
Hij = 0 everywhere else.

With all the relevant components defined, we can cal-
culate the posterior mean and covariance with Eqs. 7 and 
8, respectively. Figure 2b shows the results. Starting with 
the mean (top plot): combining the prior and measurements 
we obtain a posterior that agrees well with the true function 
evaluations. Proceeding to the bottom plot, the posterior 
variance is strongly decreased with respect to the prior vari-
ance from the bottom plot in Fig. 2a. Also, we can clearly 
see a decrease in the variance at the measurement loca-
tions and an increase in between. Indeed, the measurements 
are informative and the larger the distance from them, the 
larger the uncertainty in the reconstruction. Note that the 
variance is not decreasing to zero at the measurement loca-
tions, since we included measurement noise with a variance 
of σ 2 = 2.5× 10−5.

To illustrate how the exact propagation method pre-
sented in Sect. 2.2 compares with Monte Carlo simulations, 
we refer to Fig. 3a, b. They show how the random veloc-
ity error eventually propagates into the pressure. The dif-
ference with the two figures is due to the accuracy of the 
pressure measurements at the boundaries. In Fig.  3a, it is 

Fig. 1   Flow diagram of 
the a posteriori uncertainty 
propagation method, giving the 
probability distributions func-
tion ρ(·) (pdf) of the different 
components
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assumed that the pressure can be measured with perfect 
accuracy. In Fig. 3b, we have taken standard deviations of 
1× 10−4 and 5× 10−4 for the pressure measurements at 
the left and right boundaries, respectively.

Finally, we shift our focus to Sect. 2.3 on the influence 
of discretization and interpolation errors. In the absence of 
measurement noise (σ = 0) and measurements available at 
all locations (m = n), the error reduces with a finer mesh 

(larger n or decreasing mesh distance h), as illustrated by 
the red line in Fig. 4. Since we used second-order finite dif-
ference schemes to discretize the differential operators, we 
observe second-order convergence. However, with meas-
urements only available at the six locations (m = 6), GPR 
can be used to interpolate the measurements onto the finer 
mesh. Indeed, it is common in PIV measurements of turbu-
lent flows that not all scales are resolved. The magenta line 

Fig. 2   One-dimensional example. a True function evaluations (black 
dots), observations (red crosses), prior mean (blue line), prior vari-
ance scaled with τ 2 (black line); b posterior mean (blue line), poste-

rior variance scaled with prior variance τ 2 (black line). The variables 
are left dimensionless

Fig. 3   One-dimensional example. Exact standard deviation of cal-
culated pressure (black line), and Monte Carlo results using N reali-
zations. a Perfect pressure measurements at boundaries, b assuming 

σp = 1× 10−4 at x = 0 and σp = 5× 10−4 at x = 1. The variables 
are left dimensionless
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in Fig. 4 illustrates the plateau that occurs once the inter-
polation error starts to dominate the discretization error, 
thereby hindering the initial monotonic decrease in the 
total error. With the blue line, we have included the meas-
urement noise: The initial decrease and the plateau are still 
present; however, as expected we observe the influence of 
the noise and a larger final error.

In the above discussion, we were able to calculate the 
error since we know the true pressure. In practice though, 
the true pressure is unknown and we aim to estimate it, 
which is of course the goal of the present work. The black 
line in Fig. 4 represents the estimated error resulting from 
solving Eq. 16 and shows that it is a good approximation of 
the true error, thereby illustrating the ability of the method 
to also include the interpolation error in the error estimate.

3 � Numerical verification

The proposed numerical procedure for uncertainty quanti-
fication of PIV-based pressure reconstruction is compared 
to a reference solution obtained using the Monte Carlo 
method with 10, 000 samples. The Monte Carlo simulation 
employs exactly the same statistical models as our proposed 
approach, so that in this section we are verifying only the 
numerical procedure, and not the statistical modeling. The 
considered flow field is a two-dimensional incompressible 

Lamb–Oseen vortex (de  Kat and van Oudheusden 2012; 
de Kat and Ganapathisubramani 2013). In a polar reference 
system with radius r and azimuthal angle θ the analytical 
expressions of azimuthal velocity Vθ and radial velocity Vr 
are, respectively:

where Γ  is the vortex circulation, ν is the kinematic viscos-
ity, and t is time. A steady simulation is conducted with 
t = 1 s. The values of dynamic viscosity and density are set 
to µ = 2.4× 10−7 Pa s and ρ = 1.2 kg/m3, respectively, 
yielding a kinematic viscosity ν = 2.0× 10−7 m2/s. The 
vortex circulation is Γ = 0.02 m2/s. The analytical expres-
sion of the pressure field is obtained from integration of the 
Navier–Stokes equations in polar coordinates, yielding:

where Ei is the exponential integral function. The square 
domain has a size of 20 mm, and the center of the vortex 
coincides with the center of the domain at (x, y) = (0, 0) . 
The domain is divided into 50 grid points in both hori-
zontal and vertical directions, resulting in a grid spacing 
d = 0.4 mm. The analytical velocity and pressure field 
are illustrated in Fig. 5; the pressure in the vortex core is 
pcore = −9.78 Pa. To simulate noise in the velocity meas-
urements, zero-mean white Gaussian noise is added to the 
two velocity components, with a standard deviation rang-
ing from 0 to 30 % of the maximum velocity magnitude 
Vmag: R = U2I, where U = αVmag. α is between 0 and 
0.30. The pressure field is reconstructed from the velocity 
data using the Poisson equation approach with pure Dir-
ichlet boundary conditions. The pressure at the boundary 
of the measurement domain is computed via the incom-
pressible flow momentum equation, i.e., the Bernoulli 
equation.

For all values of noise level, the standard uncer-
tainty of the reconstructed pressure is evaluated with two 
approaches: (1) the Bayesian framework presented in 
Sect.  2; (2) linear uncertainty propagation (Wieneke and 
Sciacchitano 2015). In the latter approach, it is assumed 
that the two velocity components have the same uncertainty 
U and that the velocity errors are uncorrelated in space, 
which is true for the current simulation, but not in typical 

(18)Vθ = Γ

2πr

(

1− exp
[

−r2/4νt
])

,

(19)Vr = 0,

(20)

p = ρΓ 2

4π2

{

− 1

2r2
+

exp
[

−r2/4νt
]

r2

− · · · 1
2

exp
[

−2r2/4νt
]

r2
+ Ei

(

2r2

4νt

)

1

4νt

− · · ·Ei
(

r2

4νt

)

1

4νt

}

,

Fig. 4   One-dimensional example. Root-mean-square error (rmse) of 
the reconstructed pressure as a function of mesh size h = 1/(n− 1). 
When m = n, σ = 0, the observations are available at all points, with-
out measurement noise; when m = 6, the observations are available at 
six equally spaced points and interpolated onto a stencil with spacing 
h. Specifically, m = 6, σ �= 0 represents six equally spaced observa-
tions, with σ 2 = 2.5× 10−5;m = 6, σ = 0 represents six equally 
spaced observations, without measurement noise; ‘estimated’ is the 
estimated error following from Eq.  16 when σ 2 = 2.5× 10−5. The 
variables are left dimensionless
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PIV experiments due to the finite interrogation window 
size. The expression of the uncertainty of the pressure eval-
uated by the linear uncertainty propagation reads as:

The uncertainty results from both approaches are com-
pared with the results obtained by Monte Carlo simula-
tions. The results at the center of the vortex are shown 
in Fig.  6: The pressure error increases linearly from 
0.3 to 10 % of pcore as the uncertainty of the velocity is 
increased. The Bayesian framework and linear uncertainty 

(21)

Up = U
ρd√
6

√

(

∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂v

∂x

)2

+
(

∂v

∂y

)2

.

propagation reproduce the linear behavior of the uncer-
tainty. However, the linear approach underestimates the 
uncertainty by about 30  % with respect to the Monte 
Carlo results, whereas the agreement between the Bayes-
ian framework and Monte Carlo results is excellent. For 
illustration purposes, we show the comparison between 
the standard deviation computed with the different meth-
ods. Figure  7a illustrates the standard deviation of the 
pressure error obtained via Monte Carlo simulations for 
the case where the standard deviation of the added noise 
is 15  % of the velocity magnitude; the pressure error is 
below 1 % outside the vortex core and increases up to 4 % 
in the vortex center. The Bayesian framework for uncer-
tainty propagation (Fig.  7b) shows excellent agreement 
with the Monte Carlo results. The linear error propaga-
tion, however (Fig.  7c), significantly underestimates the 
uncertainty. It is noted that the pressure errors obtained 
here are lower than those reported by de  Kat and van 
Oudheusden (2012) for a very similar test case. The dif-
ference between the two results is attributed to the choice 
of the boundary conditions for the pressure computation. 
In our work, we set Dirichlet boundary conditions over 
the entire boundary. Conversely, de Kat and van Oudheus-
den (2012) applied Dirichlet boundary conditions over 
the lower edge and Neumann boundary conditions over 
the remaining edges. Also, we use the pressure Poisson 
equation (see Eq.  1) under the assumption of 2D flow, 
whereas de  Kat and van Oudheusden (2012) use a 2D 
Poisson formulation of 3D flow. This formulation allows 
them to assess the influence of a 3D flow in 2D pressure 
evaluation.

Fig. 5   a Exact velocity field of the Lamb–Oseen vortex, b exact 
pressure field

Fig. 6   Lamb–Oseen vortex. Comparison between the standard devia-
tion of the pressure error from Monte Carlo simulations, the Bayes-
ian framework and linear uncertainty propagation, as a function of the 
uncertainty of the velocity
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4 � Application to experimental data

The experimental test case considered is a fully developed 
turbulent boundary layer over a flat plate in air, obtained 
using time-resolved tomographic PIV. The experiments 
were carried out by Pröbsting et  al. (2013). The PIV 
acquisition frequency was 10  kHz, and 1500 instanta-
neous velocity fields were collected. The free stream 
velocity was 10  m/s, so assuming incompressible flow 
is justified. The size of the reconstructed volume was 
19.7× 4.2× 41.3mm3. Further details of the experimen-
tal parameters are reported in Pröbsting et al. (2013). This 
experiment is particularly useful for the present paper since 
microphone measurements were conducted simultaneously 
with the tomo-PIV measurements. Specifically, a pinhole 
microphone was located at the wall. According to Pröbst-
ing et al. (2013) and Ghaemi et al. (2012), the uncertainty 
of the microphone does not exceed 500 μ  Pa, which is 
approximately 0.05  % of the measured pressure fluctua-
tions. The microphone measurements can therefore be used 
as a reliable ground truth, enabling the possibility to assess 
the usefulness of the proposed uncertainty propagation 
method. The assessment is done in the following way: The 
instantaneous error at time instant ti is defined as the differ-
ence between the pressure from the microphone pmic and 
the PIV-based pressure pPIV, evaluated at the microphone 
location xmic:

With the uncertainty propagation method described in 
the present paper, the standard deviation of the PIV-based 
pressure at location xj and time instant ti follows from the 
pressure covariance matrix, given by Eq. 16:

(22)δ(ti) = pPIV(xmic, ti)− pmic(ti).

Σ
jj
i  represents the jth diagonal term of the covariance 

matrix at time instant ti. When evaluated at the microphone 
location, we will denote Eq. 23 as δ̂mic. With the expanded 
uncertainty U = kδ̂mic, a certain percentage of |δδδ| should be 
smaller than U. Timmins et al. (2012) referred to this as the 
‘uncertainty effectiveness.’ Assuming a Gaussian distribu-
tion, a 68.3 % confidence level is obtained when k = 1 and 
95 % when k = 1.96 (Coleman and Steele 2009). Figure 8 
illustrates the definitions we have introduced.

To carry out the uncertainty propagation, we start out 
with identifying the prior. Two cases are distinguished: 
(1) we completely rely on the PIV measurement and take 
no prior physical knowledge into account. Therefore, the 
posterior mean and covariance are simply the PIV field 
(Eq.  10) and its uncertainty (Eq.  12), respectively; (2) 
realizing the flow is incompressible, we enforce the diver-
gence-free constraint by applying a solenoidal filter (Azijli 
and Dwight 2015). The solenoidal filter is linear; therefore, 
the posterior distribution will remain Gaussian distributed 
(Fig. 9).

Proceeding to the measurements, the uncertainty of the 
PIV field is expressed through the observation error covari-
ance matrix R. A number of methods are nowadays avail-
able to calculate a posteriori the uncertainty from PIV 
(Sciacchitano et  al. 2015). However, since the particle 
images were not available at the moment of the calculation, 
we have used a different method. Considering that the flow 
velocity should be divergence-free, we use the measured 
spurious velocity divergence as an estimator for the uncer-
tainty in the velocity field. This has already been observed 

(23)δ̂
(

xj, ti
)

=
√

Σ
jj
i (p).

Fig. 7   Lamb–Oseen vortex. Comparison between the standard devia-
tion of the pressure error from Monte -Carlo simulations (a), the 
Bayesian framework (b) and linear uncertainty propagation (c). The 

results are normalized with |pcore| and in percentage. The noise level 
on the velocity: 15 % of the maximum velocity magnitude
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by others (Scarano and Poelma 2009; Violato 2013). In the 
present paper, we use the following approach: we apply the 
solenoidal filter to the PIV data uPIV, rendering an analyti-
cally divergence-free velocity field usol. Figure  10 shows 
the streamwise velocity at the center plane before (top) 
and after (bottom) applying the solenoidal filter at one time 
instant. The difference between uPIV and usol is an approxi-
mation of the true error. With 1500 samples, the variance 
of the error in time is taken as an approximation for the 
variance of the measurement uncertainty, i.e., the diago-
nal terms in the observation error covariance matrix R. 
Figure 11 shows pdfs of uPIV − usol for the 1500 samples 
at two locations, namely the microphone location (bottom) 
and the upper side of the measurement domain directly 
above the microphone (top). The pdfs look approximately 
Gaussian, so our assumption of a Gaussian distribution 
for the PIV measurement uncertainty seems acceptable. 

Comparing the top plots with their bottom counterparts, 
notice the increase in variance of the bottom plots, indicat-
ing a larger measurement uncertainty closer to the wall. To 
investigate this further, Fig.  12 shows the standard uncer-
tainty of each velocity component at the center plane. We 
clearly see a spatially varying measurement uncertainty 
for each velocity component. In particular, we observe that 
the uncertainty increases closer to the wall. The PIV data 
were processed with a 32× 16× 32 interrogation window 
with 75 % overlap. Due to the use of overlapping windows, 
the measurement error will be spatially correlated. Math-
ematically, the off-diagonal terms of the observation error 
covariance matrix R are unequal to zero. Wieneke and 
Sciacchitano (2015) investigated how the spatial correla-
tion of the measurement uncertainty depends on the overlap 

Fig. 8   Schematic representation of the PIV-based pressure pPIV, 
‘true’ pressure from the microphone pmic and error δ, and estimated 
uncertainty Ui

Fig. 9   Experimental boundary layer flow. Streamwise velocity in 
(m/s) before (top) and after (bottom) applying the solenoidal filter

Fig. 10   Pdfs of uPIV − usol for the 1500 samples, evaluated at (bot-
tom) the microphone location (see location A in Fig. 9) and (top) the 
upper side of the measurement domain directly above the microphone 
(see location B in Fig. 9)

Fig. 11   Standard uncertainty in (m/s) for the streamwise (top), wall 
normal (middle) and spanwise (bottom) velocity components
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and interrogation window sizes using Monte Carlo simula-
tions. From their analysis, they found correlation values for 
different grid spacings. Rather than directly inserting them 
into R, we have approximated these values by fitting the 
Wendland function from Eq. 6 through them. This ensures 
that R will be numerically positive definite; therefore, the 
matrix can be inverted (Wendland 2005).  

The boundary conditions we impose are the same as 
applied by Pröbsting et al. (2013), namely Dirichlet at the 
top boundary and Neumann at all other boundaries. We use 
both the Eulerian and the Lagrangian approaches to evalu-
ate the material acceleration. According to Violato et  al. 
(2011), the Lagrangian approach should result in a more 
accurate reconstructed pressure field, since the boundary 
layer flow is a convection dominated type of flow. Whether 
this is indeed true should not only follow from comparison 

with the microphone measurement, but is also expected to 
be represented by a smaller uncertainty in the reconstructed 
pressure. To propagate the uncertainties, we carry out 
Monte Carlo simulations using 100 realizations. This is the 
number suggested by Houtekamer and Mitchell (1998) in 
the context of the Ensemble Kalman Filter, which is practi-
cally a Monte Carlo version of the Kalman Filter for non-
linear systems.

Following Pröbsting et al. (2013), Fig. 9 shows the pres-
sure time series for a subset of the data. The red lines in the 
plots are the microphone signal. The results are normalized 
with the free stream dynamic pressure q∞ ≈ 60 Pa. The 
fluctuations of the microphone signal are of the order of 
2 % of the free stream dynamic pressure, which is around 
1.2 Pa. The black lines in Fig. 9 are the PIV-based pressure 
signals. The results represent four cases. From top to bot-
tom: without applying the prior knowledge of divergence-
free velocity fields through the solenoidal filter and using 
the Eulerian approach; without the prior knowledge using 
the Lagrangian approach; including the solenoidal prior 
and using the Eulerian approach; including the solenoidal 
prior and using the Lagrangian approach. From the figure, 
we can already deduce the observations made by Violato 
et al. (2011), namely that the Lagrangian approach results 
in more accurate pressure reconstruction than the Eulerian 
approach, and the observations made by Azijli and Dwight 
(2015) that using the solenoidal prior improves the pressure 
reconstruction.

In addition to the PIV-based pressure signals, we have 
also plotted the estimated uncertainty. The bounds of the 
gray region are pPIV(xmic, ti)± kδ̂mic(ti), where we have 
taken for the coverage factor k = 1, so an 68.3  % confi-
dence level for a Gaussian distribution. We have not plotted 
the 95 % confidence level (k = 1.96) since it would obscure 
the figures. Already from the plots, we can observe that the 
bounds indeed become tighter when switching from the 
Eulerian to the Lagrangian approach and when including 
the solenoidal prior.

Table  1 quantifies these observations. First of all, it 
shows the standard deviation (std) of the error δ between 
the microphone and PIV-based reconstruction. The errors 
range from 1.2  Pa without the solenoidal prior and the 
Eulerian approach to approximately 0.6 Pa when using the 
solenoidal prior together with the Lagrangian approach. 
The focus of the present work is how the estimated uncer-
tainty compares with this. The rightmost column of Table 1 
shows the standard deviation of the approximated error 
δ̂mic, averaged over the 1500 fields in time. First of all, we 
notice the excellent agreement between the true and esti-
mated errors. In addition, we observe that switching from 
the Eulerian to the Lagrangian approach indeed results in 
a decrease in the estimated uncertainty. The uncertainty is 
further decreased when including the prior knowledge of 

Fig. 12   Pressure time series obtained with the microphone (red) and 
PIV (black). δ is the boundary layer thickness, u∞ is the free stream 
velocity, q∞ is the free stream dynamic pressure and p′ the pressure 
fluctuation. The gray regions represent the estimated uncertainty, 
where the bounds are pPIV(xmic, ti)± kδ̂mic(ti), where k = 1

Table 1   Standard deviation of the true error, std(δ) and the standard 
deviation of the approximated error averaged over the 1500 fields in 
time, δ̂mic,avg

Distinctions made between using no prior knowledge in terms of 
divergence-free (solenoidal) velocity fields and including this knowl-
edge, and using the Eulerian approach (Eul) and Lagrangian approach 
(Lag). The results are normalized with the free stream dynamic pres-
sure q∞ ≈ 60 Pa

std (δ)/q∞ δ̂mic,avg/q∞

No solenoidal prior (Eul) 0.022 0.021

No solenoidal prior (Lag) 0.015 0.013

Solenoidal prior (Eul) 0.012 0.015

Solenoidal prior (Lag) 0.011 0.010
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divergence-free velocity fields. Table  2 shows the results 
for the uncertainty effectiveness for the 68.3 and 95 % con-
fidence levels. In conclusion, the approximated error that 
follows from the uncertainty propagation method is indeed 
useful, given that the uncertainty effectiveness is close 
to the theoretical value. We used coverage factors corre-
sponding to a Gaussian distribution. Though the velocity 
uncertainties we started out with were Gaussian, due to 
the nonlinearity of the Navier–Stokes equations the pres-
sure need not be Gaussian distributed anymore. A Gaussian 
distribution is known to have skewness 0 and a kurtosis of 
3. Since we used Monte Carlo simulations to propagate the 
uncertainties, we have the full probability distributions of 
the pressure. The skewness and kurtosis of the velocity at 
the microphone location were 0.034 and 3.02, respectively, 
since we used a finite number of random realizations, i.e., 
100. Table 3 shows the resulting values for the pressure dis-
tributions, extracted from the position of the microphone in 
the PIV field. There is indeed a departure from the Gauss-
ian observable, though not considerable. Therefore, it is 
acceptable to use the Gaussian coverage factors.

To appreciate how the PIV measurement uncertainty 
propagates to the calculated pressure field, we refer to 
Fig.  13. It shows the standard uncertainty of the recon-
structed pressure field as a function of the distance from the 
wall where the microphone is located. As we move away 

from the wall, the uncertainty decreases. Compare this with 
Fig. 12, which shows the standard uncertainty of the PIV 
measurement. Similarly, we notice a decrease in the stand-
ard uncertainty with increasing distance from the wall.

5 � Conclusions

The present work proposed a methodology for the a pos-
teriori quantification of the uncertainty of pressure data 
retrieved from PIV measurements. The approach relies 
upon the Bayesian framework, where the posterior distri-
bution (probability distribution of the true velocity, given 
the PIV measurements) is obtained from the prior distribu-
tion (prior knowledge of the velocity, e.g., within a certain 
bound or divergence-free) and the distribution represent-
ing the PIV measurement uncertainty. Once the covariance 
matrix of the velocity is known, it is propagated through 
the Poisson equation. Provided the velocity uncertainty is 
Gaussian and the Eulerian approach is used, the uncertainty 
can be calculated exactly. Otherwise, Monte Carlo simula-
tions can be used. Numerical assessment of the method on a 
steady Lamb–Oseen vortex showed excellent agreement of 
the propagated uncertainty with Monte Carlo simulations, 
while linear uncertainty propagation underestimates the 
uncertainty of the pressure by up to 30 %. The method was 
finally applied to an experimental test case of a turbulent 
boundary layer in air, obtained using time-resolved tomo-
graphic PIV. The pressure reconstructed from tomographic 
PIV data was compared to the surface measurement con-
ducted by a microphone to determine the actual error of the 

Table 2   Uncertainty effectiveness

Uncertainty 
effectiveness (%)

Theoretical value of 
uncertainty 
effectiveness (%)

No solenoidal prior 
(Eul)

67; 93 68.3; 95

No solenoidal prior 
(Lag)

61; 90 68.3; 95

Solenoidal prior (Eul) 81; 98 68.3; 95

Solenoidal prior (Lag) 68; 94 68.3; 95

Table 3   Skewness (skew) and kurtosis (kurt) of the velocity (vel) 
and pressure (pres) distribution, extracted from the microphone posi-
tion in the PIV field

Skew (vel) Skew (pres) Kurt (vel) Kurt (pres)

No solenoidal 
prior (Eul)

0.034 −0.20 3.02 2.93

No solenoidal 
prior (Lag)

0.034 −0.024 3.02 2.44

Solenoidal prior 
(Eul)

0.034 −0.15 3.02 2.59

Solenoidal prior 
(Lag)

0.034 0.15 3.02 2.89

Fig. 13   Standard uncertainty of the reconstructed pressure field as a 
function of the distance from the wall. Excluding (blue) and includ-
ing (red) solenoidal filter, using the Eulerian (solid) and Lagrangian 
(circles) approaches
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former. The PIV uncertainty was quantified by applying a 
solenoidal filter to remove spurious divergence. In addition, 
spatial correlation of the PIV uncertainty was included. It 
was found that close to the wall, the velocity uncertainty 
increases, most likely due to the increased velocity gradient 
closer to the wall. This was observed to be propagated into 
the pressure field as well. The comparison between actual 
and approximated error showed the effectiveness of the 
proposed method for uncertainty quantification of pressure 
data from tomographic PIV experiments. The Lagrangian 
approach resulted in more accurate reconstructed pressure 
fields than the Eulerian approach, reducing the errors from 
approximately 2 % of the free stream dynamic pressure to 
approximately 1.5  %. Also, enforcing the divergence-free 
constraint was found to result in a more accurate recon-
structed pressure field, eventually reducing the errors to 
1 %. Both observations also followed from the uncertainty 
quantification through a decrease in the estimated uncer-
tainty. In addition, the estimated errors were in excellent 
agreement with the actual error of the pressure.
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