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Abstract In this paper, we focus on assessing the performance of diverse turbulence
closures in the simulation of dilute sediment-laden, open-channel flows. To that end, we
base our analysis on a framework developed in a companion paper of this special issue,
which puts forward a standard sediment transport model (SSTM), a partial two-fluid model
(PTFM) and a complete two-fluid model (CTFM), in three- and one-dimensional (3D and
1D) versions. First, we propose in this paper extensions of the transport equations for the Rey-
nolds stresses, and of the equations of the K–ω model to two-phase flows, starting from the
general two-fluid model. We consider the drag force to be the predominant force amongst all
the interactions between the two phases (water and sediment). Second, under the framework
of models formed by the SSTM, the PTFM and the CTFM, we discuss simulation results
obtained by employing the Reynolds stress model (RSM), the algebraic stress model (ASM),
and the K–ε and the K–ω models (in their standard and extended versions), paired with each
member of the framework. To assess the accuracy of the models, we compare numerical
results with the experimental datasets of Vanoni, Trans ASCE 111:67–133, 1946; Coleman,
Water Resour Res 22(10):1377–1384, 1986; Muste and Patel, J Hydraul Eng 123(9):742–
751, 1997; Nezu and Azuma, J Hydraul Eng 130:988–1001, 2004; Muste et al. Water Resour
Res 41:W10402, 2005 . Third, we obtain from those comparisons the values of the Schmidt
number that facilitate the agreement of model predictions with data. We conclude that the
standard K–ε model, the ASM and the K–ω models all provide satisfactory descriptions of
flow variables and sediment concentrations in open-channel flows; further, we show that the
more complicated RSM does not provide much improvement in dilute sediment transport as
compared to those previous models, even when it is paired with the CTFM. We also show that
the inclusion of model extensions in the turbulence closures does not improve the predictions
for dilute mixtures either. We find that our values for the Schmidt number agree well with
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available data, and we provide an explanation for the variation of the Schmidt number with
the ratio of the fall velocity and the wall-friction (shear) velocity. Finally, we corroborate
that the Schmidt number is the key parameter to obtain satisfactory predictions of sediment
transport in suspension.

Keywords Turbulence · Reynolds stress model · Sediment transport · Two-phase flows ·
K–ε model · K–ω model · Algebraic stress model · RSM · ASM

1 Introduction

In a previous paper in this special issue [6], we addressed several aspects of the modeling
of sediment transport, focusing on the phase interactions at the water-depth scale for dilute
flows. We proposed, for the first time to the best of our knowledge, a framework constituted
by three modeling approaches involving different complexities: (1) A standard sediment-
transport model (SSTM), (2) a partial two-fluid model (PTFM), and (3) a complete two-fluid
model (CTFM). While the first approach represents a relatively simple attempt to model the
motion of the two phases, the last one is described by a set of equations representing
the conservation of mass and momentum of each phase within a fixed elemental volume of
the mixture. The main assumption used in deriving the equations for the CTFM is that both
phases behave macroscopically as fluid continua [21–23]. This hypothesis is customary in par-
ticle-laden flows in open channels (see for instance [11–13,20,31,30,32,34,37,49,67,70]).
By posing the SSTM, the PTFM and the CTFM in one dimension (1D) in the wall-normal
direction, we were able to test in the companion paper the accuracy of the models against
data by Lyn [45], Muste and Patel [50], and Muste et al. [51], in terms of the prediction
of the turbulence-averaged water velocity, the averaged velocity of the disperse phase and
flow turbulence statistics. We tested the effect of neglecting the eddy viscosity of the dis-
perse phase (the sediment); we considered diverse models for the Schmidt number; and we
reported those values of the Schmidt number that best approximated the data. We addition-
ally tested the importance of certain terms added by some authors to the K–ε model (the
model used to treat the turbulence of the carrier phase, where K and ε denote the turbulent
kinetic energy (TKE) and the dissipation rate of turbulent kinetic energy (DTKE), respec-
tively), concluding that those terms do not produce major changes in the predictions in any
of the framework approaches described above. These framework models were tested with
just one possible turbulence closure (the K–ε model); there is naturally a need to rigorously
test them with other turbulence closures. Turbulence in open-channel flows is non-homoge-
neous and non-isotropic [5,27–29,52,57], which puts forward an important question on the
choice of the most appropriate turbulence closure for modeling when the Reynolds-Aver-
aged Navier-Stokes (RANS) equations are used. This issue is still relevant in spite of the
wide use of the K–ε model. In addition, the use of the Reynolds stress model (RSM) in
two-phase flows has been scarce, and reasonable questions arise as to which values of
the vertical component of the velocity of the disperse phase and the Schmidt number such
closure would yield when paired with the CTFM. Finally, Choi and Kang [15] found that
the RSM improved the description of most flow variables in open channels with vegeta-
tion (in 1D), as opposed to the K–ε model. Thus, a fair issue surfaces as to whether the
application of the RSM to sediment-laden, open-channel flows can yield improvement in
the model predictions. We keep our focus on dilute flows. In the case of dilute flows,
the volume fraction of sediment is small (αd ≈ 10−3 to 10−2 as a rough estimate [22]).
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The dilute flow is defined as the flow in which particle–particle interactions can be neglected
[32,44].

Based on the above concepts, this paper evaluates the effect of various turbulence closures
in the simulation of open-channel, sediment transport, under different approaches of mod-
eling discussed in [6]. To the best of our knowledge, this is the first time that the focus on
modeling in sediment transport engineering is shifted completely to address the performance
of different turbulence closures against common datasets (cf. [46]).

The paper is organized as follows. In Sect. 2, we describe very recent contributions
on the turbulence modeling in single- and two-phase flows using the RSM, the algebraic
stress model (ASM) and the K–ε and K–ω models (where ω denotes the specific dis-
sipation rate of TKE per unity TKE; see [72]). In Sect. 3, we briefly review the devel-
oped framework of models for dilute sediment-laden, open-channel flows presented in [6],
and discuss single-phase turbulence models. In Sect. 4, we introduce the extensions of the
RSM and the K–ω model to two-phase flows. We present the group of numerical tests
that we performed in Sect. 5, and we discuss the comparisons between those results and
data in Sect. 6, for both mean-flow variables, flow turbulence statistics, and for sediment
distributions.

2 Some recent contributions on turbulence closures

Although based on the isotropic eddy-viscosity concept, the K–ε model has been the most
widely used model in single-phase flows. This model has provided accurate results in many
cases (see [58]) for mean-flow variables and turbulence statistics. However, the model has
been found to be not completely adequate for solving certain aspects of highly anisotropic
flows such as the flows in compound channels, meandering channels in which curvature
effects are important, vegetated channels, and swirling flows; in those cases the RSM becomes
a more accurate tool [15,16,35,59,63,75]. The RSM has been recently shown to improve also
the predictions of shear stresses and some turbulence statistics in wall-bounded flows [33]
and open-channel flows with vegetation [15]. The ASM, in turn, involves algebraic expres-
sions for the Reynolds stresses obtained by simplifying the terms in the transport equations of
the RSM (see for example [25,56]). Another turbulence closure based on the eddy-viscosity
concept is the K–ω model [72]. The specific dissipation rate (ω) replaces the DTKE (ε) in
defining the flow length scale.

Concerning the application of these closures to two-phase flows in general, and sediment
transport in particular, the knowledge is not that clear. Only few studies, to the best of our
knowledge, have addressed the influence of different turbulence closures on the prediction
of the main variables in the flow, and not much is known about the relative or marginal
improvement that the use of these models could provide under diverse situations. Most of
the available information for two-phase flows comes from bubbly flows (see for instance
[4,61,62]). Furthermore, we have not been successful in finding any paper for sediment-
laden flows addressing the relation between the turbulence closure on one hand and the level
of complexity of the sub-models dealing with the two phases on the other (i.e., the way the
carrier and the disperse phases are described). Cao and Carling [10] estimated that probably
the use of second-order closures (RSM) for sediment transport would not provide much
improvement over the K–ε model, involving instead a higher computational effort. However,
they neither presented computations attesting to this fact nor discussed which aspects of the
prediction would be improved using the RSM.
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2.1 K–ε model

Elghobashi and Abou-Arab [23] presented one of the first rigorous derivations of the two-
phase K–ε model. While their generalized transport equation for K contains 38 terms, the
transport equation for ε contains 59 terms, which Elghobashi and Abou-Arab finally reduced
to 11 and 7 terms, respectively. Elghobashi and Abou-Arab employed the model to simulate
dilute, particle-laden jet flows. On similar grounds, Hsu et al. [32] derived a two-phase K–ε

model by disregarding several correlations. They reported an improvement in their predic-
tions of dilute, sediment-laden, open-channel flows. Zhou and Chen [77], on the other hand,
proposed a closure for turbulence in the carrier as well as the disperse phases starting from the
equations of the Reynolds stresses of the two phases. This model uses a transport equation for
the particle turbulent kinetic energy (K p) in addition to the transport equations for K and ε.
Zhou and Chen employed their model to analyze swirling, gas-particle flows. Mashayek and
Taulbee [48] proposed a K–ε–K p–Kfp model, which uses an additional transport equation
for the velocity correlation of the two phases (Kfp). Mashayek and Taulbee derived these
equations by contracting the equations for the fluid Reynolds stresses, the particle Reynolds
stresses, and the covariance between the fluctuations of both phases. Mashayek and Taul-
bee applied their model to particle-laden, turbulent jets with encouraging results. López and
García [42] applied a K–ε model to assess the turbulence characteristics and the transport of
suspended sediment in open channels through emergent vegetation. López and García added
a drag related term in the transport equations for K and ε due to vegetation and concluded
that this form of K–ε model becomes a reliable tool to predict the sediment transport under
different flow, sediment and vegetation conditions.

2.2 K–ω model

López and García [43] applied both the K–ε and K–ω models for the simulation of flow
through emergent vegetation. They found no significant difference in numerical results using
both closures. Yoon and Kang [74] introduced a slight modification to the standard Wilcox’s
[72] K–ω model in order to simulate the flow of particles in water. While the transport equa-
tions for K and ω remained the same as in the standard Wilcox’s model, they used a new
eddy viscosity through which they included the effect of suspended sediment on the flow.

2.3 RSM

Bertodano et al. [3] used the RSM for the carrier phase turbulence in the case of turbulent bub-
bly flows. de Bertodano et al. considered the lift force as the most important interaction force
in their work. Taulbee et al. [66] and Lain and Aliod [39] developed a RSM for both phases,
continuous and disperse, and considered the drag force as the predominant force between
the two phases (also see [1,18]). Sijercic et al. [60] used the RSM (in its single-phase form)
in the simulation of particle-laden, turbulent jets injected into a still environment. In their
analysis, Sijercic et al. did not include the turbulence modulation due to the presence of the
disperse phase.

2.4 ASM

Kumar [38] introduced an ASM for two-phase, bubbly and slug turbulent flows, by modify-
ing the expressions for the Reynolds stresses. The resulting model has additional constants,
but Kumar did not pursue the validation of the model against data.
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These studies refer mostly to bubbly flows and gas-solid particle flows; in gas-solid flows,
the ratio of the densities of the two phases is large. In the case of sediment-laden, water
flows, the ratio of densities is order 1 (it varies between 1.5 and 3). Thus, those results should
in principle be extrapolated with caution to water-sediment flows. Consequently, there is a
natural uncertainty as to whether the closures can work fine in sediment-laden, water flows
as well. As a general conclusion, not much research has been devoted to the analysis and
testing of two-phase versions of the K–ω model, and the RSM.

3 Framework for modeling sediment-laden, open-channel flows and turbulence
closures for single-phase flows

3.1 Framework for the simulation of sediment-laden, open-channel flows

Bombardelli and Jha [6] defined three levels of complexity in modeling sediment transport
in open channels. The most complex model in the framework, termed as the CTFM, is com-
posed by general balance equations of mass and momentum for the two phases, which can
be reduced in length by considering only the drag force as the most important interaction
between the phases. Unlike other CTFM used in the past, our model equations involve both
an ensemble and turbulence averaging, in order to obtain a diffusion term in the mass balance
equations (see [4] and [9]). The final form of the mass and momentum equations [6,7,21]
can be found in Table 1.

In Eqs. T1 and T2, the subscript k stands for both phases (which could be c or d for the
carrier and the disperse phases, respectively); αk represents the volume fraction of the phase
k [21, p. 122] which is a turbulence-averaged variable; ρk is the density of phase k; and
Uk represents the velocity of phase k, which is also an ensemble- and turbulence-averaged
variable. In turn, �k is the mass transfer to the phase k (which is zero in this case); P is
the pressure; Tij refers to the deviatoric stresses; the stresses with the superscript Re are the
result of the processes of ensemble and turbulence averaging; gi is the i-th component of
the acceleration due to gravity; and x and t are the space and time coordinates, respectively.
The indices i and j vary from 1 to 3 and sum is implied in repeated indices. Bombardelli
[4] showed that the momentum equation of phase k becomes very involved when all corre-
lations are considered. Some terms include triple correlations for which very little is known.
Therefore, the format of Eq. T2 represents a good compromise between simplicity and rigor.
Equations T1 and T2 involve in fact four equations in total. The first and second terms on the
left-hand side of Eq. T1 are the rate of change of mass in a point and the net rate of convective
mass flux. The term on the right hand side of Eq. T1 represents the transport by molecular
and turbulent diffusion. The first and second terms on the left-hand side of Eq. T2 are the net
rate of change of momentum in a point and the net rate of momentum transfer by convection,
respectively; the first term on the right-hand side is the mean pressure gradient; the second
term on the right-hand side is the stress term; the third term on the right-hand side includes
the body forces such as gravity.

Stresses are modeled as T Re
ij,k = −ρku′

i,ku′
j,k , where the superscript ′ indicates fluctuation

[4,9,21]. The last term in Eq. T2 represents the drag force, involving β = 3
4dp

αdρcCD

∣
∣
∣
−→
Ur

∣
∣
∣,

where the subscript r indicates the relative velocity between the two phases; dp is the diameter
of the sediment particles; and CD is the drag coefficient, defined in the companion paper.

The second and somewhat less-involved model is termed as the PTFM, which consists
of mixture equations as a surrogate of the carrier phase and general equations for the dilute
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Table 1 Two-phase flow equations

CT F M

Mass balance
∂(αkρk)

∂t + ∂
∂x j

(

αkρkU j,k
) = ∂

∂x j

(

ρkα′
ku′

j,k

)

+ �k (T1)

Momentum balance

∂
(

αkρkUi,k
)

∂t + ∂
∂x j

(

αkρkUi,kU j,k
) = −αk

∂ Pk
∂xi

+ ∂
∂x j

[

αk

(

Tij,k + T Re
ij,k

)]

+ αkρkgi ± βUi,r (T2)

PTFM

Mass balance for the carrier
∂

∂x j

(

U j,m
) = 0 (T3)

Momentum balance for the carrier

∂
(

ρ0Ui,m
)

∂t + ∂
∂x j

(

ρ0Ui,mU j,m
) = − ∂ Pm

∂xi
+ ∂

∂x j

(

Ti j,m + T Re
ij,m

)

+ ρm gi (T4)

Mass balance for the disperse phase
∂(αd ρd )

∂t + ∂
∂x j

(

αdρdU j,d
) = − ∂

∂x j

[

ρdα′
d u′

j,d

]

(T5)

Momentum balance for the disperse phase

∂
(

αd ρd Ui,d
)

∂t + ∂
∂x j

(

αdρdUi,dU j,d
) = −αd

∂ Pc
∂xi

+ ∂
∂x j

[

αd

(

Tij,d + T Re
ij,d

)]

+ αdρd gi + βUi,r (T6)

SSTM

Advection–diffusion equation to calculate the distribution of sediment concentration

∂C
∂t + ∂

∂x j

[

C
(

U j,d − Wsδ j3
)] = − ∂

∂x j

[

c′u′
j,d

]

(T7)

Transport equations of the RSM for single-phase flows

D
Dt

[

ρ
(

u′
i u′

j

)]

= Pij + Dij + πij − εij (T8)

Pij ≡ ρ
{

−
(

u′
i u′

l

)
∂U j
∂xl

−
(

u′
j u′

l

)
∂Ui
∂xl

}

; Dij ≡ Cs
∂

∂xl

[

ρ
{

K
ε u′

l u
′
q

∂
∂xq

(

u′
i u′

j

)}]

(T9)

πij ≡ −C1ρ ε
K

{

u′
i u′

j − 2
3 δij K

}

− C2ρ
(

Pij − 2
3 δij prod

)

; εij ≡ 2
3 ρεδij (T10)

Expression for the stresses in the ASM

−u′
i u′

j = K

[
Pij(1−C2)+ 2

3 δij[prodC2−(1−C1)ε]
prod−(1−C1)ε

]

(T11)

Expression for the Reynolds stresses

u′
i,cu′

j,c = −νT

(
∂Ui,c
∂x j

+ ∂U j,c
∂xi

)

+ 2
3 K δij; α′

d u′
j,d = − νT

σ
∂αd
∂x j

(T12)

Expression for the Reynolds fluxes

c′u′
j,d = − νT

σ
∂C
∂x j

(T13)

Transport equation for the TKE
∂(ρc K )

∂t + Uc, j
∂(ρc K )

∂x j
= ∂

∂x j

[
νT
σK

∂(ρc K )
∂x j

]

+ prod − ρcε + SK (T14)

Transport equation for the DTKE

∂(ρcε)
∂t + Uc, j

∂(ρcε)
∂x j

= ∂
∂x j

[
νT
σε

∂(ρcε)
∂x j

]

+ Cε1 prod ε
K − Cε2ρc

ε2

K + Sε (T15)

Transport equation for the specific dissipation (ω)
∂(ρcω)

∂t + Uc, j
∂(ρcω)

∂x j
= ∂

∂x j

[
1

Prω
K
ω

∂(ρcω)
∂x j

]

+ Cω1ρc prod ω
K − Cω2ρcω

2 + Sω (T16)

For simplicity the overbar indicating turbulence averaging has been dropped in the above equa-
tions, except on the correlations

disperse phase [4,7–9]. We have presented the final mass and momentum equations for both
phases in Table 1 (see Eqs. T3–T6). The terms on Eqs. T4, T5 and T6 have the same meaning
as explained above. In Eqs. T3 to T6, the subscript m stands for the mixture, and ρ0 is a ref-
erence density value. For the mixture shear stresses, we assumed T Re

ij,m = −ρmu′
i,mu′

j,m . The
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Fig. 1 Schematic of sediment-laden, open-channel flow

PTFM can be simplified further by assuming an algebraic momentum equation for the vertical
component of the velocity, in terms of the fall (settling) velocity (Ws) as detailed in [6].

The third and most common approach to model sediment transport is referred to herein
as the SSTM [6], which also assumes the mixture to be a surrogate of the carrier fluid; thus,
the transport equations for the mixture variables can be expressed through Eqs. T3 and T4. In
order to calculate the distribution of sediment, a straightforward advection–diffusion equa-
tion, presented in Eq. T7, is solved. In Eq. T7, Ws represents the fall velocity which is a pos-
itive value, and C indicates the sediment concentration; δij is the Kronecker delta. It is worth
mentioning that both αd and the volumetric concentration C have the same physical meaning.

In [6], we presented 1D versions of the above equations. In the case of a 1D sediment-
laden, open-channel flow over a plane bed of small slope (shown in Fig. 1), the derivatives
in x and y can be disregarded. (The x , y, and z axes refer to the stream-wise, transverse and
wall-normal directions, respectively.)

3.2 Closure of the equations: turbulence models for single-phase flows

The equations presented in Table 1 are not closed, since adequate expressions for the fol-
lowing terms are needed: u′

i,cu′
j,c, u′

i,du′
j,d , α′

du′
j,d , and c′u′

j,d . In the case of dilute flows,

the stresses of the disperse phase u′
i,du′

j,d can be neglected [32]. This is in agreement with
results obtained by Bombardelli and Jha [6], who verified that the numerical results with a
null value of the eddy viscosity of the disperse phase were closer to the observed data than
predictions using the relation proposed by Chen and Wood [14], when the K–ε model was
used. In turn, the Reynolds stresses in the carrier phase u′

i,cu′
j,c can be obtained “rigorously”

by solving the transport equations of the RSM, which in their single-phase version [57] are
presented in Eq. T8. In Eq. T8, Pij is the rate of turbulence production by shear; Dij is the
diffusion tensor; πij is the pressure-rate-of-strain term; and εij is the rate of dissipation of
TKE tensor, defined in Eqs. T9 and T10.

The pressure-rate-of-strain tensor above was modeled using the LRR-IP model [40]. In
the Eqs. T9 and T10, prod is the turbulent shear production (prod = −u′

i u
′
j∂Ui

/

∂x j ), and
Cs , C1, C2 are constants. The TKE in the equations can be obtained by adding the diagonal
terms of the Reynolds stress tensor or, alternatively, by solving the transport equations of
the K–ε model [6,58]. We adopted the latter approach herein. The solid fraction Reynolds
fluxes, i.e., α′

du′
j,d and c′u′

j,d , can be computed using the definition of the Schmidt number
(σ ) following Eq. T13; in turn, the K–ε model was employed to provide the eddy viscosity.
(σ is defined as the ratio between the eddy viscosity of the carrier phase and the diffusiv-
ity of suspended sediment.) In this paper, we propose an extension of the RSM to address
two-phase flows in Sect. 4.
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The ASM has the advantage over the RSM that it is easier to implement. The standard
approach in deriving the ASM is based on the assumption that the convective and diffusive
transport terms of individual Reynolds stress components are proportional to the transport of
TKE [58]. The final expression for the stresses is presented in Eq. T11 in Table 1. In Eq. T11
C1 and C2 are the same constants of the RSM.

The K–ε and the K–ω models are based on the Boussinesq model [57,58]. The Reynolds
stresses and Reynolds fluxes are expressed in terms of the gradients of the time-averaged
velocities and concentrations, as depicted in Eqs. T12 and T13, respectively. In Eqs. T12 and

T13, νT is the eddy viscosity of the carrier, computed as νT = µT
ρ

= Cµ
K 2

ε
= K

ω
in the case of

the K–ε and the K–ω models, respectively, with µT indicating the dynamic eddy viscosity of
the carrier. The transport equation for K (Eq. T14) is the same in both the K–ε and K–ω mod-
els (obviously changing the expression for ε as a function of ω: ε = CµKω). Equations T15
and T16 are the transport equations for the DTKE, ε, and the specific dissipation, ω.

4 Extended versions of the RSM and the K–ε and K–ω models for two-phase flows

4.1 Extension of the RSM

The derivation of the transport equations for the stresses u′
i,cu′

j,c of the carrier phase contains
the following steps:

(a) Multiply the momentum equation for the fluctuation velocity (u′
i ) by u′

j ;
(b) interchange subscripts i and j ;
(c) add equations obtained in steps (a) and (b) and average;
(d) apply the product rule.

The details of those mathematical derivations are presented in the Appendix. The last two
terms of Eq. A.12 arise as a consequence of having interaction forces between phases. Further
considerations are needed in order to close those additional terms, which are provided on the
Appendix, leading to the following final expression for the stresses:

D

Dt

[

αcρc

(

u′
i,cu′

j,c

)]

= Pij + Dij + πij − εij + Su′
i u′

j
(1)

with

Su′
i u′

j
= −2 β (1 − fu)

(

u′
i,cu′

j,c

)

+ 3

4dp
CD

∣
∣
∣
−→
Ur

∣
∣
∣

[

Ui,r Dd
∂αd

∂x j
+ U j,r Dd

∂αd

∂xi

]

(2)

Since our models focus on dilute conditions and since the selected datasets pertain to such
conditions (see Sect. 5), we did not include stratification effects in the model extensions.

4.2 Extension of the K–ε model

Herein, we employed an extended version of the K–ε model similar to that of [32]. Some
authors have also used volume fractions of the carrier phase multiplying terms in the equa-
tions for the TKE and the DTKE. We believe that this is not required, given the dilute-mixture
nature of the flows analyzed in this paper. Hsu et al. proposed the following expressions for
SK and Sε, the terms they added to the K–ε model to account for the presence of a second
phase (see Eqs. T14 and T15):
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SK = SK 1 + SK 2; Sε = 1.2SK
ε

K
; (3)

with

SK 1 = − 2ρdαd K

TP + TL
, and

SK 2 = 3

4dp
ρcCD

∣
∣
∣
−→
Ur

∣
∣
∣ νT

∂αd

∂xi

(

Ui,c − Ui,d
)

(4)

In the above equations, SK 1 represents the correlation between the fluid and sediment velocity
fluctuations and SK 2 represents the production of TKE due to the drag force [32,39]. Notice
that SK , and Sε become zero when αd = 0, as expected. In turn, the scales TP (particle time
scale) and TL (flow time scale) are given by:

TP = ρd

3
4dp

ρcCD

∣
∣
∣
−→
Ur

∣
∣
∣

; TL = 0.165
K

ε
(5)

We adapted this particle time scale from Hsu et al.’s expression for a non-linear drag force.

4.3 Extension of the K–ω model

We followed similar procedures to those of [32] to extend the K–ε model. To the best of
our knowledge, no extension of this model for two-phase flows has been provided before
(besides the attempt by Yoon and Kang [74] mentioned above). The final equation for ω is
the same as Eq. T16, in which

Sω = 1.2 SK
ω

K
; (6)

SK = − 2ρdαd K

TP + TL
+ 3

4dp
ρcCD

∣
∣
∣
−→
Ur

∣
∣
∣ νT

∂αd

∂xi

(

Ui,c − Ui,d
)

(7)

In Table 2, we present the governing equations of the different models and the diverse turbu-
lence closures in their 1D forms for the open-channel problem. The values of the constants
are also listed in Table 2.

4.4 Considerations about the values of the model constants

It is worth pointing out here that the values of the constants are the same as those devel-
oped for single-phase flows. Ideally, those constants should be modified in order to account
for the presence of a particulate phase in sediment-laden flows. To determine those values
would require an appropriate and detailed experimental dataset (non-existent to date to the
best of our knowledge) or Direct Numerical Simulation (DNS) results, as done by Squires
and Eaton [64]. For the constants involved in the K–ε model, Squires and Eaton [64] con-
cluded that for dilute flows with mass loadings below 0.2, the modification in the values
of the constants are small (although some caution should be taken in cases of preferential
concentration of particles). Therefore, we have used the unmodified values of the constants
in the turbulence models, following customary approaches in most papers (see, for instance,
[2,14,23,32,55,73]).

In the case of the K–ω model, [43,74] have used the same constants that were suggested
by Wilcox [72]. Similarly, in the case of the ASM and the RSM, we found that researchers
have used the same constants for the turbulence models as they were developed for clear
water flows (e.g., [1,15,60]).
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Table 2 Governing equations used in different modeling approaches in 1D

Models Governing equations

SSTM Carrier phase

Mass balance ∂Wm
∂z = 0

Momentum balance in x ∂(ρmUm )
∂t = − ∂

∂z

[

ρmu′
mw′

m

]

+ ρm gS

Momentum balance in z Wm = 0

Disperse phase

Mass balance ∂C
∂t + Wd

∂C
∂z = − ∂

∂z

[

w′
d c′

]

Momentum balance in x Ud = Um

Momentum balance in z Wd = −Ws

PTFM Carrier phase

Mass balance ∂Wm
∂z = 0

Momentum balance in x ∂(ρmUm )
∂t = − ∂

∂z

[

ρmu′
mw′

m

]

+ ρm gS

Momentum balance in z Wm = 0

Disperse phase

Mass balance ∂(αd ρd )
∂t + ∂(αd ρd Wd )

∂z = − ∂
∂z

[

ρdw′
dα′

d

]

Momentum balance in x ∂(αd ρd Ud )
∂t + ∂(αd ρd Ud Wd )

∂z = − ∂
∂z

[

ρdαd u′
dw′

d

]

+αdρd gS + FD,x (∗)

Momentum balance in z Wd = −Ws

CTFM Carrier phase

Mass balance ∂Wc
∂z = 0

Momentum balance in x ∂[(1−αd )ρcUc]
∂t = − ∂

∂z

[

(1 − αd ) ρcu′
cw

′
c

]

+ (1 − αd ) ρcgS − FD,x

Momentum balance in z Wc = 0

Disperse phase

Mass balance ∂(αd ρd )
∂t + ∂(αd ρd Wd )

∂z = − ∂
∂z

[

ρdw′
dα′

d

]

Momentum balance in x ∂(αd ρd Ud )
∂t + ∂(αd ρd Ud Wd )

∂z = − ∂
∂z

[

αdρd u′
dw′

d

]

+αdρd gS + FD,x (**)

Momentum balance in z ∂(αd ρd Wd )
∂t + ∂(αd ρd Wd Wd )

∂z = −αd
∂ Pc
∂z

− ∂
∂z

[

αdρdw′
dw′

d

]

− αdρd g cos θ + FD,z (**)

K –ε model −u′
mw′

m = νT
∂Um
∂z ; −u′

cw
′
c = νT

∂Uc
∂z ;

where, νT = µT
ρ = Cµ

K 2

ε

Turbulent kinetic energy (TKE) ∂K
∂t = ∂

∂z

[
Cµ
σk

K 2

ε
∂K
∂z

]

+ νT

(
∂Uc
∂z

)2 − ε + ξ SK

Dissipation rate of
turbulent kinetic
energy (DTKE)

∂ε
∂t = ∂

∂z

[
Cµ
σε

K 2

ε
∂ ε
∂z

]

+ Cε1νT

(
∂Uc
∂z

)2
ε
K −

Cε2
ε2

K + ξ Sε

where, SK = SK 1 + SK 2; Sε = 1.2SK
ε
K

SK 1 = − 2ρd αd K
TP +TL

; and SK 2 = 3
4dp

ρcCD

∣
∣
∣
−→
Ur

∣
∣
∣

νT
∂αd
∂z (Wc − Wd );
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Table 2 continued

Models Governing equations

K –ε model TP = ρd
3

4dp
ρcCD

∣
∣
∣
−→
Ur

∣
∣
∣

; TL = 0.165 K
ε

For the standard K –ε model, ξ = 0; for the extended K –ε model,
ξ = 1. Cµ = 0.09; σk = 1.4; σε = 1.3; Cε1 = 1.44; Cε2 = 1.92.

K –ω −u′
mw′

m = νT
∂Um
∂z ;−u′

cw
′
c = νT

∂Uc
∂z ; where, νT = µT

ρ = K
ω

Turbulent kinetic energy ∂K
∂t = ∂

∂z

[
Cω
σk

K
ω

∂K
∂z

]

+ νT

(
∂U
∂z

)2 − Cω Kω + ξ SK

Specific dissipation rate ∂ω
∂t = ∂

∂z

[
Cω
σω

K
ω

∂ω
∂z

]

+ Cω1

(
∂U
∂z

)2
ω
K − Cω2ω2 + ξ Sω

For the standard the K –ω model, ξ = 0; for the extended K –ω

model, ξ = 1. Cω = 0.09; σk = 2.0; σω = 2.0;
Cω1 = 5/9; Cω2 = 0.075.

The source terms: SK = SK 1 + SK 2 ;Sω = 1.2SK ω/K .

ASM −u′w′ =
⎡

⎣

2
3

(

C1+C2
prod1D

ε −1
)

(C2−1)
(

C1+ prod1D
ε −1

)2

⎤

⎦ K 2

ε
∂Uc
∂z

⇒ Cµ =
2
3

(

C1+C2
prod1D

ε −1
)

(1−C2)
(

C1+ prod1D
ε −1

)2

prod1D = νT

(
∂Uc
∂z

)2 ; C1 = 1.8; C2 = 0.65.

RSM ∂
∂t

(

u′
cw

′
c

)

= ∂
∂z

[

Cµ
σk

K 2

ε

∂
(

u′
cw′

c

)

∂z

]

− C0 K ∂Uc
∂z

− C1
ε
K u′

cw
′
c + Suw (***)

∂K
∂t = ∂

∂z

[
Cµ
σk

K 2

ε
∂K
∂z

]

− u′
cw

′
c

∂Uc
∂z − ε + SK

∂ε
∂t = ∂

∂z

[
Cµ
σε

K 2

ε
∂ε
∂z

]

− Cε1

(

u′
cw

′
c

∂Uc
∂z

)
ε
K − Cε2

ε2

K + Sε

where, Suw = −2β (1 − fu) u′
cw

′
c + 3

4dp
CD

∣
∣
∣
−→
Ur

∣
∣
∣

×
[

(Uc − Ud ) Dd
∂αd
∂z

]

; in which fu = 1

1+ Tp
TL

.

Cµ = 0.09; σk = 0.82; σε = 1.0; Cε1 = 1.44;
Cε2 = 1.92; C1 = 1.8; C0 = 0.25.

Turbulence closures expressed in 1D
* The diffusive term in the equation of momentum in x of the disperse phase needs to be considered as a model

in itself, since triple correlations such as
(

u′
dw′

dα′
d

)

have been disregarded

** FD,x and FD,z were modeled following [6]
*** The diffusion of Reynolds stresses and terms involving normal stresses have been approximated as a
function of the TKE by following Lien and Leschziner (1994)

5 Runs with different model variants and boundary conditions

5.1 Runs developed

We performed diverse runs listed in Table 3, by combining seven different turbulence clo-
sures (i.e., the standard and extended K–ε model, the standard and extended K–ω model, the
ASM and the standard and extended RSM) with the theoretical framework composed by the
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Table 3 List of runs performed Run Model Turbulence model

1 SSTM Standard K –ε

2 SSTM Standard K –ω

3 SSTM Standard ASM

4 SSTM Standard RSM

5 PTFM Standard K –ε

6 PTFM Standard K –ω

7 PTFM Standard ASM

8 PTFM Standard RSM

9 PTFM Extended K –ε

10 PTFM Extended K –ω

11 PTFM Extended RSM

12 CTFM Standard K –ε

13 CTFM Standard K –ω

14 CTFM Standard ASM

15 CTFM Standard RSM

16 CTFM Extended K –ε

17 CTFM Extended K –ω

18 CTFM Extended RSM

Table 4 Summary of flow characteristics in the experiments selecteda

Reference
data source

Case Depth (cm) Slope
(×10−3)

Particle
diameter
(mm)

Settling (fall)
velocity (m/s)

Shear
velocity
(m/s)

ρd
(kg/m3)

Rep

[69] 18 14.08 1.25 0.134 0.00838 0.041 2,650 6.24

19 7.19 1.25 0.1 0.00829 0.041 2,650 4.02

[19] 23 17.0 2.0 0.210 0.023 0.041 2,650 12.24

26 17.1 2.0 0.210 0.023 0.041 2,650 12.24

29 16.8 2.0 0.210 0.023 0.041 2,650 12.24

[50] SL01 12.9 0.739 0.25 0.024 0.0324 2,650 15.90

[53] PS05 5.0 1.2 0.5 0.0068 0.0147 1,050 7.83

[51] NS1 2.1 11.3 0.25 0.024 0.042 2,650 15.90

The settling velocity in these tests was obtained from formulas; it was not measured. Rep is given by
√

(

gd3
p�ρ

/

ρ
)/

ν; where ν is the kinematic viscosity of the carrier phase

aAll tests pertain to dilute flow conditions

SSTM, the PTFM and the CTFM. Note that there is no need to employ extended versions
of the models with the SSTM because the SSTM does not incorporate interaction forces in
any of the momentum equations. Numerical results were compared with the observations
of [19,50,53,69 and 51]; details of the experiments are shown herein in Table 4. Runs were
performed with the same number of volumes as determined by the mesh-convergence anal-
ysis of [6]. We also refer to that paper for more information on the numerical treatment of
the equations. Runs were performed for 10,000 s of simulation time, using the time step as a
relaxation to the steady state. The steady state was achieved after 1,000 s in most runs (see [6]).
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5.2 Boundary conditions

We employed mostly the same boundary conditions discussed in [6], with the natural addi-
tions of those boundary conditions for the other turbulence models developed and used in
this work. Similar to [6], the value of αd at the first computational point (αd,b) was adopted
to be the largest measured value close to the bed. We also present herein an assessment of
the boundary condition for the sediment volume fraction at the free surface in Sect. 6.5. For
the K–ω model, we used the same boundary conditions employed by Wilcox [72] and López
and García [43], which read:

ω|z=0 = U∗
/

(0.3κy1); (∂ω / ∂z)|z=h = 0

In the above equations y1 is a convenient distance from the wall; U∗ is the wall-friction
(shear) velocity; and κ indicates the von Kármán constant. Please recall that the condition
ω|z=0 is valid for a point outside the viscous sublayer.

In our previous work [6], we observed that the value of the non-dimensional shear stress

− u′w′
∣
∣
∣
z=0

/

U 2∗ , computed using the K–ε model, was close to 0.5 at the bottom, for all tests.

Therefore, we applied that same boundary condition on the shear stress at the bottom in these
runs (for the RSM and the ASM). At the top boundary, we imposed a null value for the shear

stress: u′ w′
∣
∣
∣
z=h

= 0.

6 Comparison of simulation results with experiments and discussion

6.1 Mean velocity of the carrier phase

Figures 2, 3, 4, 5 and 6 depict the measured and modeled profiles of the mean velocity of the
carrier phase in the wall-normal direction. In Figs. 2, 3 and 4, we compare the performance of
the turbulence closures in their standard versions with data for each member of the modeling
framework (the SSTM, the PTFM and the CTFM, respectively). We note that for the test case
of Muste et al., the numerical results using the standard K–ε model show under-prediction
of the data points in the region 0 < z/h < 0.3, while they show a slight over-prediction
in the upper region 0.3 < z/h < 1, for all approaches within the framework. The results
with the K–ω model show a small under-prediction throughout the entire depth when using
the SSTM and the PTFM, and a slightly better prediction with the CTFM. When we use
the ASM, the results are close to those obtained using the K–ε model in the lower 20% of
the depth, but overall the ASM performs better than the K–ε model. Results with the RSM
show the best agreement with data for the observations by Muste et al. Largest differences
among predictions and data occur in the lower 5% of the depth, but differences are between 5
and 10%.

For the test case of Muste and Patel, all models seem to follow a common bundle up to
mid depth, deviating afterwards. The K–ε turbulence closure gives better predictions than
other closures for larger relative distances from the wall. Despite these relative consider-
ations, we observe that, overall, the predictions using different turbulence closures in their
standard, single-phase versions are within 5–10% from each other. This result is valid for
both datasets.

In Figs. 5 and 6, we present the comparison of numerical results with data when the RSM
and the K–ω model are used in their standard as well as in their extended forms. The results
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Muste et al. (2005)

Muste and Patel (1997)

SSTM K- ε
SSTM K-ω

Fig. 2 Comparison of simulated values of the stream-wise velocity of the carrier phase with the experimental
data. Simulations were performed using the standard K–ε and K–ω models, the ASM and the RSM, under the
approach of the SSTM
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PTFM ASM
PTFM RSM
Experimental data

PTFM K-ε
PTFM K-ω

Muste et al. (2005)

Muste and Patel (1997)

Fig. 3 Comparison of simulated values of the stream-wise velocity of the carrier phase with the experimental
data. Simulations were performed using the standard K–ε and K–ω models, the ASM and the RSM, under the
approach of the PTFM

show that the additional terms in the RSM and the K–ω model only affect slightly the model
predictions (5% of difference at most). Differences are also small for the K–ε model, as shown
by Bombardelli and Jha [6]. Interestingly, while the extended RSM produces a less-accurate
prediction in the test case of Muste et al., not much change is observed in the test case of
Muste and Patel. The additional terms in the K–ω model produce an improvement for the
test case of Muste et al. This result is as equally valid for the PTFM (Fig. 5) as it is for the
CTFM (Fig. 6).
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CTFM K- ε
CTFM K- ω

Muste et al. (2005)

Muste and Patel (1997)

Fig. 4 Comparison of simulated values of the stream-wise velocity of the carrier phase with the experimental
data. Simulations were performed using the standard K–ε and K–ω models, the ASM and the RSM, under the
approach of the CTFM
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PTFM Extended RSM

PTFM Extended K-O 

Experimental data 

PTFM K- ω

PTFM Extended K-ω

Muste et al. (2005)

Muste and Patel (1997)

Fig. 5 Comparison of simulated values of the stream-wise velocity of the carrier phase with the experimental
data. Simulations were performed using the RSM and the K–ω model in their standard as well as extended
forms, under the approach of the PTFM

6.2 Mean velocity of the disperse phase

The numerical results in terms of the mean stream-wise velocity of the disperse phase, for
the PTFM and the CTFM are presented in Figs. 7 and 8. It becomes apparent that predictions
using very different turbulence closures almost overlap with each other in more than half the
depth for the test case of Muste and Patel, and are very close in the test case of Muste et al.
In the case of the PTFM, the ASM seems to provide more accurate predictions for the case
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Fig. 6 Comparison of simulated values of the stream-wise velocity of the carrier phase with the experimental
data. Simulations were performed using the RSM and the K–ω model in their standard as well as extended
forms, under the approach of the CTFM
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Muste and Patel (1997)

Fig. 7 Comparison of simulated values of the stream-wise velocity of the disperse phase with the experimen-
tal data. Simulations were performed using the standard K–ε and K–ω models, the ASM and the RSM, under
the approach of the PTFM

of Muste et al. than other methods, while the RSM does so for the CTFM. For the case of
Muste and Patel, the K–ε model seems to offer the closest agreement. However, not much
difference can be observed among the predictions.

We also evaluated in Fig. 9 the effects of extending the RSM and the K–ω model on the
prediction of the stream-wise velocity of the disperse phase. From this figure, it becomes
clear that the addition of terms in the turbulence closure does not lead to better predictions
in any test case.
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Fig. 8 Comparison of simulated values of the stream-wise velocity of the disperse phase with the experimen-
tal data. Simulations were performed using the standard K–ε and K–ω models, the ASM and the RSM, under
the approach of the CTFM
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Fig. 9 Comparison of simulated values of the stream-wise velocity of the disperse phase with the experimen-
tal data. Simulations were performed using the RSM and the K–ω model in their standard as well extended
forms, under the approach of the PTFM

6.3 Turbulence statistics

We present the comparison between simulation results and experimental data of TKE in
Fig. 10 for the test case of Muste and Patel. To compute the TKE from the available experi-
mental data, we adopted the same relationship found in our previous paper [6] between the
root mean square (rms) of the transverse velocity (axis y) and the rms of the stream-wise

velocity,
√

v′2 ≈ 0.3–0.6
√

u′2 depending on the dataset. The profiles of TKE using the RSM
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CTFM K-ω

Fig. 10 Comparison of simulated values of the non-dimensional turbulent kinetic energy (TKE) of the carrier
phase with the experimental data. Simulations were performed using the K–ε and K–ω models under the
approach of the CTFM

and the ASM were not included since we did not solve for u′
yu′

y in our computations. We note
that the agreement of model predictions with data is satisfactory up to z

h ≈ 0.75, but it is not
good above that height. This discrepancy can be attributed in part to the boundary condition
for K at the free surface: K = 0. In Sect. 6.5 below we discuss the effects of the boundary
condition at the free surface. We observed that the differences in results between the PTFM
(not shown herein) and the CTFM (Fig. 10) are not significant. Similar observations can be
made for the test case of Muste et al. (not shown herein), which confirms the findings in our
previous paper that increasing the complexity of the model does not lead to improvement for
dilute sediment transport.

We present the wall-normal distribution of the non-dimensional Reynolds stresses in
Fig. 11 for the CTFM (the results for the PTFM are very similar), and the test case of Muste
et al. A linear profile of the shear stresses is expected in the case of clear-water flow; a similar
profile is also observed here in the case of dilute, sediment-laden flow. We notice that the
profiles obtained with different turbulence closures overlap with each other and fall close to
the data. However, the RSM deviates from other closures. Unfortunately, the scatter of the
data points does not allow for discerning which result is closer to the observations. A very
similar pattern was observed for the test case of Muste and Patel, not shown herein.

6.4 Distribution of the volume fraction of the sediment in the wall-normal direction

In our previous work [6], we found that the values of the Schmidt number that facilitated the
agreement with data, for the case of the PTFM and the K–ε model, were 0.7 and 0.56 for the
tests of [45] and Muste et al., respectively.

In this section, we examine the results for the Schmidt number obtained when the PTFM
and the CTFM are both used in combination with different turbulence closures. In Figs. 12
and 13 we present the wall-normal distribution of sediment concentration for the test case of
Muste et al., when we use the PTFM and the CTFM, respectively. In Fig. 12, we used the
value of σ = 0.56 for all turbulence models, and noted that while the results agreed with the
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Fig. 11 Comparison of simulated values of the non-dimensional shear stress of the carrier phase with the
experimental data. Simulations were performed using the K–ε and K–ω models, the ASM and the RSM, under
the approach of the CTFM
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PTFM K-ω

Fig. 12 Comparison of simulated values of the distribution of the volume fraction of the disperse phase with
the experimental data. Simulations were performed using the K–ε and K–ω models, the ASM and the RSM,
under the approach of the PTFM

data for the K–ε and the K–ω models, and the ASM, the results with the RSM deviated from
the data. Only when the value of the Schmidt number was reduced to 0.42, the RSM provided
a good fit. Interestingly, the use of σ = 0.56 with the CTFM (Fig. 13) did not provide good
results for any of the turbulence closures. Using now σ = 0.4, all models except the RSM
provided good predictions. Only when the value of the Schmidt number was reduced to 0.3
in the CTFM, the RSM gave satisfactory predictions.
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Fig. 13 Comparison of simulated values of the distribution of the volume fraction of the disperse phase with
the experimental data. Simulations were performed using the K–ε and K–ω models, the ASM and the RSM,
under the approach of the CTFM

We investigated this issue further via more comparisons of model predictions with the
distribution of sediment in the wall-normal direction and the datasets of [19,53,69]. In
Fig. 14a–c, we show that, in all cases, the values of σ that facilitate the agreement with
the data are consistently lower for the runs with the RSM than those with the K–ε model.
Also, the values of σ estimated using the CTFM were found to be mostly smaller than those
obtained using the PTFM. (The values of the Schmidt number pertaining to each case are
displayed on Table 5.) In Fig. 15, we plotted the values of σ obtained from the PTFM and the
CTFM for all test cases, together with values computed using the van Rijn’s [68] formula, the
Einstein and Chien model [24], and laboratory observations on which van Rijn himself based
his formula [68]. This plot adapts a figure presented by Lyn [46]. It is possible to see in first
place that the computed values of σ lie within the ranges of experimental values reported by
different authors (within a large scatter) and that model results follow the experimental trend
of decreasing σ with larger values of Ws

U∗ . In second place, these experimental values can be
as small as 0.3. Third, we observe that the values of σ obtained from runs with the K–ε model
are closer to the computed values using the van Rijn’s formula than those obtained from the
runs with the RSM. Fourth, it becomes clear that the van Rijn’s expression gives the lowest
values of σ for larger ratios Ws

U∗ than the numerical results.
In order to assess the differences between the σ values provided by diverse runs, we

investigated the computed Ws = |Wd | and U∗. We found that relatively small differences in
Ws and U∗ (of the order of 20% or less) produce larger ratios Ws

U∗ for the CTFM, as opposed

to the PTFM, and for the RSM, as opposed to the K–ε model. As a consequence, larger Ws
U∗

ratios are associated with smaller values of σ (see Table 6). In other words, the smaller values
of σ are the result of the small differences among runs in the values of the computed Ws and
U∗. (Recall that we used the reported values of Ws in the PTFM and that these values of Ws

are not measured, which implies a range of uncertainty in the reported values.)
We carried out a regression using the values of the Schmidt number obtained from various

runs. Our analysis resulted in the following:
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Fig. 14 a Comparison of simulated values of the distribution of the volume fraction of the disperse phase
with the experimental data of [19, test case 23] b Comparison of simulated values of the distribution of the
volume fraction of the disperse phase with the experimental data of [53, test case PS05]. c Comparison of
simulated values of the distribution of the volume fraction of the disperse phase with the experimental data of
[69, test case 18]

Table 5 Summary of the values of the Schmidt number obtained from various runs

Reference
data source

Case σ fitting
data K –ε

(PTFM)

σ fitting
data K –ε

(CTFM)

σ fitting
data RSM
(PTFM)

σ fitting
data RSM
(CTFM)

[69] 18 0.9 0.55 0.65 0.4

19 0.9 0.85 0.65 0.65

[19] 23 0.6 0.53 0.45 0.4

26 0.62 0.53 0.45 0.39

29 0.7 0.65 0.5 0.45

[53] PS05 0.85 0.85 0.6 0.75

[51] NS1 0.56 0.4 0.42 0.3
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Fig. 15 Comparison of values of the Schmidt number obtained from our runs with the K–ε model and the
RSM (under the framework models of the PTFM and the CTFM); and those obtained from observations
(adapted from [46]). The van Rijn formula and the Einstein and Chien model are also included

Table 6 Settling velocity and
shear velocity obtained from the
numerical models for the test
case of [51]

Run Ws (m/s) U∗ (m/s) Ws
U∗

5 0.024 0.048 0.498

8 0.024 0.045 0.533

12 0.029 0.047 0.611

15 0.030 0.044 0.682

σ = 1

1.3 + 3
(

Ws
U∗

)2 for 0.1 <
Ws

U∗
< 1 (8)

It is worth mentioning here that some authors have reported variations of σ with the von
Kármán constant [65,71]. In this study, the von Kármán constant is only used to impose the
no-slip condition in the bottom.

It is worth also mentioning that the values of the Schmidt number do affect the velocity
profiles for the CTFM. The profiles of mean velocities presented in the paper correspond to
those values of the Schmidt number for which the predicted sediment volume concentrations
fit the data.

6.5 Assessment of the boundary condition at the free surface, and of potential
stratification effects

A physically-based, complete boundary condition for the sediment can be expressed mathe-
matically as:

(

αd Ws + Dd
∂αd

∂ z

)∣
∣
∣
∣
z=h

= 0 (9)

where Dd is obtained from the turbulence model.
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Fig. 16 Assessment of the boundary condition at the free surface. Simulations were performed using the K–ε

model, under the approach of the PTFM

To satisfy Eq. 9, we considered two possible alternatives: (a) αd |z=h = 0, and Dd |z=h = 0;

(b) Ws |z=h = 0; and ∂αd
∂z

∣
∣
∣
z=h

= 0. For alternative (a), in order to make Dd zero, we imposed

the condition on TKE as K |z=h = 0 (see [6]); we called this alternative the Dirichlet bound-
ary condition. For alternative (b), we imposed ∂K

∂z

∣
∣
z=h

= 0; we called this alternative the
Neumann boundary condition. In Fig. 16, we present a comparison of predictions of the
TKE and αd obtained with both alternative approaches. The results presented in Fig. 16 were
obtained with the models of Run 5. By comparing the performance of the two approaches in
Fig. 16, we observe that there is an improvement in the prediction of the TKE by applying
alternative (b), but αd takes a relatively large value which does not seem realistic in the case
of dilute flows. That is why we chose to use alternative (a) throughout the present study. This
result points to the fact that the boundary condition at the free surface is somewhat uncertain.

In order to corroborate that stratification effects are really minor in our selected exper-
imental tests, we computed the correction factor proposed by Gelfenbaum and Smith [26]
(see [54]) as:

F2(Ri) = 1

1 + 10X
(10)

where X = 1.35Ri
1+1.35Ri and Ri is the Richardson number. We computed the Richardson number

as follows [54]:

Ri = Rg
dC
dz

(
dUc
dz

)2 (11)

where R = ρd
ρc

− 1; Uc = Uc(z); and C = C(z). Using the values of C = C(z) and
Uc = Uc(z) obtained from simulation runs, we were able to determine that F2(Ri) ≈ 1,
which means that no stratification correction is needed for the tests analyzed in this paper.

7 Conclusions

In this manuscript, we have followed a rigorous approach to assess the prediction capabil-
ity of different turbulence closures in the simulation of dilute sediment-laden, open-channel
flows. To that end, we presented extensions of the RSM and of the K–ω model. While we
adopted similar steps to those followed by other authors to obtain the extended RSM, we
have proposed herein what we believe is the first K–ω for two-phase flows. Our numerical
results show that:
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(1) In order to overcome the limitations of the Rousean distribution for the prediction of
dilute sediment transport in suspension, the PTFM in combination with the K–ε model
provides satisfactory results (accuracy of the order of 5–10%). The values of the Schmidt
number required for the agreement of sediment volume fractions with data are close
to the predictions using the van Rijn expression, although slightly smaller. The use of
alternative turbulence models such as the ASM and the K–ω model together with the
PTFM also provides satisfactory results, albeit for different Schmidt numbers. (These
Schmidt numbers are also smaller than those provided by the van Rijn formula.)

(2) The use of the PTFM for dilute mixtures paired with different turbulence closures
(K–ε and K–ω models and ASM) offers predictions of the same accuracy of the CTFM
when paired with the same turbulence closures. All predictions with different closures
are within 10% of the observations for five different datasets. In addition, the CTFM
requires smaller values of the Schmidt number than the PTFM. Given the additional
complexity of the CTFM, its use should be reserved mostly for non-dilute conditions.

(3) The RSM does not improve the predictions beyond the accuracy of the
K−ε model, for instance, whether it is paired with the PTFM or the CTFM. This
result extends to two-phase flows the well-known results of single-phase flows in open
channels. Additionally, the closure can be associated with smaller Schmidt numbers
than the K–ε model, for both the PTFM and the CTFM. Therefore, relatively simple
closures such as the K–ε model are able to capture the physics of the problem.

(4) As stated above, the CTFM and RSM are associated with smaller values of the Schmidt
number. This is due to the fact that those models predict larger values of Ws and a smaller
values of U∗ as opposed to those obtained with the PTFM and the K–ε model. We recall
herein that the PTFM uses the value of Ws reported in the experimental papers. This
is an interesting issue since the trends predicted by our models agree notably with the
trends in the van Rijn formula. Larger particles and/or less intense flows are associated
with lower values of σ .

(5) For all tests developed, including different formulations and turbulence closures, the
Schmidt number is lower than one, which emphasizes that the diffusivity of momentum
is smaller than that of sediment for dilute mixtures.

(6) We have proposed an alternative expression for σ based on our numerical computations.
This regression lies within the scatter of the data.

Ongoing work includes the analysis of this framework for mixture of various sediment
sizes and for non-dilute conditions.
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Appendix

In order to obtain the transport equations for the stresses, we start from the basic two-phase
flow equations, i.e., the two-fluid model, TFM [21]. By assuming incompressibility and no
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phase change (similar to steps taken by [Kataoka and Serizawa 1989, p. 846; 38 and 48]),
the governing equations can be written as follows:

Continuity equation

∂U j,k

∂x j
= 0 (A.1)

Momentum equations

∂Ui,k

∂t
+ ∂

∂x j

(

Ui,kU j,k
) = − 1

ρk

∂ Pk

∂xi
+ 1

ρk

∂

∂x j

(

Tij,k + T E A
ij,k

)

+ Mi

αkρk
± βUi,r

αkρk
(A.2)

where Tij,k refers to the deviatoric stresses; and the stresses with the superscript E A are the
result of the process of ensemble averaging.

We decompose the variables in Eqs. A.1 and A.2 into time-averaged components (upper
case letters with overbar), and fluctuations (lower case letters with the superscript) as follows:

αk = αk + α′
k; Ui,k = Ui,k + u′

i,k; Pk = Pk + p′
k; Ti j,k = Tij,k + t ′ij,k;

T E A
ij,k = T E A

i j.k + t E A′
ij,k ; β = β + β ′; Mi = Mi + M ′

i (A.3)

On introducing variables defined in Eq. A.3, the following equations result:

∂
(

Ui,k + u′
i,k

)

∂x j
= 0 (A.4)

∂
(

Ui,k + u′
i,k

)

∂t
+ ∂

∂x j

[(

Ui,k + u′
i,k

) (

U j,k + u′
j,k

)]

= − 1

ρk

∂
(

Pk + p′
k

)

∂xi

+ 1

ρk

∂

∂x j

(

Tij,k + t ′ij,k + T E A
ij,k + t E A′

ij,k

)

+ Mi + M ′
i

αkρk
±

(

β + β ′)
(

Ui,r + u′
i,r

)

αkρk
(A.5)

We then perform time averaging on Eqs. A.4 and A.5. The final averaged equations take the
form as follows:

∂
(

U j,k
)

∂x j
= 0 (A.6)

∂Ui,k

∂t
+ ∂

∂x j

(

Ui,k U j,k + u′
i,ku′

j,k

)

= − 1

ρk

∂ Pk

∂xi
+ 1

ρk

∂

∂x j

(

Tij,k + T E A
ij,k

)

+ Mi

αkρk
±

(

βUi,r + β ′u′
i,r

)

αkρk
(A.7)

(In the above equations, we approximated the time average of the fluctuations of the forces
as zero.) On subtracting Eqs. A.6 and A.7 from Eqs. A.4 and A.5, respectively, we obtain the
fluctuation equations as:

∂
(

u′
i,k

)

∂x j
= 0 (A.8)
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∂
(

u′
i,k

)

∂t
+ ∂

∂x j

[(

Ui,ku′
j,k + U j,ku′

i,k + u′
i,ku′

j,k − u′
i,ku′

j,k

)]

= − 1

ρk

∂p′
k

∂xi

+ 1

ρk

∂

∂x j

(

t ′i j,k + t E A′
i j,k

)

+ M ′
i

αkρk
±

(

βu′
i,r + β ′Ui,r + β ′u′

i,r − β ′u′
i,r

)

αkρk
(A.9)

The equations for u′
i,ku′

j,k can then be obtained after the following steps: (a) Multiplication of
Eq. A.9 by u′

j ; (b) interchange of the subscripts i and j ; (c) addition of the equations obtained
in steps (a) and (b) followed by time averaging; and, finally, application of the product rule
to obtain the transport equation for u′

i,ku′
j,k . Similar steps were employed by Kumar [38] and

Mashayek and Taulbee [48] in their models.
Here we focus on those terms in Eq. A.9 which appear due to the inter-phase interactions

(the last large term in (A.9)):

u′
i,k

(

βu′
j,r + β ′U j,r + β ′u′

j,r − β ′u′
j,r

)

+ u′
j,k

(

βu′
i,r + β ′Ui,r + β ′u′

i,r − β ′u′
i,r

)

= β
(

u′
i,ku′

j,r + u′
j,ku′

i,r

)

+ U j,rβ ′u′
i,k + Ui,rβ ′u′

j,k + u′
i,kβ

′u′
j,r + u′

j,kβ
′u′

i,r

− u′
i,kβ

′u′
j,r − u′

j,kβ
′u′

i,r

= β
(

u′
i,ku′

j,r + u′
j,ku′

i,r

)

+ U j,rβ ′u′
i,k + Ui,rβ ′u′

j,k + u′
i,kβ

′u′
j,r + u′

j,kβ
′u′

i,r (A.10)

In what follows, we neglect the third-order correlations in (A.10) as performed in previous
papers. Mashayek and Taulbee [48] stated that these higher-order terms are usually small,
and that their effects may be absorbed in the pressure terms (p. 36). Thus Eq. A.10 takes the
following form:

= β
(

u′
i,ku′

j,r + u′
j,ku′

i,r

)

+ Ui,rβ ′u′
j,k + U j,rβ ′u′

i,k (A.11)

Finally, extending the RSM for two-phase flows leads to the following transport equation for
the Reynolds stresses of the carrier phase (please note that we have removed overbars from
the mean variables for simplicity), where terms appear premultiplied by the volume fraction
of the carrier:

D

Dt

[

αcρc

(

u′
i,cu′

j,c

)]

= Pi j + Di j + πi j − εi j − β
(

u′
j,cu′

i,r + u′
i,cu′

j,r

)

− Ui,rβ ′u′
j,c − U j,rβ ′u′

i,c (A.12)

where

β ′ = 3

4dp
α′

dρcCD

∣
∣
∣
−→
U r

∣
∣
∣ (A.13)

The third-to-last term of Eq. A.12 can be expanded to:

Sui u j ,1 = β
[

u′
j,cu′

i,r + u′
i,cu′

j,r

]

= β

[

u′
j,c

(

u′
i,c − u′

i,d

)

+ u′
i,c

(

u′
j,c − u′

j,d

)]

(A.14)

The right hand side of Eq. A.14 contains terms like u′
i, cu′

j,c which are the Reynolds stresses.

Besides, there are terms of the form u′
j,cu′

i,d and u′
i,cu′

j,d (representing the correlation between
the turbulent velocity fluctuations of the two phases) which require further closure. Several
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approaches have been used recently to model these correlations. The most general (but numer-
ically most costly) approach is to derive transport equations for these quantities, but these
equations require even further closure due to the appearance of more correlations of triple
order (see comment above). This approach was proposed by Mashayek and Taulbee [48]
in their derivation of an explicit algebraic model from a general two-phase RSM. On the
other hand, Lian and Aliod [39] expressed this type of correlations in terms of the Reynolds
stresses of the disperse phase. It is worth pointing out that recent approaches have simplified
this type of correlations by writing them in terms of the TKE of the carrier phase (see [17]).
In this work, we applied the closure proposed by Ma and Ahmadi [47] as follows:

u′
j,cu′

i,d = fuu′
i,cu′

j,c (A.15)

where fu = 1
1+TP /TL

, and the particle (TP ) and fluid time (TL ) scales are defined as:

Tp = ρd

3
4dp

ρcCD

∣
∣
∣
−→
Ur

∣
∣
∣

; and TL = 0.165
K

ε
.

This expression by Ma and Ahmadi [47] was developed for gas-solid flows. It is a function
of particle and flow time scales, including the respective densities for the carrier and the
disperse phases. Since there are no similar experiences for water-solid flows, we used those
expressions directly, considering the appropriate densities of water and sediment particles.

The last two terms on the right hand side of Eq. A.12 can be expanded as follows:

Sui u j ,2 = Ui,rβ ′u′
j,c + U j,rβ ′u′

i,c

= 3

4dp
ρcCD

∣
∣
∣
−→
Ur

∣
∣
∣

[(

Ui,c − Ui,d
)

α′
du′

j,c + (

U j,c − U j,d
)

α′
du′

i,c

]

(A.16)

In this equation, the right-hand side contains the Reynolds fluxes, i.e., the correlation of
fluctuations of the volume fraction of the disperse phase and the velocity of the carrier.
A transport equation could be derived for these fluxes [48]. Considering the complexities
involved in solving a large set of equations, and the scarcity of knowledge about closure
of further correlations which appear in the transport equations, we applied a closure based
on the Boussinesq model as −α′

d u′
j,c = Dd(∂αd/∂x j ), where Dd is the diffusivity of the

disperse phase, determined as follows:

Dd = Cµ

σ

(
K 2

ε

)

(A.17)

Including all closures discussed above into Eq. A.12 we obtain the final expression:

D

Dt

[

αcρc

(

u′
i,cu′

j,c

)]

= Pi j + Di j + πi j − εi j − 2β (1 − fu) u′
i,cu′

j,c

+ 3

4dp
CD

∣
∣
∣
−→
Ur

∣
∣
∣

[

Ui,r Dd
∂αd

∂x j
+ U j,r Dd

∂αd

∂xi

]

(A.18)
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