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Abstract: We compute the statistical entropy of a BTZ black hole in the context of three-

dimensional Euclidean loop quantum gravity with a cosmological constant Λ. As in the
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state. Now however, the underlying colored graph Γ lives in a two-dimensional spacelike

surface Σ, and some of its links cross the black hole horizon, which is viewed as a circular

boundary of Σ. Each link ℓ crossing the horizon is colored by a spin jℓ (at the kinematical

level), and the length L of the horizon is given by the sum L =
∑

ℓ Lℓ of the fundamental

length contributions Lℓ carried by the spins jℓ of the links ℓ. We propose an estimation

for the number NBTZ
Γ (L,Λ) of the Euclidean BTZ black hole microstates (defined on a

fixed graph Γ) based on an analytic continuation from the case Λ > 0 to the case Λ < 0.

In our model, we show that NBTZ
Γ (L,Λ) reproduces the Bekenstein-Hawking entropy in

the classical limit. This asymptotic behavior is independent of the choice of the graph Γ

provided that the condition L =
∑

ℓ Lℓ is satisfied, as it should be in three-dimensional

quantum gravity.
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1Unité Mixte de Recherche (UMR 6207) du CNRS et des Universités Aix-Marseille I, Aix-Marseille II,

et du Sud Toulon-Var; laboratoire afilié à la FRUMAM (FR 2291).
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1 Introduction

Twenty years ago, Bañados, Teitelboim, and Zanelli discovered a black hole solution in

three-dimensional space-time in the presence of a negative cosmological constant Λ =

−ℓ2c [1]. This discovery came as an enormous surprise mainly because gravity in three

dimensions does not have local degrees of freedom, whereas the black hole has thermody-

namic properties analogous to those of higher dimensional black holes. In particular, a

BTZ black hole radiates at a Hawking temperature TH and admits an entropy S, which

means that it has a large number of microscopic degrees of freedom. The question of the

origin of these degrees of freedom has lead to a huge literature, but the precise nature of

these fundamental excitations of the black hole is still not totally understood (see [2] for a

very interesting review). The key to the problem lie in the fact that the BTZ black hole

admits a conformal field theory (CFT) description. More precisely, in the Lorentzian case,

the BTZ black hole is locally isometric1 to the three-dimensional anti-de Sitter space-time

AdS3, and its asymptotic symmetries are generated by a pair of Virasoro algebras with a

central charge c = 3ℓc/G, where G is Newton’s constant. This result, which was originally

pointed out in [4], has been the very first example of the famous AdS/CFT correspondence.

Starting from this observation, the knowledge of the central charge and the universality

of the Cardy formula for computing the density of states are then the only necessary in-

gredients to recover the black hole entropy. Thus, it has been argued that the asymptotic

CFT carries the microscopic degrees of freedom responsible for the statistical entropy of

the BTZ black hole [5, 6].

However, the precise nature of the microstates remains unclear despite all the work

devoted to the statistical description of the BTZ black hole. Although it was shown that

the asymptotic CFT is a Liouville theory [7], this theory does not have a priori enough

1In fact, it is globally defined as the coset of AdS3 by a discrete subgroup of the AdS3 isometry group

SL(2,R)× SL(2,R) [3]. Fundamentally, this result comes from the fact that solutions to three-dimensional

gravity have constant curvature, this curvature being negative when Λ < 0.
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degrees of freedom (normalizable quantum states) to explain the high value of the BTZ

black hole entropy. Many arguments have been put forward in order to resolve this problem,

and it has been suggested that the asymptotic Liouville theory is only an effective theory

that cannot describe the fundamental excitations of the black hole [8]. From the technical

point of view, the difficulty of finding the microstates is mainly due to the non-compactness

of the symmetry group SL(2,R) × SL(2,R) of Lorentzian three-dimensional gravity with

a negative cosmological constant. Indeed, this implies that the symmetry group of the

asymptotic CFT associated to the BTZ black hole is also non-compact, which makes the

quantization much more difficult than in the compact case. Attempts to properly quantize

this theory in relation with the BTZ black hole have been developed, but the complete

picture is still missing [9].

As the main difficulty is due to the non-compactness of the Liouville symmetry group,

people have quickly tried to circumvent this problem by first looking at situations with

more compact symmetries and then performing some analytic continuation. Even if this

strategy is not fully satisfactory, it could give important indications about the quantization

of the non-compact case. One way towards this simplification consists in changing the

Lorentzian signature to the Euclidean one by a Wick rotation. Fortunately, there still

exists a black hole solution in the Euclidean case when Λ < 0, called the Euclidean BTZ

black hole, and it admits thermodynamical properties as well. In this context, the black

hole is locally isometric to the three-dimensional hyperbolic space H3. Globally, it is defined

as the quotient of H3 by a discrete subgroup of its isometry group SL(2,C), and it has the

topology of a solid torus [3]. Furthermore, the Lorentz group SL(2,C) is, as expected,

the symmetry group of Euclidean three-dimensional gravity with a negative cosmological

constant Λ. Even if SL(2,C) is still non-compact, it contains SU(2) as a subgroup, and

therefore can be thought of as being “less” non-compact than SL(2,R)× SL(2,R). In this

way, the technical difficulties of the quantization are a bit tamed. Besides, it is possible to

completely perform the canonical quantization of Chern-Simons theory with the Lorentz

group [10]. One can even go further into the “compactification” of the symmetry group,

by simply trading the negative cosmological constant for a positive one. In this case,

the symmetry group becomes SU(2) × SU(2). It is therefore totally compact, and the

quantization of the Chern-Simons theory can be performed in various ways (the first and

certainly the deepest one is due to Witten [11]). Even if no black holes exist in this case,

one can think of using results from SU(2)× SU(2) Chern-Simons theory in order to obtain

results for Euclidean quantum gravity in the presence of a negative cosmological constant.

This is exactly what has been done in [12] to obtain the number of black hole microstates by

performing an analytic continuation of the SU(2)×SU(2) Chern-Simons partition function

on a solid torus, to a negative value of the cosmological constant Λ. In this way, one

recovers the black hole entropy L/(4ℓPl).

The goal of this paper is to adapt this strategy in order to compute the BTZ black

hole entropy in the framework of three-dimensional Euclidean loop quantum gravity. We

proceed as follows. As in the four-dimensional case [13], the black hole horizon is de-

scribed as a circular boundary in a spacelike surface Σ, and the kinematical states are spin

networks associated to a two-dimensional graph Γ ⊂ Σ with links crossing the horizon.
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For a given graph, we assume that p (by analogy with the number of punctures in the

four-dimensional case) links cross the horizon, and that these links are colored by unitary

irreducible representations jℓ (for ℓ ∈ J1, pK) of the group SU(2) as it should be at the

kinematical level (regardless of the value of the cosmological constant Λ). Each link carries

a quantum of length Lℓ = 8πℓPl
√

jℓ(jℓ + 1), where ℓPl = ~G is the Planck length, and

the sum of the fundamental contributions gives the macroscopic horizon (one-dimensional)

“area” L =
∑

ℓ Lℓ. As kinematical states are necessarily SU(2) gauge-invariant, the num-

ber Nkin
Γ (L) of kinematical microstates of the black hole horizon, which depends a priori

on the colored graph Γ and on the area L, is given by the number of SU(2) intertwin-

ers between the representations jℓ. To continue, we assume now that the cosmological

constant is positive, i.e. Λ = ℓ2c . We know, from the different quantization schemes of

three-dimensional gravity [11, 14, 15], that physical states (once the remaining constraints

involving the curvature of the connection are imposed) are quantum spin networks colored

with representations of Uq(su(2)), where q = exp
(

i2π/(k + 2)
)

is a root of unity, and

the level k is an integer given by k = ℓc/ℓPl. Moreover, recent results [16–20] strongly

indicate that the quantum group Uq(su(2)) could emerge directly in the context on loop

quantum gravity at the physical level, but a precise and complete proof of this fact is still

missing. Therefore, at the physical level, since the representations coloring the graph Γ are

viewed as representations of Uq(su(2)), they remain labelled by half-integers jℓ but are now

bounded by k/2. Furthermore, the number NΓ(L,Λ) of physical microstates of the black

hole horizon depends on Λ, and is now given by the number of Uq(su(2)) intertwiners be-

tween the representations jℓ. This number is well-known and has been studied quite a lot,

in particular in the context of SU(2) black holes in loop quantum gravity [21]. We propose

an analytic continuation of NΓ(L,Λ) to a negative value of Λ, denote by NBTZ
Γ (L,Λ) the

resulting number of microstates, and show that, in the classical limit where ℓPl → 0 and

jℓ → ∞ with ℓPljℓ → aℓ, the entropy behaves as

SBTZ
Γ (L,Λ) = log

(

NBTZ
Γ (L,Λ)

)

∼ L

4ℓPl
. (1.1)

In this way, we recover the Bekenstein-Hawking formula for the BTZ black hole entropy.

Furthermore, this result does not depend on the choice of Γ, as it is expected in three-

dimensional gravity.

This paper is organized as follows. In the next section, we briefly review basic re-

sults about the BTZ black hole. In section 3, we describe the (kinematical and physical)

microstates of the BTZ black hole in the framework of three-dimensional loop quantum

gravity. In section 4, we estimate the number of microstates of the BTZ black hole, and

show that in the classical limit it reproduces the Bekenstein-Hawking entropy formula. We

conclude with a discussion of this result and of future investigations concerning for instance

the fate of the logarithmic corrections in our approach.

2 A brief overview of the BTZ black hole

Gravity in three space-time dimensions is a topological field theory. It has no propagating

degrees of freedom, and locally the space-time has a constant curvature whose value de-
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pends on the cosmological constant Λ. Despite its apparent simplicity, three-dimensional

gravity is far from being trivial, and the discovery [1] of the existence of a black hole

solution when Λ = −ℓ2c < 0 is a nice illustration of its physical richness.

In Schwarzschild-like coordinates, the BTZ metric is given by

ds2 = N2dt2 −N−2dr2 − r2(dφ+Nφdt)2, (2.1)

where the (positive) lapse function N(r) and the shift function Nφ(r) and defined by

N2 = −8GM +
r2

ℓ2c
+

16G2J2

r2
, Nφ = −4GJ

r2
. (2.2)

Here M and J are respectively the mass and the angular momentum of the black hole, and

they satisfy the inequality |J | ≤Mℓc. The metric (2.1) describes a space-time of constant

negative curvature, and the BTZ black hole is therefore globally defined as a coset of the

three-dimensional anti-de Sitter space-time AdS3 by a discrete subgroup of its isometry

group SL(2,R)× SL(2,R). Furthermore, it has an event horizon at r+, where

r2± = 4GMℓ2c

(

1±
√

1− J2

M2ℓ2c

)

. (2.3)

When the angular momentum J is different from zero, the BTZ black hole also possesses an

inner Cauchy horizon at r− that we will not consider in the following. The most important

point for our problem is that this black hole admits thermodynamical properties similar to

those of four-dimensional black holes. In particular, it has an entropy equal to one fourth

of its area L = 2πr+ in Planck units, i.e.

S =
L

4ℓPl
. (2.4)

These thermodynamical features can be derived following the same methods used in four

space-time dimensions.

Furthermore, the Lorentzian BTZ black hole admits an Euclidean counterpart. This

latter is a solution of Euclidean gravity with a negative cosmological constant. It defines

an Euclidean space of constant negative curvature as well, and therefore is globally defined

as the coset of the three-dimensional hyperbolic space H3 by a discrete subgroup of the

Lorentz group SL(2,C). A precise study shows that it has the topology of a solid torus.

The metric can be written in Schwarzschild-like coordinates (2.1) by performing the Wick

rotation t → iτ , and also changing J to iJ . The continuation of the angular momentum

J to purely imaginary values is necessary in order to keep the metric real. The Euclidean

BTZ black hole still has an event horizon at r+ (2.3) provided that we replace J by iJ ,

and possesses the same entropy S (2.4) as the Lorentzian black hole.

3 The BTZ black hole in loop quantum gravity

From the point of view of loop quantum gravity, the BTZ black hole is characterized

by its horizon at r+, viewed as an isolated horizon [22]. The situation is similar to the
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four-dimensional case. In this picture, space-time is locally isomorphic to Σ × I where

I is an interval of R and Σ a surface with a circular boundary representing the black

hole horizon. For the reasons that we have explained in the introduction, we start with

Euclidean gravity in the presence of a positive cosmological constant. Then, we will perform

an analytic continuation to the case of a negative cosmological constant, and discuss its

physical interpretation.

The phase space of (first order) three-dimensional Euclidean gravity is parametrized

by a triad field e and an su(2) connection A, with Poisson bracket

{Ai
a(x), e

j
b(y)} = 8πGεabη

ijδ2(x− y) . (3.1)

Here a, b, . . . denote the spatial indices, i, j, . . . denote the su(2) internal indices, x, y, . . .

are spatial coordinates, εab is the two-dimensional antisymmetric tensor, and η is the flat

metric. The canonical analysis of three-dimensional gravity implies that these variables

are subject to the following first class constraints:

G ≡ ∂aeb − ∂bea +Aa × eb −Ab × ea ≈ 0 , (3.2a)

H ≡ Fab(A)− Λea × eb ≈ 0 , (3.2b)

where F (A) is the curvature of the connection A, and (u × v)i = εijkujvk. The existence

of these six first class constraints implies that there are no propagating local degrees of

freedom.

In loop quantum gravity, one first quantizes the Poisson bracket (3.1) by promoting the

classical variables to quantum operators, and then the constraints (3.2) are implemented

at the quantum level. Quantum states are taken to be functionals ψ(A) of the connection

A, and the tetrad field e acts on them as a derivative operator. The loop assumption

underlying the quantization scheme consists in considering only cylindrical function ψ

defined on graphs Γ ⊂ Σ. This assumption is justified in three-dimensional gravity because

the theory is topological. Therefore, all the degrees of freedom are captured by a single

graph provided it is sufficiently refined to resolve the surface topology. For this reason,

we consider only one graph Γ with p links crossing the horizon, as illustrated in figure 1,

where p is for the moment arbitrary. Furthermore, the topology of Σ is rather simple since

it is a plane R
2 with a circular boundary. As a consequence, it is sufficient (in order to

resolve the surface topology) to take a graph Γ such that the links outside the horizon meet

only at one point at infinity. This is the graph that we are going to consider in the rest of

this paper. The non-physical phase space that we start with is therefore the space CylΓ of

cylindrical functions on this graph Γ. This space is endowed with a Hilbert space structure

inherited from the SU(2) Haar measure. As usual, CylΓ is isometric to the space

CylΓ ≃
(

Fun
(

SU(2)
)⊗p

, dµΓ

)

, (3.3)

where the measure dµΓ ≡ dµ⊗p
0 is defined as p copies of the SU(2) Haar measure dµ0.

To construct the physical Hilbert space, we proceed as usual in two steps. The first

one consists in implementing the Gauss constraint G ≈ 0 (3.2a), which leads to the gauge-

invariant kinematical Hilbert space Hkin
Γ . Any function ψ ∈ Hkin

Γ is invariant under the

– 5 –
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Figure 1. The graph Γ has p links that cross the black hole horizon on the surface Σ. Outside of

the horizon, the links are supposed to meet at only one point located at infinity.

action of SU(2), generated by the Gauss constraint itself, at the unique vertex of the graph

Γ. Therefore, we have the inclusion

Hkin
Γ ⊂

(

Fun
(

SU(2)
)⊗p

, dµΓ

)

/SU(2) , (3.4)

where the quotient by SU(2) results from the invariance under the Gauss constraint. The

measure dµΓ is compatible with this quotient due to its right and left invariance properties.

So far, we have not specified the fact that the boundary is a black hole horizon, and

this is the reason for which we have an inclusion in (3.4) and not a strict equality. In

order to implement the black hole horizon condition, let us start by recalling the fact

that the kinematical Hilbert space can be expanded in terms of spin network states. A

spin network associated to the graph Γ is an assignment of SU(2) unitary irreducible

representations to the links of the graph, and an assignment of an SU(2) intertwiner to

the vertex. In particular, the links ℓ crossing the horizon are colored by representations

jℓ. Due to the presence of the horizon, and because of the SU(2) invariance at the vertex,

these representations jℓ are constrained to satisfy the two following requirements.

1. The first one is a consequence of the SU(2) gauge invariance, and we will refer to

it as the invariance relation. Its significance is that the representations jℓ are such

that there is an invariant tensor in the decomposition of their tensor product into

irreducible representations. This can be written as

InvSU(2)

( p
⊗

ℓ=1

jℓ

)

6= ∅ . (3.5)

2. The second one is a consequence of the finiteness of the length L of the horizon, and

we will refer to it as the length relation. Each link ℓ crossing the horizon carries a

fundamental length Lℓ = 8πℓPl
√

jℓ(jℓ + 1) [23] that contributes to the total length

of the horizon according to

L = 8πℓPl

p
∑

ℓ=1

√

jℓ(jℓ + 1) . (3.6)

This relation is obviously the three-dimensional analogue of the one that fixes the

macroscopic horizon area of four-dimensional black holes in loop quantum gravity.

– 6 –
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As a consequence, the kinematical Hilbert space Hkin
Γ , in the presence of the black hole, is

generated, as a vector space, by the spin networks such that the representations jℓ coloring

the links ℓ crossing the horizon satisfy the invariance relation (3.5) and the length rela-

tion (3.6). The kinematical scalar product trivially follows from the measure dµΓ in (3.4).

At this point, one can wonder about the reason for which the length relation and the

graph of figure 1 do indeed represent the tessellation of a black hole horizon, and not that

of an arbitrary circle embedded into Σ. In other words, how can we be sure that we are

going to compute the entropy associated with the horizon of a black hole, and not that of

an arbitrary bounded region of perimeter L? The reason is that the number of microstates

that we consider later on in (4.1) corresponds to all possible recouplings (at a virtual

intertwiner sitting at the center of the black hole) of the spin network links that cross the

horizon. All these configurations have to be considered as different because what is inside

the horizon is not accessible to an outside observer. If on the contrary we were describing

a circle embedded into Σ, because of the topological nature of the theory a single graph

with fixed coloring and fixed intertwiner would be sufficient in place of 1.

Now that we have the kinematical setup, the next step is the construction of the

physical Hilbert space Hphys
Γ . This has to be done by implementing at the quantum level

the remaining three constraints H ≈ 0 (3.2b). When the cosmological Λ vanishes, we know

how to impose these constraints and to construct explicitly the physical Hilbert space. In

this case, the relation with the covariant quantization à la spin-foam is cristal-clear [24],

and the link with the combinatorial quantization [25, 26], which is totally understood as

well, exhibits a hidden quantum group symmetry. This quantum group, known as the

Drinfeld double of SU(2) and usually denoted by DSU(2), is a deformation of the isometry

group ISU(2) of the three-dimensional flat space E3. When the cosmological constant is

non-vanishing, the resolution of the remaining constraints H ≈ 0 is much more involved

than in the previous case, and, to our knowledge, it is still incomplete in the context of

loop quantum gravity. However, there are strong indications about what the solutions of

these constraints should look like in the case where Λ = ℓ2c is positive. Therefore, we will

concentrate on this case in what follows.

The imposition of the remaining three constraints H ≈ 0 has in fact two effects on the

gauge-invariant kinematical Hilbert space. The first one concerns the invariance under spa-

tial diffeomorphims. Indeed, it is well known that the constraints H ≈ 0 generate (on shell)

space-time diffeomorphims, and that two out of the three components generate spatial dif-

feomorphisms. In fact, these two components do not depend on the cosmological constant.

Their resolution is therefore independent of Λ, and implies that spin network states defined

on homotopic graphs are identified at the physical level. This justifies a posteriori the use

of a single (sufficiently refined) graph to capture all the physical degrees of freedom of the

theory. Additionally, one can interpret the fact that these two components of H ≈ 0 do

not depend on Λ by the fact that, regardless of the value of the cosmological constant, the

invariance under spatial diffeomorphims remains a symmetry of three-dimensional gravity

in its Hamiltonian formulation.

The second effect arises when one imposes the third component of the constraints

H ≈ 0. This is the only component in the set of constraints that depends explicitly

– 7 –
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on the cosmological constant. It is therefore natural to expect that the nature and the

properties of its solutions will depend on the value of Λ. This is indeed the case, but

unfortunately a precise resolution of this constraint in the context of loop quantum gravity

is still missing. One can however guess the solution by looking at other quantization

schemes of three-dimensional gravity. For instance, the path integral quantization [11],

the Turaev-Viro model [27], and the combinatorial quantization [14, 15], strongly suggest

that in loop quantum gravity the physical states should be quantum spin networks, in the

sense that they should be colored with Uq(su(2)) representations on the links and Uq(su(2))

intertwiners at the vertices of the graph Γ. The quantum group Uq(su(2)) is defined for

q = exp
(

i2π/(k + 2)
)

a root of unity, and then the level k = ℓc/ℓPl is necessarily an

integer. The Turaev-Viro model offers certainly the most concrete framework to see that

physical states should be quantum spin networks, since these correspond precisely to the

boundary states of the Turaev-Viro model. Nonetheless, it would be very interesting to

see precisely how the resolution of the remaining constraint leads to the quantum group

Uq(su(2)). Some recent results [16–20] are first encouraging steps towards the resolution

of this problem. For all these reasons, we choose the physical Hilbert space Hphys
Γ on the

graph Γ to be the one generated by the quantum spin networks. The spins jℓ are now

interpreted as finite-dimensional representations of Uq(su(2)), and therefore they cannot

exceed k/2. This bound appears as a sort of infrared cut-off in the theory. In the same

way, the unique vertex of Γ is colored with a Uq(su(2)) intertwiner, and the condition (3.5)

has to be replaced, at the physical level, by the quantum invariant relation

InvUq(su(2))

( p
⊗

ℓ=1

jℓ

)

6= ∅ . (3.7)

As a consequence, the physical Hilbert space is the subset

Hphys
Γ ⊂

(

Fun
(

SUq(2)
)⊗p

, dµ
(q)
Γ

)

/Uq

(

su(2)
)

, (3.8)

provided that the length condition (3.6) is satisfied when functions f ∈ Hphys
Γ are expanded

into quantum spin networks. Here, Fun(SUq(2)) is the space of (polynomial) functions on

Uq(su(2)), and as a Hopf algebra is dual to Uq(su(2)). The measure dµ
(q)
Γ is a product

of p copies of the Haar measure dµ
(q)
0 on Fun(SUq(2)). The Haar measure dµ

(q)
0 is very

similar to its classical counterpart dµ0 in the sense that two quantum spin networks with

different colors are orthogonal, as in the classical case. However, the norm of a quantum

spin network state is different from the norm of the classical spin network state defined

on the same colored graph. An explicit expression of the physical scalar product in not

necessary for our purpose.

4 The Bekenstein-Hawking entropy

Now we have all the ingredients necessary for the computation of the Bekenstein-Hawking

entropy of the BTZ black hole from the point of view of loop quantum gravity. Indeed,
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when the cosmological constant is positive, the number NΓ(L,Λ) of states compatible with

the relation (3.7) is given by

NΓ(L,Λ) = dim

(

InvUq(su(2))

( p
⊗

ℓ=1

jℓ

)

)

, (4.1)

if the length relation (3.6) is satisfied, and it is null otherwise. When the length condition

is satisfied, NΓ(L,Λ) can be written as the following finite sum:

NΓ(L,Λ) =
2

k

k+1
∑

d=1

sin2
(

π

k + 2
d

) p
∏

ℓ=1

sin
(

π
k+2ddℓ

)

sin
(

π
k+2d

) , (4.2)

where dℓ = 2jℓ + 1 is the classical dimension of the spin-jℓ representation. Here k is large

and we will make the approximation k + 2 ∼ k + 1 ∼ k. As a consequence, the number of

states becomes

NΓ(L,Λ) ≃
2

k

k
∑

d=1

sin2
(

π

k
d

) p
∏

ℓ=1

sin
(

π
k
ddℓ
)

sin
(

π
k
d
) . (4.3)

Before going to the analytic continuation, we would like to give an interpretation of this

formula. To do so, let us stress that (4.3) needs two ingredients to be constructed:

(i) the sum
2

k

k
∑

d=1

sin2
(

πd

k

)

, and (ii) the characters χ(jℓ)

(

πd

k

)

=
sin
(

π
k
ddℓ
)

sin
(

π
k
d
) .

(4.4)

The discrete sum (i) is in fact the quantum analogue of the classical SU(2) Haar measure

(restricted to gauge-invariant functions, it reduces to a one-dimensional integral over the

SU(2) conjugacy classes), and it contains the information about the fact that we are consid-

ering the quantum group Uq(su(2)) with q a root of unity. One immediately sees that this

quantum measure can be viewed as the Riemann sum approximating the classical SU(2)

Haar measure. The characters (ii) are also the quantum analogues of the classical SU(2)

characters with discrete angles θ = πd/k, and they contain the information about the type

of representations that we are coloring the spin networks with. Here these representations

are finite-dimensional.

Now the idea is to perform an analytic continuation of this formula to a negative value

of Λ. In this case, the level k becomes a purely imaginary integer, and we will denote it

by k = iλ where λ > 0. To ensure that the analytic continuation is well-defined, one has

to understand the upper bound of the sum in (4.2) as the modulus |k|. This allows us to

replace the upper bound k by λ in the sum, which then becomes restricted to the values

d ≤ λ. This is similar the restriction that has been used in the literature (see [2] for a

review and also [9]) to compute the number of black hole microstates from the point of

view of the CFT. As a consequence, we define the number of the Euclidean BTZ black

hole microstates by the formula

NBTZ
Γ (L,Λ) ≃ 2

λ

λ
∑

d=1

sinh2
(

π

λ
d

) p
∏

ℓ=1

sinh
(

π
λ
ddℓ
)

sinh
(

π
λ
d
) , (4.5)
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where Λ = −ℓ2c is now negative. Note that we have also replaced the factor 1/k in the

measure (4.4) by 1/|k|, which becomes 1/λ after the analytic continuation. By doing

this, NBTZ
Γ (L,Λ) remains an integer, and it can be interpreted as a number of states.

This is exactly the expression that has been introduced in [28] to compute the entropy

of four-dimensional black holes in loop quantum gravity with a complex Barbero-Immirzi

parameter.

In the classical limit, i.e. when the representations jℓ become large and ℓPl approaches

zero with the product ℓPljℓ remaining finite, the sum (4.5) is dominated by the term d = λ.

Therefore, we have

NBTZ
Γ (L,Λ) ≃ 2

λ
sinh2(π)

p
∏

ℓ=1

sinh(πdℓ)

sinh(π)
≃ 2

λ
sinh2(π)

p
∏

ℓ=1

exp
(

π(dℓ − 1)
)

. (4.6)

As a consequence, it is immediate to show that the entropy SBTZ
Γ (L,Λ) = log

(

NBTZ
Γ (L,Λ)

)

is equivalent in the classical limit to

SBTZ
Γ (L,Λ) ∼ L

4ℓPl
, (4.7)

where we have used the length relation (3.6). We recover exactly the Bekenstein-Hawking

formula for the entropy.

5 Discussion

In this work, we have proposed a description of the BTZ black hole in the context of loop

quantum gravity. As in the four-dimensional case, the black hole horizon is viewed as

a (circular) boundary on the spacelike surface Σ, and kinematical states are cylindrical

functions on a graph embedded in Σ. We have argued that, due to the topological nature

of three-dimensional gravity (in the bulk and not on the horizon), a graph Γ that consists

in an arbitrary number p of links crossing the horizon and meeting at the spatial infinity

at one vertex only, is sufficient to capture all the degrees of freedom of the theory. Then,

we have given a precise definition of the kinematical Hilbert space Hkin
Γ , and constructed,

when the cosmological constant Λ is positive, the physical Hilbert space Hphys
Γ in terms

of the representation theory of Uq(su(2)) with q a root of unity. For a fixed configura-

tion (j1, . . . , jp) of spins coloring the links at the horizon, we have computed the number

NΓ(L,Λ) of physical states, and then suggested an analytic continuation of this formula

to negative values of Λ. The resulting function NBTZ
Γ (L,Λ) has been interpreted as the

number of BTZ black hole microstates associated to the given configuration, and we have

finally shown that, in the classical limit, the leading order term in S = log
(

NBTZ
Γ (L,Λ)

)

reproduces exactly the Bekenstein-Hawking for the entropy for all values of p. To our

knowledge, it is the first time that a model is proposed for the computation of the BTZ

black hole entropy in the context of loop quantum gravity.

Even if our derivation relies on certain assumptions, this striking result strongly sug-

gests that it might be possible to recover the entropy of the BTZ black hole from three-

dimensional loop quantum gravity. Furthermore, it is very interesting to notice that the
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σ = E σ = L

Λ = 0 DSU(2) DSU(1, 1)

Λ > 0 Uq(so(4)), q root of unity Uq(so(3, 1)), q real

Λ < 0 Uq(so(3, 1)), q real Uq(so(2, 2)), q a phase (|q| = 1)

Table 1. Quantum groups of three-dimensional quantum gravity for different signs of the cosmo-

logical constant and Euclidean or Lorentzian signature.

techniques used here in three dimensions are very similar to the ones that were used to

compute the entropy of four-dimensional black holes [28]. In this sense, there is a kind

of universality that certainly deserves to be explored in more details. Our proposal raises

many questions that we should investigate more carefully. We now list a few of them,

together with tentative answers.

Why are we indeed computing the partition function of the BTZ black hole?

This first question concerns the physical meaning of the analytic continuation that we have

introduced. To give a physical interpretation, let us recall that three-dimensional gravity

is equivalent to a Chern-Simons theory whose gauge group is exactly the isometry group of

the local solutions to the Einstein equations. This isometry group depends obviously on the

sign of the cosmological constant Λ, and also on the signature σ ∈ {E,L} (E and L stand

for Euclidean and Lorentzian, respectively) of the space-time. As it can be clearly seen

from the combinatorial quantization scheme (see [14, 15] for instance), the quantization

of Chern-Simons theory turns these classical groups into quantum groups according to

table 1.

In this table, U(g) denotes the enveloping algebra of the Lie algebra g, DSU denotes

the quantum double of the enveloping algebra, and Uq(g) denotes the quantum deformation

of the classical enveloping algebra. The analytic continuation that we have introduced in

this paper has two ingredients that seem to fit naturally in the previous table. First, we

make the level purely imaginary, and this maps Euclidean quantum gravity with Λ > 0

to Euclidean quantum gravity with Λ < 0. However, it is known from the combinatorial

quantization scheme [10] that the quantization of Euclidean gravity with negative Λ leads

to an infinite-dimensional Hilbert space. More precisely, as q is real in this case, there is no

upper cut-off for the representations, and the formal expression for the dimension of the

Chern-Simons Hilbert space diverges. This brings us to the second ingredient: while we

make the level purely imaginary we keep the cut-off |k| in the sum defining the quantum

measure (4.4). Things happen as if we had turned again q to a root of unity: this takes

us from the Euclidean regime to the Lorentzian one, where the BTZ black hole makes

sense as a classical solution. Even if in the Lorentzian regime with Λ < 0 the deformation

parameter q is generically a phase, many arguments have arrived at the conclusion that in

the presence of a BTZ black hole q should be a root of unity [9]. All this suggests that one

could interpret our construction as a recipe that sends the partition function of Euclidean

gravity with Λ > 0 to that of Lorentzian gravity with Λ < 0 in the presence of a BTZ black
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hole. This can be summarized by the following formal diagram:

Z(+)
E =

∫

Dg exp
(

iS
(+)
E [g]

)

−→ Z(−)
E =

∫

Dg exp
(

iS
(−)
E [g]

)

−→ Z(−)
L =

∫

Dg exp
(

iS
(−)
L [g]

)

,

(5.1)

where S
(±)
σ [g] denotes the action for gravity with signature σ and cosmological constant

Λ such that sign(Λ) = ±, and Z(±)
σ is the associated partition function. The first arrow

corresponds to turning q root of unity to q real, and the second arrow corresponds to keeping

the bound in the sum (4.4) defining the quantum Haar measure. Of course, for the moment

this is just an interpretation that certainly deserves to be investigated deeper. However, it

is interesting to note that the same kind of arguments appear in the CFT approach. We

hope that our new way of deriving the entropy of the BTZ black hole will open a new path

towards a complete description of the quantum microstates for the black hole.

Why do we only need one graph to compute the entropy? This second ques-

tion concerns the eventual computation of the total number of the black hole microstates.

Indeed, in this paper, we have computed only the number of microstates for a given config-

uration Γ. If we mimic the techniques used for computing the entropy of four-dimensional

black holes in loop quantum gravity, we should define the total number N(L,Λ) of mi-

crostates as the sum

N(L,Λ) =
∑

Γ

wΓNΓ(L,Λ) , (5.2)

where wΓ is a weight associated to the configuration Γ. The sum over Γ means that we sum

a priori over the number of links p, and also over the representations (j1, . . . , jp) coloring

these links. However the situation is much simpler in three dimensions because of the

topological nature of the theory. Indeed, one expects that the Hilbert spaces Hphys
Γ are

all physically equivalent for different graphs Γ, as long as they have enough structure to

capture the relevant topological data of the spacelike surface Σ. One strong indication

of this equivalence lies in fact in the main result of this paper, which is that the number

NBTZ
Γ (L,Λ) of microstates is indeed independent of Γ in the large L limit. One therefore

expects to be able to describe the physical Hilbert space for the BTZ black hole from the

analytic continuation of a single physical Hilbert space Hphys
Γ for a single graph Γ.

Can we establish a contact with the CFT approach? If we follow the logic of

the previous paragraph, then it is natural to consider the simplest possible graph Γ to

construct the physical Hilbert space. It is clear that the simplest graph consists in only

two links crossing the horizon, and meeting at one vertex at infinity. When the cosmological

constant Λ is positive, the graph with only one link is necessarily trivial in the sense that

the representation labeling the only link must be trivial. When the graph contains two

links, they should be colored by the same representation (at least when there is no angular

momentum). We will come back to this observation a bit later. For the moment, we

assume that the graph Γ that consists of two links is sufficient to describe the physical

states, and the two links can be colored by any pair (j1, j2) of representations. Let us

denote by Hphys(j1, j2) the associated Hilbert space, and by N(j1, j2) its dimension. Now

several questions naturally arise. What is the physical meaning of the representations j1

– 12 –
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and j2? Are all the states in Hphys(j1, j2) physically inequivalent? Or, in the language of

CFT, does Hphys(j1, j2) contain zero norm states?

To answer these questions, it would be worth trying to establish a contact between our

loop quantum gravity description of the BTZ black hole and the standard CFT approach.

In the later, the computation of the asymptotic number of black hole microstates relies on

the Cardy formula for the density of states in a two dimensional CFT [29]. In summary

(see [2] for instance), the total number of black hole microstates is given by the number

ρ(∆,∆) of CFT states, where ∆ and ∆ are eigenvalues of the standard Virasoro operators

L0 and L0, and

∆ =
ℓcM + J

2
, and ∆ =

ℓcM − J

2
. (5.3)

∆ and ∆ are totally fixed by the value of the cosmological constant Λ = −ℓ2c , the mass

M , and the angular momentum J of the black hole. Using the Cardy formula [5] and its

subleading corrections [30], one can show that

log
(

ρ(∆,∆)
)

∼ L

4ℓPl
− 3

2
log

(

L

ℓPl

)

. (5.4)

In this way, one recovers the Bekenstein-Hawking entropy and its logarithmic corrections.

Note that the corrections were also obtained in [31]. As a consequence, it seems that our

number of states N(j1, j2) plays a role similar to the density of states ρ(∆,∆), in the sense

that these two quantities depend on two parameters and have the same leading order term

in the classical limit. We can go even further to stress this similarity. Indeed, when there

is no angular momentum, i.e. J = 0, we have argued above that the representations j1
and j2 should be equal to the same value, let us say j1, which is related in the classical

limit to the length L of the horizon by the relation 16πℓPlj1 = L, and j1 = r+/(8ℓPl).

From the CFT point of view, it also appears that ∆ = ∆ when the angular momentum

vanishes, and ∆ = 3r2+/(32ℓ
2
Pl). This is consistent with the idea that the representations

j1 and j2 could play the same role as ∆ and ∆, and should be fixed by the values of the

mass M and the angular momentum J of the BTZ black hole. From the non-rotating

case, we see that j1 ∝
√
∆. What happens when the angular momentum is not vanishing?

It has been suggested recently [32] that in the loop quantum gravity description of four-

dimensional black holes, an angular momentum can be taken into account by the presence

of an extra puncture (crossing the horizon) whose representation is proportional to the

value of the angular momentum J . If we assume that the same phenomenon exits in

our three-dimensional model, then the representation j coloring the extra-puncture should

satisfy the inequality j ≤ j1 + j2 ∝
√
M , which is to be contrasted with the inequality

|J | ≤Mℓc arising from classical gravity.

Logarithmic corrections and large diffeomorphisms. Now, let us comment on the

question concerning the equivalence or non-equivalence between states in Hphys(j1, j2).

This question comes naturally when one notices that the dimensionN(j1, j2) ofHphys(j1, j2)

is larger than the number of states ρ(∆,∆), since

exp

(

− L

4ℓPl

)

(

N(j1, j2)− ρ(∆,∆)
)

∼ 3

2
log

(

L

ℓPl

)

(5.5)
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due to the logarithmic corrections arising in the CFT approach. This means that we are

counting more states in our model. This discrepancy could originate from a forgotten

symmetry in loop quantum gravity. Indeed, it has been argued in the CFT approach that

the logarithmic corrections are intimately related to the modular invariance of the theory,

and the modular invariance represents the invariance under large diffeomorphims. These

large symmetries have never been taken into account in our approach, and they could be

easily considered. Indeed, they might be related to the natural braided statistics associated

to the quantum groups we are dealing with. We could expect the action of the braiding

group in our approach to be as important as the modular invariance in the CFT approach.

The introduction of a non-trivial braiding should not change the leading order behaviour

of the entropy in the classical limit (because the braiding group is discrete). However, it

might be important (even crucial) for the recovery of the expected logarithmic corrections

to the entropy.

What are the physical microstates of the black hole? An important question

remains concerning the physical interpretation of these microstates. How is it that a

topological quantum field theory can provide such a large number of states for the black

hole, and what is the relation with the underlying microscopic physical degrees of freedom of

the BTZ black hole? These questions remains open so far. From the mathematical point of

view, one understands that this huge number of states could come from the quantization of

the CFT at the boundary. But, from the physical point of view, it is not totally satisfactory

to think that the black hole microstates come from a theory that lives very far from the

horizon.

In our approach, the degrees of freedom seem to live on the black hole boundary, but

we still do not know what they are. It might be that these states result from all the

matter fields that contributed to forming the black hole during its gravitational collapse,

and which have disappeared behind the horizon. To verify this hypothesis, one should

study precisely the gravitational collapse of the BTZ black hole from the point of view of

loop quantum gravity. It is important to keep in mind that such questions are also open in

the four-dimensional models. The encouraging point is that a definite answer might very

well be within reach in the simplified context of three-dimensional gravity, and this could

provide valuable guiding insights for the physical four-dimensional theory. We leave these

investigations for future work.
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