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Wireless sensor networks are widely used in security monitoring applications to sense and report specific activities in a field.
In path coverage, for example, the network is in charge of monitoring a path and discovering any intruder trying to cross it.
In this paper, we investigate the path coverage properties of a randomly deployed wireless sensor network when the number of
sensors and also the length of the path are finite. As a consequence, Boolean model, which has been widely used previously, is
not applicable. Using results from geometric probability, we determine the probability of full path coverage, distribution of the
number of uncovered gaps over the path, and the probability of having no uncovered gaps larger than a specific size. We also find
the cumulative distribution function (cdf) of the covered part of the path. Based on our results on the probability of full path
coverage, we derive a tight upper bound for the number of nodes guaranteeing the full path coverage with a desired reliability.
Through computer simulations, it is verified that for networks with nonasymptotic size, our analysis is accurate where the Boolean
model can be inaccurate.

1. Introduction

Wireless sensor networks (WSNs) have many applications in
security monitoring. In such applications, since it is essential
to keep track of all activities within the field, network
coverage is of great importance and must be considered in
the network design stage.

Path coverage is one of the monitoring examples, where
WSNs are deployed to sense a specific path and report
possible efforts made by intruders to cross it. In a manual
network deployment, the desired level of the path coverage
can be achieved by proper placement of the sensors over the
area. When it is not possible to deploy the network manually,
random deployment, for example, dropping sensors from
an aircraft, is used. Due to the randomness of the sensors
location, network coverage expresses a stochastic behavior
and the desired (full) path coverage is not guaranteed. Thus,
a detailed analysis of the random network coverage can be
ultimately useful in the network design stage to determine
the node density for achieving the desired area/path cover-
age.

Path coverage by a random network (or barrier coverage
which is a relaxed version of the path coverage) has been
the focus of some previous work [1–6]. In [1], assuming
that a random network is deployed over an infinite area with
nodes following a Poisson distribution, authors investigate
the path coverage of the network. They first study the
path coverage over an infinite straight line when the sensor
has a random sensing range. Then, they show that in the
asymptotic situation, where the sensing range of the sensors
tends to 0 and the node density approaches infinity, the
results are extendible to finite linear and curvilinear paths.
Further, a path coverage analysis is proposed for a high-
density Poisson-distributed network in [2] where sensors
have a fixed sensing range. The path coverage analysis of
[1, 2] is based on the Boolean model of [7], where a Poisson
point process is justified.

Kumar et al. study k-barrier coverage provided by a
random WSN in [3]. To this end, they develop a theoretical
model revealing the behavior of the network coverage over
a long narrow belt. It is assumed that the sensors are spread
over the belt according to a Poisson distribution. The authors
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propose an algorithm determining whether an area is k-
barrier covered or not. Also, they introduce the concepts of
weak and strong barrier coverage over the belt and derive
the condition on the sensors density guaranteeing the weak
barrier coverage.

The focus of [4] is on the strong barrier coverage.
First, authors present a condition insuring the strong barrier
coverage over a strip where the sensors locations follow
a Poisson point process. Then, by considering asymptotic
situation (on the network size and number of nodes)
and using Percolation theory [8], they determine, with a
probability approaching 1, whether the network has a strong
barrier coverage or not. Then, they use their analysis to devise
a distributed algorithm to build strong barrier coverage over
the strip.

In this work, unlike most existing studies which focus
on asymptotic setups, we study the path coverage of a finite
random network (in terms of both network size and the
number of nodes). As a result, the Boolean model is not
accurate. Alternatively, the methodology of this work is based
on some results from geometric probability. Our focus is on
the path coverage for a circle, but extension to other path
shapes is briefly discussed.

In the ideal case, all sensors are located exactly on
the path. This, however, is not a practical assumption for
randomly deployed networks. To consider the inaccuracy of
the sensors locations, we assume that sensors are inside a
ring containing the circular path. As a result, the portion of
the path covered by any given sensor is not deterministic.
Moreover, other factors may affect the sensing range of a
sensor. Thus, our analysis is not based on a fixed sensing
range. Indeed, we first develop a random model for the
covered segment of the path by each sensor. Then, we study
the distribution of the number of uncovered gaps on the
path. The full path coverage is a special case where the
number of gaps is zero. This is used to determine a tight
bound on the number of active sensors assuring the full
path coverage with a desired reliability. Also, we find the
probability of having all possible gaps smaller than a given
size. This probability reflects the reliability of detecting an
intruding object with a known size.

In addition to studying the number of gaps, we present
a simplified analysis for deriving the cumulative distribution
function (cdf) of the covered part of the path. This simplified
analysis is based on using the expected value of the covered
part of the path by a sensor instead of considering the precise
random model. We observe that the simplified analysis can
provide a fairly accurate approximation of the path coverage.

Since our analysis studies the effect of the number of
nodes on the path coverage of a finite size network, it can
readily be used in the design of practical networks. In fact,
using our results, one can determine the number of nodes in
the network to satisfy a desired level of coverage. An example
is provided.

The paper is organized as follows. Section 2 introduces
the network model and defines the problem. Our coverage
analysis is presented in Section 3. Section 4 includes com-
puter simulations verifying our analysis. Finally, Section 5
concludes the paper.
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Figure 1: Network structure.

2. Preliminary

2.1. Network Model. We consider N sensors monitoring a
circular path with unit circumference, called P . In an ideal
case, the sensors are precisely located on the circular path,
but this is not usually true for a randomly deployed network.
In order to take this fact into account, we assume that
sensors are randomly spread over a ring containing P (See
Figure 1). We assume a symmetric distribution for sensors,
that is, the sensor density does not depend on the polar
angle and is determined only by the distance from the center.
It is generally desired to have more sensors in the vicinity
of P . Thus, distributions with larger values close to P are
preferred. When no effort is made to put the sensor as close as
possible to the path (N sensors are spread totally randomly),
the uniform distribution is obtained. Hence, in the sense
of placement efforts, uniform distribution reflects the worst
case. We consider uniform distribution to verify our analysis
by computer simulation in Section 4. Our analysis, however,
is presented for any given symmetric distribution. Also,
notice that since the number of sensors is finite and known,
Poisson distribution, which has been the focus of existing
asymptotic analysis, is not applicable.

We also assume that sensors sensing range may vary from
r1 to r2. Obviously, for a fixed sensing range, model r1 = r2.
Without loss of generality, it is assumed that the width of the
ring is smaller than or equal to 2r2 and the desired circular
path is located at the middle of the ring. Since the sensors
farther than r2 to the path do not contribute to the path
coverage, our assumption on the ring width does not hurt
the generality of the analysis.

2.2. Motivation and Problem Definition. Our goal in this
work is to investigate the quality of the path coverage by the
network. To this end, we study the following features of the
path coverage which provide us with a concrete insight to the
performance of the network.
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(i) Distribution of the number of gaps. Due to the
randomness of the network implementation, sensors
may not cover the whole path. In this case, one
or more gaps appear. Assume that g represents the
number of gaps on P . We are interested to find the
probability of having m gaps, shown by P(g = m).

(ii) Full path coverage. It is desired to provide a complete
coverage of the path. Since the full path coverage is
identical to having no gaps, one can equivalently find
P(g = 0). This can simply be found from the derived
distribution of g.

(iii) Reliability of the network in detecting objects. It is
important to investigate whether the network is able
to detect an object, while the path is not fully covered
and there may exist some gaps. Basically, we need
to consider the size of the gaps in addition to their
number. If one knows the size of the intruders
beforehand, it is not necessary to provide the full
path coverage. Instead, it is possible to deploy a
network such that while the path is not fully covered,
the size of the possible gaps is smaller than the
intruders. Clearly, implementing a network with
possible small gaps requires fewer number of nodes
and consequently is less expensive. To this end, we
find the probability of having all gaps smaller than
a given length t, denoted by P(lg < t).

(iv) Distribution of the covered part of the path. The
covered part of the path, C, has a stochastic nature
and its distribution provides a general view of the
entire path coverage. In fact, the covered part of the
network reflects the combined effect of the number
of gaps and their sizes. We derive the cdf of C, FC(x).

3. Path Coverage Analysis

In this section, we present our analysis of the path coverage.
For this purpose, we take advantage of existing results in
geometric probability and extend them to our case. After the
exact coverage analysis, a less complex approximate analysis
is also presented.

An arbitrary point on P is covered if it is within the
sensing range of at least one sensor. Here, we assume
that the sensing area of sensor i is a circle denoted by
si, i = 1, 2, . . . ,N . The covered part of the path by each si is
its intersection with P which is an arc, called ai. Thus, the
total covered part of the path is

C =
N⋃

i=1

ai. (1)

Notice that the length of ai’s depends on the location of
the sensor within the ring-shaped network area and its
sensing range. Considering an arbitrary point as the origin
on P and choosing the clockwise direction as the positive
direction, each ai starts from li and continues (clockwise)
until ri, (Figure 2). In other words, li determines the most
left point of the arc and ri specifies the most right point of
the arc. There are two noteworthy issues here. First, the size
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Figure 2: The random arcs placed clockwise on P .

of ai’s and their positions are random because of the random
placement of the sensors over the ring. Second, C is not
necessarily connected and there may exist several uncovered
gaps on P . The number of uncovered gaps on P and their
size can reflect the possible opportunities for intruders to
pass P without being detected by the sensors. If g = 0, P is
fully covered.

The problem of covering a circle with random arcs has
been studied in geometric probability [9–15]. In some cases,
it is assumed that the arcs have a fixed length [9, 12, 13, 15] or
the analysis is conducted in the asymptotic situation [10, 14].
Asymptotic analysis is suitable for the situation where the
sizes of si’s are significantly smaller than P . In the following,
we initially use the result of [11] on the coverage of a circle
with random arcs of random sizes. This helps us to provide
an exact explanation of the path coverage. Then, we use
the mean value of ai’s to provide a simplified approximate
analysis based on the fixed-length random arc placement
over the circle [12].

3.1. Exact Analysis. We apply the following theorem from
[11] to find the exact distribution of the number of gaps on
P .

Theorem 1. Assume thatN arcs are distributed independently
with a uniform distribution over a circle of circumference 1. If
F�(·) shows the cdf of the arc length over [0, 1], the distribution
of the number of uncovered gaps on the circle, g, is

P
(
g = m

) =
(
N
m

) N∑

k=m

(
N −m
k −m

)
(−1)k−mξk, (2)

where

ξk = (k − 1)!
∫

∑k
i=1 ui=1

⎡
⎣

k∏

i=1

F�(ui)

⎤
⎦
⎡
⎣

k∑

j=1

∫ uj

0
F�(v)dv

⎤
⎦
N−k

du.

(3)

Proof. See [11].
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To apply Theorem 1 for finding the number of uncovered
gaps on P , we first prove the uniformity of the arc
distribution over P in the following lemma.

Lemma 1. For a symmetric distribution of the sensors over the
path, the location of the intersection of the sensors sensing range
and P is uniformly distributed over P .

Proof. We equivalently show that the center points of the arcs
are uniformly distributed over the circle. For this purpose,
consider a small element with length d� → 0 on P .
Then, we build a sector of the ring based on this length
element whose left and right sides pass the left and right
ends of the length element (Figure 3). The center point of
the arcs, resulted from the intersection of the sensing area
of the nodes within the sector and P , falls within d�. Due
to the independence of the sensors distribution from the
polar angle, all elements with length d� on the circle have
the same chance to include an arc center point. Therefore,
the distribution of the arc centers, and consequently arc
locations, is uniform on P .

Following Lemma 1, in order to find the distribution of
the number of gaps on P , we need F�(·) or in our case Fa(·),
the cdf of ai’s. Notice that ai’s are independent and identically
distributed (i.i.d) random variables. We find Fa(·) in the
appendix for arbitrary distributions of sensor location and
sensing range.

As a result of Theorem 1 and Lemma 1, we have the
following corollary.

Corollary 1. The probability of the full path coverage, Pf , is

Pf = P
(
g = 0

)

=
N∑

k=0

(−1)k
(
N
k

)
(k − 1)!

×
∫

∑k
i=1 ui=1

⎡
⎣

k∏

i=1

Fa(ui)

⎤
⎦
⎡
⎣

k∑

j=1

∫ uj

0
Fa(v)dv

⎤
⎦
N−k

du.

(4)

Furthermore, one can show that the expected number of gaps
on P is [11]

E
(
g
) = N

(
1− μa

)N−1, (5)

where μa is the mean of ai’s.

E(g) can be used to find an upper bound on the number
of nodes in the network guaranteeing the full path coverage
with a given reliability. This is presented below.

Corollary 2. To guarantee a full path coverage with probabil-
ity p, the following relation holds

N
(
1− μa

)N−1 ≥ 1− p. (6)

Proof. Recall Markov’s inequality for a positive random
variable X

P(X ≥ b) ≤ E(X)
b

, (7)

d�

Figure 3: Distribution of the arc position over the circle.

where b > 0. If we letX be the random variable of the number
of gaps g, and put b = 1, we have

P
(
g ≥ 1

) ≤ E
(
g
)
. (8)

Combining (5) and (8) results in (6).

Using (6), it is straightforward to find an upper bound
on N guaranteeing a desired level of coverage, p. Later, our
simulations show that this bound is in fact very tight.

Another feature of the path coverage that we like to study
is the quality of the coverage in terms of the size of the gaps
on P . Assume that we like to guarantee detecting any object
bigger than a particular size, say t. To assure detecting such
objects, all of the gaps have to be smaller than t. Hence, we
like to find the probability of having no gaps larger than
t, P(lg < t), where lg is the length of the largest gap on P .

Corollary 3. The probability of having no gaps larger than t is

P
(
lg < t

)
=

N∑

k=0

(−1)k
(
N
k

)
(k − 1)!

×
∫

∑k
i=1 ui=1

⎡
⎣

k∏

i=1

Fa(ui − t)

⎤
⎦

×
⎡
⎣

k∑

j=1

∫ uj

0
Fa(v − t)dv

⎤
⎦
N−k

du.

(9)

Proof. Consider a realization of the random placement of
arcs on the path. Now, one can consider a scenario where
the length of each arc is increased by t. If there exists a gap
smaller than t in the first scenario, this gap will be covered
in the second scenario since the arcs are t longer. On the
other hand, a gap with any size in the second scenario will
be a gap with length more than t in the first scenario. Notice
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that the above discussion is valid for any realization of the
network. Thus, instead of investigating the probability of
having no gaps longer than t in the first scenario, we look
for the probability of the full coverage in the second scenario.
Denoting the length of the arcs in the second scenario by a′i ,
one can think of them as being drawn from the distribution
fa′(x) = fa(x − t) or equivalently

Fa′(x) = Fa(x − t). (10)

This completes the proof.

Using the same approach taken for finding the upper
bound on N in (6), one can derive an upper bound on the
number of nodes to guarantee having all gaps smaller than t.

We also like to investigate C, that is, the portion of P
which is covered by the nodes. To find C, we first reorder
the arcs based on their starting points, li’s. Thus l1 < l2 <
l3 < · · · < lN . Now, we divide P to arcs bi, where bi is an
arc starting from li and ending at li+1. Finally, bN starts from
lN and ends at l1. Since we have N random arcs intersecting
with P , there exist N of such spacings on the circle. These N
spacings may or may not be covered by the network. Adding
the covered parts of the path together, we have

C =
N∑

i=1

min
(
yi, xi

) =
N∑

i=1

zi, (11)

where zi = min(yi, xi). Also, yi’s denotes the length of bi and

xi = max

⎛
⎝ai, ai−1 − yi−1, . . . , ai−N+1 −

N−1∑

j=1

yi− j

⎞
⎠. (12)

Notice that in (12) we assume rotational indices for ai− j ’s.
It means that if i− j < 1 we replace the index with N−i+ j. In
(12), xi is the length of the connected part of C starting from
li and continuing clockwise. When yi ≤ xi, the whole spacing
yi is covered and min(·, ·) function should return yi. When
xi < yi, a portion of yi remains uncovered and there exists a
gap at the right side of yi. Thus, min(·, ·) function returns xi.
It is noteworthy that because of the problem symmetry, zi’s
are identically distributed random variables. Thus, we use a
single random variable z to refer to them.

The distribution of C can be well approximated by a
Gaussian distribution using central limit theorem (CLT)
where the mean value of C, μC , is μC = Nμz. Here, μz
denotes the mean value of z. Also, σ2

C = Nσ2
z where σ2

C and
σ2
z represent the variance of C and z, respectively. In reality,

one can safely simplify (12) to

xi = max
(
ai, ai−1 − yi−1

)
. (13)

This is because ai’s are i.i.d. and thus it is very unlikely that,
for example, ai−2 − yi−1 − yi−2 > ai.

3.2. Approximate Analysis. In the following, we present an
approximate analysis simplifying our path coverage study.
The idea of this approximate analysis is to consider a model
where a set of fixed-length arcs are spread randomly over P

instead of using the actual random-sized arcs. The length of
these fixed arcs is equal to the mean value of the random-
sized arcs in the original case. We denote the mean value of
these random arcs with μa. In this case, it can be shown that
the number of uncovered gaps on P is distributed as follows
[12]:

P
(
g = m

) =
(
N
m

) N∑

k=m
(−1)k−m

(
N −m
k −m

)
(
1− kμa

)N−1
+ ,

(14)

where (x)+ = max(x, 0). The same technique as before is
applicable to find the probability of having no gaps larger
than t on P . For this purpose, we just need to use μa + t
instead of μa in (14). In addition, the distribution of C can
be derived when the arc size is fixed [12]. In this case, we have

FC(x) =
N∑

j=1

j−1∑

k=0

(−1) j+k−1

(
N
j

)(
N − 1
k

)(
j − 1
k

)
(1− x)k

× (x − jμa
)N−1−k

+ ,
(15)

where FC(x) is the cdf of C.
One can also calculate the expected value of C, μC . To

this aim, we first consider the uncovered part of the path, V,
and find its expected value, called μV . Then μC can be found
using the fact μC = 1− μV .

An arbitrary point x on P remains uncovered when there
is no ai covering it. This is equivalent to having none of li’s
within an arc with length μa whose right end point is x. There
areN sensors in the network, hence, the probability of having
x uncovered, μV , is

μV =
(
1− μa

)N
. (16)

Consequently,

μC = 1− (1− μa
)N

. (17)

3.3. Some Remarks

Remark 1. Our path coverage analysis is applicable to any
closed path, for example, ellipse, with finite length when the
location of the path segment covered by an arbitrary sensor is
uniformly distributed over the path. For this purpose, we just
need to have the distribution of the intersection of sensors
sensing range and the path. Also, the analysis is applicable
to linear path coverage. In fact, the problem of covering a
circle with random arcs can be transformed to the problem of
covering a piece of line, say the interval [0, b], with random
intervals. In this case, sensors are deployed randomly over
a strip surrounding the linear path. It is notable that in
the linear case, Torus convention [7] is applied. In Torus
convention, it is assumed that if a part of the random interval
goes out of the line segment, it comes in from the other side
of the line piece. However, when the length of the random
intervals is small compared to the line piece, one can remove
the Torus convention and the analysis remains quite accurate.
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Remark 2. In many WSNs, the number of active sensors
in the network changes with time. This can be due to, for
example, sleep scheduling or death of some nodes. Since our
analysis is provided for arbitrary N , it can accommodate
such situations, simply by replacing N with N(t) in relevant
equations. Consequently, the coverage can be studied as a
function of time.

4. Simulation

In this section, we demonstrate the accuracy of our analysis
via computer simulations. We have inspected two scenarios
for the sensors sensing range. In the first scenario, we assume
a network with N sensors all having a fixed sensing range
equal to r. The sensors are uniformly deployed inside a ring
around the circular path, where P has unit circumference.
In the second scenario, the sensors sensing range is also
uniformly distributed between 0 and rmax. A zero sensing
range can represent a dead sensor.

We evaluate random properties such as the full coverage,
number of uncovered gaps, tightness of the bound presented
in (6), the intruder detectability, and the portion of the
covered path using simulation, and compare the results with
our theoretical analysis.

4.1. Uncovered Gaps. Probability density of the number of
uncovered gaps on the path, P(g = m), was derived in
Section 3.1. Figure 4 shows the probability mass function
(pmf) of the number of uncovered gaps via simulation
for N = 30. Here, we have assumed that the sensing
range of all sensor nodes is fixed and is equal to 0.06.
The theoretical results using (2) have also been sketched
for comparison. It can be concluded that the formulation
derived in Section 3.1 quite accurately describes the pmf of
the number of uncovered gaps on the path. The third curve in
Figure 4 is the result of approximation analysis in Section 3.2.
Parameter μa in (14) is set to be the expected value of random
variable a, derived in the appendix.

It is clear from Figure 4 that the results from the
approximate analysis are fairly close to the exact analysis and
the simulations. Due to the complexity of the evaluation of
exact analysis, we compare the rest of our simulation results
with the approximate analysis presented in Section 3.2 to
characterize the coverage properties of the network.

In the case of fixed sensing range, as the width of the
ring becomes smaller, the variance of a decreases and the arc
lengths become closer to μa, making the approximate analysis
more accurate. To study the worst case, in our analysis, we
assume the ring width w is equal to 2r. Notice that any node
outside this ring does not contribute to the path coverage.
For random sensing range, we choose w = rmax/2. Notice
that since r1 = 0, there will be nodes in the ring that will not
contribute to the path coverage.

Figures 5 and 6 demonstrate the probability of full
coverage versus number of sensors deployed in the region.
Figure 5 shows the results for the fixed sensing range
scenario. Pf is estimated through simulation for different
values of sensing range, r = 0.05, 0.02, 0.01, and is compared
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Figure 4: Probability of the number of uncovered gaps when r =
0.06 and N = 30.

with the theoretical results using (14). As seen from the
curves, our theoretical formulation can effectively predict
probability of full path coverage. Figure 6 represents the
results of variable sensing range scenario. The sensing range
of sensor nodes is randomly selected from a uniform
distribution between 0 and rmax. We have run the simulation
based on three uniform distributions, rmax = 0.06, 0.04, 0.02,
and compared with the theoretical results. For theoretical
calculations, we have computed the average arc length for the
case of random sensing range using (A.22) in the appendix,
and then substituted the resulting μa into the approximate
formula (14). From Figure 6, we can see that the theoretical
analysis in Section 3.2 can closely describe the probability of
full coverage for random sensing range scenario.

We have also tested our analysis for full coverage of a
straight line segment instead of a circle. Figure 7 depicts the
coverage of a straight line segment of length 1 when sensing
range is fixed and is equal to 0.05. The solid line is the
result of Poisson assumption in [2] and the dashed line is
the result of our formulation. It can be seen that specially for
smaller number of sensor nodes, the Boolean model is not
well applicable to describe the coverage of small networks.

The expected number of uncovered gaps, E(g), after
deploying N sensors in the ring is given by (5). In Figure 8,
E(g) has been calculated versus N for three values of fixed
sensing range, r = 0.05, 0.02, 0.01, using simulation as well
as the analysis. The expected number of gaps for variable
sensing ranges is shown in Figure 9. The sensors sensing
range has been taken from the three uniform distributions
used previously.

In Section 3.1, we used Markov’s inequality to find a
relation between the number of nodes and probability of
full coverage over the path, presented in (6). The smallest
number of nodes that satisfies (6) can efficiently be found
by conducting a simple binary search. We denote the value
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of N found via search by N∗. Table 1 shows the value of
N∗ calculated for probability of full coverage being equal
to .8. The results found by inequality (6) and simulation
are shown for comparison. For probability of full coverage
closer to one (the region of interest in practice), N∗ gets even
closer to the value of N satisfying the desired reliability found
via simulation. For example, for probability of full coverage
equal to .95, we found N∗ = N for various values of r. It
can be inferred that (6) provides a tight upper bound on the
number of nodes needed for full path coverage.
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Figure 7: Probability of full coverage of a straight linear path of
length 1 when r = 0.05.
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Figure 8: Expected value of the number of gaps versus number of
sensor nodes for fixed sensing range.

Table 1: Upper bound on the number of sensors for guaranteeing
full coverage with probability P = .8.

Inequality (6) Simulation

r = 0.05 73 72

r = 0.02 220 216

r = 0.01 494 489

4.2. Detectability of the Object. As discussed in Section 3.1,
in real applications of sensor networks, we might not be
interested in the full coverage of a path, yet we need to make
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Figure 10: Probability of having no gaps larger than t when r =
0.01.

sure that there are no uncovered gaps on the path, larger than
a certain maximum length t. The probability of this kind
of coverage, P(lg < t), was given by (9). We use simulation
to find P(lg < t) for values of t equal to r/2, r/5, r/10,
when r = 0.01. Again, comparing simulation results with
theoretical ones in Figure 10 verifies our formulation. Our
study on the size of the gaps is useful for decreasing the cost
of the network implementation. In fact, if we know the size
of the intruders, instead of providing a full path coverage, we
can design the network with less number of nodes to have all
gaps smaller than t.
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Figure 11: The cdf of the covered part of the path when N = 30.
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Figure 12: Expected size of the covered portion of the path versus
N .

4.3. Covered Part of the Path. The covered portion of the
path, C, is another important metric for path coverage
in a WSN. Indeed, C is a random variable whose cdf is
approximated in Section 3.2. Figure 11 shows the cdf of C,
for N = 30 and r = 0.02, 0.01. As it can be seen, our
path coverage analysis is more accurate for larger values
of r.

The formulation for expected covered part, μC , is
derived in Section 3.2. Figure 12 shows simulation and
theoretical results for μC versus N , when r = 0.05, 0.02,
and 0.01.
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5. Conclusion

In this paper, we studied the path coverage of a random
WSN when neither the area size nor the number of network
nodes were infinite. Hence, the widely used Boolean model
was no longer valid. Moreover, due to the randomness of
the sensors placement over the area, network coverage was
nondeterministic. Thus, a probabilistic solution was taken
for determining the network coverage features. Our analysis
considered the number of gaps, probability of full path
coverage, probability of having all uncovered gaps smaller
than a specific size, and the cdf of the covered length of the
path. All these characteristics were found as a function of
the number of sensors N. We also proposed a tight upper
bound on required N for full coverage. Through computer
simulations, we verified the accuracy of our approach. Since
our study was performed for finite N , using our results on
various features of path coverage, one can find the necessary
number of sensors for a certain quality of coverage.

Appendix

In the following, we find the cdf of the intersection between
the sensing area of the sensors and P , called Fa(x). First, we
study the situation where sensors have a fixed sensing range
r and they are uniformly distributed over the ring. Then, we
investigate the general case where sensors can have a random
sensing range varying from r1 to r2 and have any symmetric
distribution over the ring.

Let us first discuss the case where the sensors have a fixed
sensing range. Figure 13 shows the ring-shaped network
containing P . As mentioned previously, the circumference
of P is 1, hence, the radius of P is R = 1/2π. It is also
assumed that the ring width is 2w and w ≤ r, where r is
the sensing radius of the sensors. Notice that d in Figure 13
shows the distance of a sensor from the center of the ring.
Since the sensors are uniformly distributed over the area, it
can be easily shown that the cdf of d, Fd(x), is as follows:

Fd(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < R−w,
x2 − (R−w)2

4wR
, R−w ≤ x ≤ R + w,

1, R + w < x.

(A.1)

We use Fd(x) to derive Fa(x).
In Figure 13, the intersection of the sensing area of an

arbitrary sensor with P is denoted by a. By forming a triangle
whose vertices are the center of P , sensor location, and one
of the points where the sensing circle of the sensor meets P ,
one can write

r2 = R2 + d2 − 2Rd cos(θ). (A.2)

On the other hand, we have

a = 2Rθ. (A.3)

Replacing θ with a/2R in (A.2) results in

d2 − 2Rd cos
(
a

2R

)
+
(
R2 − r2) = 0. (A.4)

r a
θ

d

R

P

Figure 13: Covered part of the path by a single sensor.

Solving (A.4), we have

d = R cos
(
a

2R

)
±
√

r2 − R2sin2
(
a

2R

)
. (A.5)

Equivalently,

a = 2R cos−1

(
R2 + d2 − r2

2Rd

)
. (A.6)

Now having the cdf of d and using the relation between
d and a in (A.5) and (A.6), we will derive Fa(x). To this end,
one can state

P(a ≤ x) = P

(
2R cos−1

(
R2 + d2 − r2

2Rd

)
≤ a

)

= P

(
d ≤ R cos

(
a

2R

)
−
√

r2 − R2 sin2
(
a

2R

))

+ P

(
d ≤ R cos

(
a

2R

)
+

√

r2 − R2 sin2
(
a

2R

))
.

(A.7)

Thus,

Fa(x) = 1 + Fd

(
R cos

(
x

2R

)
−
√

r2 − R2 sin2
(
x

2R

))

− Fd

(
R cos

(
x

2R

)
+

√

r2 − R2 sin2
(
x

2R

))
.

(A.8)

Replacing Fd(x) in (A.8) using (A.1), we obtain

Fa(x) = 1− cos(x/2R)
√
r2 − R2 sin2(x/2R)

w
, (A.9)
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where

c ≤ x ≤ 2R sin−1
(
r

R

)
,

c = 2R cos−1

⎛
⎜⎜⎝

√√√√R2 − r2 +
√

(R2 − r2)2 + 4w2R2

2R2

⎞
⎟⎟⎠.

(A.10)

Moreover, Fa(x) = 0 when x < c and Fa(x) = 1 when x >
2R sin−1(r/R). We use (A.9) for our exact analysis in order
to characterize the path coverage features of the network.
Notice that when r is small, Fa(x) can be approximated as
follows:

Fa(x) = 1−
√
r2 − (x/2)2

w
. (A.11)

In addition to the cdf of the arc length, we use the mean
value of a for our approximate analysis. Recall that for an
arbitrary random variable z distributed over [a, b],

μz = b −
∫ b

a
Fz(x)dx, (A.12)

where μz is the mean value of z and Fz(x) is the cdf of z. Using
(A.12), μa can be found as follows:

μa

=
∫ 2R sin−1(r/R)

c
Fa(x)dx

=

⎡
⎢⎢⎣x −

√
r2 − R2 sin2(x/2R)

w

−
r2 tan−1

(
R sin(x/2R)/

√
r2−R2 sin2(x/2R)

)

w

⎤
⎥⎥⎦

2R sin−1(r/R)

c

.

(A.13)

Notice that when w = r, μa = πr/2.
Now assume that both sensing range and sensor location

are random and we like to find Fa(x). Sensing range of
the sensors, r, varies over [r1, r2] with probability density
function (pdf) fr(x). Also, R − w ≤ d ≤ R + w such that
w ≤ r2, because sensors located farther than r2 from the path
do not contribute in the path coverage. It is noteworthy that
a ∈ [0, a1] where

a1 = 2Rcos−1

(
2R2 − r2

2

2Rd

)
. (A.14)

This can simply be justified using (A.6).
To find Fa(x), we partition the problem to two separate

cases. In the first case, sensing area of the sensor does not
intersect with P , that is, a = 0. This happens when d + r ≤

R or d − r ≥ R. If w < r1, this never happens and sensing
area of the sensor always intersects with P and consequently
Fa(0) = 0. If w ≥ r1, we have

Fa(0) = P(d + r < R) + P(d − r > R). (A.15)

To evaluate two terms in the right side of the above equation,
we use the joint distribution of r and d, fr,d(x, y). Notice that
in the case where sensors sensing range is independent from
their location, fr,d(x, y) = fr(x) · fd(y), where fd(y) is the
pdf of d over [R − w,R + w]. To evaluate P(d + r < R) and
P(d− r > R), we simply have to integrate from fr,d(x, y) over
the area where d + r ≤ R or d − r ≥ R. It can be shown that

Fa(0) =
∫ w

r1

∫ R−r

R−w
fr,d
(
x, y
)
dy dx +

∫ w

r1

∫ R+w

R+r
fr,d
(
x, y
)
dy dx.

(A.16)

Notice that Fa(0) > 0 states that the pdf of a, fa(x), has a
Dirac delta function at x = 0.

When sensing area of a sensor intersects with path, a > 0.
To find Fa(x) in this case, we first find fa(x). For this purpose,
we apply Jacobian transformation to derive fa,d(x, y), the
joint distribution of a and d, from fr,d(x, y). Using (A.6) and
Jacobian transformation, one can show that

fa,d
(
x, y
) = y

√
1− cos2(x/2R)

2z
fr,d
(
z, y
)
, (A.17)

where

z =
√

R2 + y2 − 2Ry cos
(
x

2R

)
. (A.18)

Having fa,d(x, y), fa(x) is found by integration over d.
To integrate over d, the region of integration has to be
determined carefully. For any arbitrary value of a ∈ (0, a1],
there exist an infinite number of pairs (r,d) satisfying (A.6);
however, to guarantee an intersection between the sensing
range of the sensor and P , d should fall within [d1,d2] where

d1 = R cos
(
a

2R

)
−
√

r2 − R2 sin2
(
a

2R

)
,

d2 = R cos
(
a

2R

)
+

√

r2 − R2 sin2
(
a

2R

)
.

(A.19)

In fact, d1 and d2 are the desired integral bounds. Thus,

fa(x) =
∫ d2

d1

fa,d
(
x, y
)
dy x > 0. (A.20)

Consequently,

Fa(x) =
∫ x

0−
fa
(
y
)
dy x > 0. (A.21)
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The mean value of a, μa, used in our approximate analysis, is
also derived as follows:

μa =
∫ a1

0
x fa(x)dx

= 0× Fa(0) +
∫ a1

0−
x fa(x)dx

=
∫ a1

0−
x fa(x)dx.

(A.22)
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