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Abstract The quality and authenticity of images is essential for data presentation,

especially in the life sciences. Questionable images may often be a first indicator for

questionable results, too. Therefore, a tool that uses mathematical methods to detect

suspicious images in large image archives can be a helpful instrument to improve

quality assurance in publications. As a first step towards a systematic screening tool,

especially for journal editors and other staff members who are responsible for

quality assurance, such as laboratory supervisors, we propose a basic classification

of image manipulation. Based on this classification, we developed and explored

some simple algorithms to detect copied areas in images. Using an artificial image

and two examples of previously published modified images, we apply quantitative

methods such as pixel-wise comparison, a nearest neighbor and a variance algorithm

to detect copied-and-pasted areas or duplicated images. We show that our algo-

rithms are able to detect some simple types of image alteration, such as copying and

pasting background areas. The variance algorithm detects not only identical, but

also very similar areas that differ only by brightness. Further types could, in prin-

ciple, be implemented in a standardized scanning routine. We detected the copied
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areas in a proven case of image manipulation in Germany and showed the similarity

of two images in a retracted paper from the Kato labs, which has been widely

discussed on sites such as pubpeer and retraction watch.

Keywords Digital image � Ethics � Manipulation � Image processing � Fraud
detection

Introduction

Pictures and images play a key role in the documentation and presentation of results

in the life sciences. In cases of fraud, images have often been the key to identifying

manipulation and falsification in a scientific work. As a survey by the US Office of

Research Integrity (ORI) already showed more than ten years ago, not only the

incidence of allegations involving questionable images has increased, but also their

incidence relative to other ORI cases (Krueger 2002). Images were also a central

issue in cases that garnered broader media attention, such as the Hwang clone fraud

case in Korea, the biggest cancer research fraud case by Herrmann/Mertelsmann/

Brach in Germany, or the case of former oral cancer research star Jon Sudbø in

Norway. In the Hwang case, which is considered ‘‘one of the highest profile events

in South Korea’s history’’ (Logan et al. 2010: 172), results such as DNA

fingerprinting analyses and photographs of cells in a Science article from 2004 were

fabricated (Kakuk 2009: 548). In the German case, 94 publications were found to

contain falsified or suspicious data, including many cases of recycling the same

images in different contexts and publications, or copying and pasting within a

certain image (Couzin and Unger 2006: 39; Abbott and Schwarz 2002). In one of

the fraudulent publications from Norway in the prestigious New England Journal of

Medicine, one of the paper’s images of mouth lesions was found to be a magnified

version of another image in the same article (Couzin and Schirber 2006; for an

overview of fraud in oncology: Schraub and Ayed 2010).

Leaving aside such individual and often spectacular cases that have been

uncovered, the total number of image manipulations in submitted scientific papers

remains unknown and can only be estimated, e.g. by online surveys among

scientists. According to such a survey by Martinson et al., 0.3% of 3247 scientists

admitted to having ‘‘cooked’’ or falsified research data themselves. About 15% said

that they had previously engaged in behaviors such as ‘‘dropping observations or

data points’’, and 4.7% admitted to reusing data in two or more publications

(Martinson et al. 2005) (the survey did not explicitly ask about image manipulation).

Recently, based on a visual (‘‘by eye’’) screening of 20,621 papers in 40 scientific

journals, a group of US-researchers estimated the prevalence of the specific case of

inappropriate image duplication at 3.8%, with an increasing tendency during the

past decade (Bik et al. 2016). This is in line with the observation that in biomedical

literature, the number of retractions has increased in the last few years, in many

cases due to manipulated images (Krueger 2012). As efficient and systematic

screening of image manipulation is not yet available, it can only be assumed that the
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technical (software) possibilities of image editing may have increased the

probability of image manipulation.

Spectacular cases of fraud with broader media attention refuel the debate on how

such manipulation could have been avoided and who will be responsible for better

quality control in the future. Journal editors have recognized this problem and

organized in the ‘‘Committee on publication ethics’’ (COPE, http://

publicationethics.org). However, journals such as the Journal of Cell Biology

controlling systematically images are rather regarded as an exception (Couzin

2006b). Responsible editors usually point out reviewers’ and editors’ limited pos-

sibilities, as did Donald Kennedy, former editor-in-chief at Science: ‘‘Peer review

cannot detect [fraud] if it is artfully done. (…) And the reported falsifications in the

Hwang paper—image manipulation and fake DNA data—are not the sort that

reviewers can easily spot’’ (Couzin 2006a). Concerning the above-mentioned case

of oncologist Jon Sudbø, Richard Horton, editor of The Lancet, claimed: ‘‘This is all

so similar to the Hwang thing that we have just been through. (…) Peer review is a

great system for detecting badly done research, but if you have an investigator

determined to fabricate an entire study, it is not possible to pick it up’’ (Butler

2006). Even clearly fabricated papers have a good chance to be accepted, as John

Bohannon showed in an experiment with free access journals (Bohannon 2013).

These statements seem to still be true today, at least for more sophisticated

manipulations that are undetectable by the bare eye, or for manipulations obviously

violating established guidelines such as Nature Journal’s guidelines for ‘‘Image

integrity and standards’’ (Nature 2016). Such guidelines provide some orientation to

which degree an image may still be regarded as authentic after electronic

corrections to brightness, contrast etc. To our knowledge, there is still a lack of

widely spread and standardized screening methods for reviewers or editors to

routinely verify the authenticity of a submitted scientific image. In principle, such

screening tools would be useful for everybody involved in the process of quality

control. However, journal editors, in particular, should have a choice from a variety

of different methods because falsifiers, who also have access to any given screening

tool on the free market, will eventually learn to mask their manipulations and render

them undetectable by this specific screening tool.

At least in the case that an image has already been labeled as suspicious,

institutions such as ORI offer some tools (called ‘‘forensic droplets’’) for the

examination of ‘‘questionable’’ scientific images (http://ori.hhs.gov/droplets). These

tools yield images, but do not offer a measurable or easily comparable result

between images (like rankings or probability of manipulation). However, such tools

seem to be rather suitable for data that is already questionable, and may be of some

help in the daily routines of editors and reviewers. Some software like Rigour1

(http://www.suprocktech.com) offers batch processing of images to detect manip-

ulated areas in images. In this work, we explore and discuss a general procedure and

basic statistical algorithms as a first step towards a possible automatic routine

control of scientific images in the life sciences, and prospectively, beyond.

1 Rigour is a closed-source software; public information on the approaches it uses is not available.

However, tutorials suggest that this program’s output is processed images.
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Types of Image Manipulation

From a mathematical point of view, according to which images are nothing but a

matrix of pixels with different values, the type of potential image manipulation

(blots, electrophoretic gels, etc.) is secondary. More important aspects are image

characteristics such as color (homogeneous or heterogeneous values inside the

matrix), resolution (size of the matrix), etc., which are used to scan for suspicious

images. In our approach, we consider images to be data sets that can be

systematically scanned for manipulation. Our main goal is to search for similar

areas. Therefore, our methods require images without large monochromatic areas in

which everything looks similar. Typically, large monochrome areas in themselves

are indicative of manipulation or inappropriate post-processing of images (Cromey

2010). On the other hand, large areas of ‘‘noisy background’’ for which copied areas

can be searched are extremely valuable. Outside of the background areas, the signal

of the image information is usually much stronger (for example dark points on a

light background) than the signal coming from a manipulation, making the latter

undetectable. Here, we suggest some basic algorithms to detect image manipulation.

A journal’s integrity standards typically define image alteration and manipulation

from the author’s perspective. The journals’ image integrity standards usually don’t

offer a general and explicit distinction of fraudulent and non-fraudulent (but still

unacceptable) image manipulation. For example, Nature’s standards for image

integrity (http://www.nature.com/authors/policies/image.html) advise avoiding

tools like Adobe Photoshop’s� cloning and healing tools, which alter single areas of

an image in a nonlinear way. Global linear transformations (like changes in

brightness and contrast) are allowed to a certain degree if they are necessary and

mentioned in the description. Other authors distinguish in their digital imaging

guidelines between ‘‘usually acceptable’’ (e.g., simple adjustments to the entire

image), ‘‘questionable’’ (e.g., manipulations that are specific to one area of an image

and are not performed on other areas) and ‘‘very questionable’’ (e.g., cloning or

copying objects into a digital image, from other parts of the same image or from a

different image) (Cromey 2010). However, the degree to which such transformation

is still acceptable, and whether a description of the image treatment is sufficient can

only be decided on a case-by-case basis.2

If we want to detect questionable manipulation, we have to look at the issue from

a data point of view. From this perspective, we do not focus on disallowed alteration

methods, but rather on the effects on the data itself. Based on our observations of

fraud cases described in the cited literature, we propose the following simple

general classification of data manipulation:

• Type 1: Manipulation by deleting unwanted data information (for example using

the Photoshop cloning Tool)

2 Further questions, such as a more general definition of fraudulent and non-fraudulent, but still

unacceptable treatment of images, touch on the broad topic of authenticity, which cannot be discussed in

detail in this article. However, many questions in this context have already been brought up in classical

works such as Walter Benjamin’s ‘‘The Work of Art in the Age of Mechanical Reproduction’’ and seem

to be more important than ever in the digital age.
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• Type 2: Duplication by reusing images in different papers or contexts

• Type 3: Manipulation by adding information/data points.

The flow chart in Fig. 1 shows the classification of the three different types of

manipulation (on the top) into different detection strategies. The green pathways

show the strategies that we examine in our work. At first glance, the second type

(duplication in different works) seems to be the most labor-intensive to detect

because it requires extensive cross-checking with images that are already published

across the entire literature in a given field. In the above-mentioned Herrmann/

Mertelsmann/Brach case, investigators often had to rely on their memory; they had

seen the questioned image before in another publication by the same author and had

to look it up ‘‘manually’’ (Wormer 1999). Today, ‘‘post-publication peer review’’

forums and websites such as ‘‘pubpeer’’ (http://pubpeer.com/) or ‘‘Retraction

Watch’’ (http://retractionwatch.com/) seem to be helpful for such examinations,

notably after publication. Cases of duplicated images appear on ‘‘Retraction Watch’’

or other platforms on an almost weekly basis. The duplicated images can often be

found in the same paper or in other works by the author(s). That reduces the amount

of effort required for image comparisons. One recent example is a 2013 paper about

human cloning that created some excitement over duplicated images (Tachibana

Fig. 1 To search for manipulated images, we first decide what type of fraud we anticipate: deleted
information, added information or duplicated images (top row). In a second step, we specify the
manipulation in relation to data availability and use of copied areas (mid row). In the last step, we
determine the type of algorithm for the actual problem (bottom row). The green pathways refer to the two
cases in which our algorithms contribute to the scanning routine. Ellipses mark knots that require a
decision, rectangles provide additional information

Towards a Systematic Screening Tool for Quality Assurance…

123

http://pubpeer.com/
http://retractionwatch.com/


et al. 2012). A few days after publication, an anonymous investigator presented the

duplications on ‘‘pubpeer’’. However, an algorithm to detect duplicated images

would have helped the journal detect these images prior to publishing.

Procedures to Detect Images with Added Information

If parts of the information in a given image are added to the original version, this

copied-and-pasted area leaves characteristic edges at the border of the copied area.

Therefore, it is necessary to spot visible or hidden edges around important image

data (e.g. bands in Western Blots) to detect cut points and, in a second step, the

origin of the copied information (see Fig. 1, type 3). One problem in detecting

suspicious edges is lossy image compression. Most published images use the jpg-

format, which employs a lossy compression algorithm based on 8 9 8 pixel blocks

(ISO/IEC 10918-1: 1993). When we look at edges, the first step is to discriminate

edges caused by compression from edges caused by manipulation. Again,

manipulation type 3 is difficult to process automatically because the signal from

the added data is typically much stronger than the signal from the edges of copied

areas. As our goal is to outline the first steps towards a tool for use by journal editors

and/or reviewers as a possible screening method of incoming images, this paper will

focus on the first two types of possible manipulations (deletion or duplication of

areas). Searching for edges requires other types of algorithms which are not the

subject of this work. One way to avoid manipulation type 3 in the future would be

for journals to accept only uncompressed image data at submission for quality

checks.

Procedures to Detect Deleted Information and Duplicated Images

At first glance, searching for deleted information in a given image seems to be a

paradox: How to look for something which is not there anymore? Typically, the

deleted information has been replaced by background noise. This can be done by

copying and pasting another part of the image in a way that hides the unwanted area

(compare the specification step in the flow chart in Fig. 1). Since we cannot search

for the deleted data, we must search for the origin of the copied background. In

principle, it is possible to detect deleted information by searching for edges, but the

above-mentioned problem of compressed images applies here, too.

One proposed method to detect areas with data deletion is to search for

background regions which differ from their direct neighborhood in the image, e.g.

by changes in luminance or color. An alternative is to search for similar areas,

which are indicative of data manipulation by copying and pasting. In this work, we

considered data deletion by replacement with background. In a second step, we

examined a related problem: finding identical images or identical details.

One strategy to match a copied region to its new environment is changing

contrast. After such a change, the copied area is no longer identical with its original.

For that reason, we also need an algorithm to detect regions that are similar,

although modified.
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Methods

We provided three different algorithms to detect copied areas in the background. In

this section, we first describe data pre-processing, followed by the three algorithms.

As a last step, we present a tool to summarize the results. The algorithms are all part

of a newly developed R (R Core Team 2015) software package FraudDetTools,

which is available from the authors. The package contains a selection of functions

written in R. All algorithms work with one or two different images. The package has

two core functions: The function readImage collects the pre-processing steps;

nN9Var provides the different comparison algorithms. In addition, some functions

that output results and some sample data are also part of FraudDetTool.

Data Pre-processing

Depending on the origin of the data that is to be analyzed, some pre-processing steps

are necessary. Images can be easily read as JPEG- or PNG- formats. To isolate parts

of an image or an image from a bigger figure, the data must be handled with care to

prevent data alteration. Formats like JPEG are lossy in their data compression. To

avoid data loss, they have to be saved in lossless formats like PNG. To analyze the

images, we transform them into an image matrix. Our package includes the function

readImage, which uses the two R packages jpeg and png (Urbanek 2013a, b) to

create those image matrices and additionally transforms color images into grayscale

ones. The image matrix is the basis for all following analyses. Every entry

represents one pixel of the original image. The matrix values range from 0 to 1. For

a typical 8-bit image, there are 256 possible values. For monochrome areas in the

picture, a second image matrix has to be created. The matrix values corresponding

to the monochrome areas have to be changed to a new, unique value to prevent false

positive matches. Typically, white (1) and black (0) are the values which include

monochrome areas. Even after this preparation, the variance algorithm does not

work for images that include monochrome areas.

Comparison Algorithms

The two images (two different images, or the original image and a (pre-processed)

copy) are compared in any possible shift. The parts of the image that do not overlap

are compared with the pixels on the other side of the image: e.g., a shift by one line

causes the first line of the first image and the last line of the second image to be

compared. If we compare images of different sizes, only the range of the smaller

image is used. This procedure is the same for all three algorithms.

For a pixel-wise comparison, we count the number of identical superimposed

pixels. The nearest neighbor algorithm counts identical 3 9 3 pixel blocks. The

variance algorithm computes the variances in every 3 9 3 pixel block and

accumulates them for the whole image. All algorithms create a result matrix which

contains the results for every shift. The index of the matrix rows and columns
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indicates a shift by this number of rows and columns. For 3 9 3 pixel blocks, the

entry of the result is at the position of the top left pixel.

Localization of Similar Areas

The result matrices of the three algorithms show the number of identical/similar

pixel/neighborhoods or the sum of neighborhood variances, respectively, for every

shift. An additional approach provides localization matrices. These are implemented

for the nearest neighbor and the variance algorithm. Every entry counts the number

of identical nearest neighbor areas or variances below the cut-point, respectively,

over all shifts. Thus, localization matrices help finding areas with a large number of

identities in an image, see visualization in Fig. 5c.

Examples

To test our algorithms, we used three different types of data: A test image for such

procedures and two real manipulation cases. The first real data example is a simple

copy-and-paste manipulation of type 1, the second a more difficult manipulation of

type 2 including some data alteration. Despite the fact that they are manipulated,

reproduction of the manipulated images is necessary to show the results of our

algorithm.

Example 1: ORI Test Image

First, we explored the algorithms on a test image from the ORI (http://ori.dhhs.gov/)

consisting of weak background noise. This image was designed by the ORI to test

new routines to search for copied areas. We employed all three algorithms to the

whole image to find the copied regions. As one would expect for 250,000 pixels and

256 shades of grey, there are many identical pixels. For the ORI test image, every

shift has at least 15,020 identical pixel pairs (pixel-wise comparison). If we count an

identity only if the nearest neighborhood of 8 pixels including the origin pixels

themselves is identical (nearest neighbor), the number of identities for every shift is

between 0 and 2187. We are interested in shifts containing a larger number of

identical pixel pairs (or 3 9 3 areas) relative to most of the other shifts to avoid

random matches. The absolute number of identities is secondary.

Figure 2 shows the shifts containing the most identical pixels. Most of them are

shifted by only a few pixels (see marks in the edges of the image). For these cases,

the reason for the many identities is the similarity of the neighbor pixels in the

original image. To obtain the really interesting shifts, we had to filter the results.

The shifts of interest are those in which the image is shifted more than a few pixels

and which contain a large number of identical pixels or 3 9 3 areas. For the test

image, there are two conspicuous shifts.

In Fig. 3, the identical pixels for these shifts are marked. In both cases, there is a

region in which the number of identical pixels is much higher than outside the

region. Every two shifts belong together, representing the two similar areas. Only
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the pixel-wise comparison algorithm is able to detect these shifts; for the nearest

neighbor algorithm, these similarities are impossible to detect, because there are no

identical pixels in which the nearest neighbors (3 9 3 areas) are all identical, too.

The third algorithm, the variance algorithm, only detects the bigger area. The signal

from the small square cannot be differentiated from random hits. The nearest

neighbor algorithm also detects some shifts including small identical areas, as

shown in Fig. 4. For these findings it is important to check the original shades of

grey in these areas. If they are all the same, due to a monochrome area in the image

or a large image compression, identical areas can more easily be found by

coincidence than in a high-contrast area or non-compressed image.

Using our algorithms, we obtained different types of similar areas in the ORI test

image. This example has shown that our algorithms can work on test data. Next, we

looked for applicability in a real life example that had already been identified as a

manipulation.

Example 2: Copied Areas

The nearest neighbor algorithm only finds simple copy-and-paste shifts. Neverthe-

less, it seems to be suitable for practical image analysis. We demonstrated this using

an established case with a simple copy-and-paste manipulation as an example. In

1998, Noé and Breer published the paper ‘‘Functional and Molecular Character-

ization of Individual Olfactory Neurons’’ (Noé and Breer 1998). Five years later, the

Fig. 2 The images show shifts, including the most pair-wise identical pixels. The background consists of
the original ORI image (8-bit grayscale image with 500 to 500 pixels). The left image marks shifts
including more than 17,000 identical pixels. Every red mark represents the top left edge of a shift. Big
marks represent more than one conspicuous shift in a small area. The right-hand image visualizes shifts
including more than 70 identical (3 9 3) pixel areas. The red marks in the edges of both images result
from very small shifts and the similarity of the neighborhood of a pixel to itself and are not of interest.
Figure a shows four interesting shifts marked by black circles. The coordinates refer to the shift which
includes the most identical pixels (shifts in relation to the top left corner). In figure b, only the shift
referring to Fig. 4 is marked
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German Research Foundation (DFG) ascertained that two figures in this publication

were manipulated (DFG 2003). According to this report, the authors had replaced

the primer bands of the electrophoresis gels with background. We applied our

algorithms to one electrophoresis gel from Fig. 6b in the cited paper. In the original

image from the research paper, our algorithms cannot detect the copied areas

because of low image quality. The image quality of the corrigendum is much better

than the image in the original paper. On the image data that was extracted from the

corrigendum, the algorithms work very well.

Fig. 3 The four conspicuous shifts found by pixel-wise comparison (black circles in Fig. 2a).
Figures a and b as well as c and d belong together (we shift a over b, or b over a). The shifts by 385 rows
and 100 columns and 115 rows and 400 columns, respectively, have 22,889 identical pixels. The shifts by
135 rows and 136 columns and 365 rows and 364 columns, respectively, have 17,177 identical pixels. In
both cases, there is an area containing more identical pixels than outside. The nearest neighbor algorithm
cannot detect these areas because of missing identical 3 9 3 areas. Background image: ORI test image
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The edges of a copied area at the bottom of the right band are visible to the naked

eye (panel ‘a’ in Fig. 5), yet the origin of the copied area is not. If we compare this

block (29 9 9 pixels) to every other part of the image, we find some identical areas.

Additional information about the location of the copied area is not necessary. In a

second step, we tried to detect copied areas without any information about their

location. To run the algorithms on the whole image, some pre-processing for

monochrome areas is necessary because of the light image areas (see ‘‘Methods’’).

The nearest neighbor algorithm exactly points out those shifts, which are necessary

for this manipulation (see panel ‘b’ in Fig. 5). There are no false positives. To show

the image manipulation, the next step is to visualize the identical areas found by the

algorithm as shown in panel ‘d’ in Fig. 5. In this case, it is possible to retrace the

steps which were likely taken to manipulate the image. It appears that the first step

was to copy and paste the black rectangle from the bottom left to the middle. In a

second step, the same procedure was executed for the red rectangle, which was

modified by the first manipulation. Only eleven pixels inside the copied areas

remain which cannot be explained with these two shifts of rectangles.

This example has shown that our algorithms are able to retrace previously

identified manipulations. In this case, they also provide additional information (in

comparison to the naked eye) about the origin of the copied areas.

Fig. 4 Identical pixels for the shift by 16 rows and 484 columns (black circle in Fig. 2b). Most of the
identical pixels cannot be detected by the nearest neighbor algorithm, only the two identical areas are
visible to this algorithm (see red circles). The pixel-wise comparison algorithm does not detect this shift
because of the low signal-to-noise ratio. Background image: ORI test image
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Fig. 5 The Western Blot from Fig. 6b from Noé and Breer (1998) (in the version of the corrigendum).
The primer bands where replaced by background. A visible edge of the insertion is marked by the black
circle in figure a. The red dots in b show the eight shifts including identical (3 9 3) neighborhoods. All
these shifts refer to the copied red area in figure c. This figure shows the location of the top left pixel from
an identical (3 9 3) neighborhood for all shifts (red marks). Due to the nearest neighbor algorithm, only
one of the identical neighborhood pairs is marked (see red area). The black line separates the last 30 pixel
rows, which are shown in detail in figure d. Identical areas are marked in the same color. The two
rectangles (black-rimmed and red-rimmed) show the necessary shifts to create these image
manipulations. The first shift was the copy-and-paste of the black-rimmed rectangle. Both rectangles
were copied from left to right. Only eleven pixels in the target area cannot be explained by these shifts
(the unmarked ones without the unmarked 4 9 2 pixel-block. Background image: Noé and Breer (1998)
corrigendum

L. Koppers et al.

123



Example 3: Detecting Duplicated Images

The third example consists of two images from a letter in Nature Cell Biology

(Suzawa et al. 2003).

This letter is part of the investigations of the Kato group, on which Retraction

Watch has reported frequently (http://retractionwatch.com/?s=Kato). We chose this

example because of the rising relevance of blogs reporting on suspicions of sci-

entific misconduct. A screening instrument to verify such allegations would also be

useful in this context. In our concrete case, an anonymous whistleblower made

allegations in a blog in 2012 (http://katolab-imagefraud.blogspot.de) and also

published a YouTube Video (https://www.youtube.com/watch?v=FXaOqwanWnU),

pointing out dozens of reused images. Meanwhile, over 40 papers have been

retracted. The paper we consider was retracted in November 2014 (Suzawa et al.

2014). We focus on two images of Fig. 2f of the original paper and in the blog.

Overlaying the two images manually, we can detect similar structures. For the

manual analysis, it does not matter if the data came from the original letter or the

blog. For our algorithms, however, the two data sources deliver different results: In

the blog data, it is easy to find the correct shift to superimpose the images (see upper

two images in Fig. 6). The blog data is a detail of the original image. The images are

not exactly identical to the images from the letter. Testing our algorithm on the

original data (or on a detail comparable to the blog), we find no corresponding shift

(see lower two images in Fig. 6). The cause of the algorithm’s failure is probably a

change in scale between the images. The interesting detail in the first image is a few

pixels larger than in the second one. The algorithms do not yet feature a scaling

correction, so it is impossible to find the correct shifts.

Discussion

There are many ways to manipulate and reuse images. Developing a screening tool

to detect such manipulation requires a systematic classification. Our proposed

typology of 3 types of image manipulation may be regarded as a first and useful step

for a screening procedure beyond graphical output. With the presented algorithms,

we can detect identical areas, large areas which include more identical pixels than

expected, and identical areas whose image values are shifted by a constant.

However, the detection algorithms cover only a small range of possible manipu-

lations. Our ultimate goal is to create an automated procedure for quality assurance.

This will require extending the algorithms and making them sensitive to rotated and

scaled images. At this point, the pixel-wise comparison and nearest neighbor

algorithms only detect exact identical pixels and 3 9 3 areas, respectively. The

nearest neighbor algorithm is more sensitive to small copied areas, whereas the

pixel-wise algorithm cannot detect such signals due to the high number of randomly

identical pixels. Changes in scale or image quality (e.g. JPEG-compression) render

manipulations undetectable to the algorithms. In the original image from the

discussed Noé/Breer paper, our algorithms are unable to detect the copied areas

because of low quality and changes caused by image compression. The original
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images from the Kato paper vary minimally in size, also causing the algorithms to

fail. However, the tools are a useful addition to the range of existing screening

methods and lead to a monitoring system which looks for ‘‘outliers’’ in a collection

of images.

Our example shows that it is necessary to use images of good quality. Some

journals like the Nature Publishing Group employ the good practice of handling raw

data: ‘‘In fact, our journals have plans to make this data available to readers, and we

expect this measure to increase the overall quality and integrity of the scientific

record’’ (Retraction Blues 2013). This data is important in order to discover

manipulated data. Publication of high-quality (raw) data gives scientists the chance

to test images using their own procedures, which, of course, is no substitute for a

careful image check by the journals.

This is in line with the conclusions derived from our examples. Although more

pixels cause longer runtimes for the algorithms, more detail increases the chance of

detecting duplicated areas. Lossy image compression should be avoided to ensure

correct data representation. The algorithms are too slow to search for duplications in

big image archives, but other, more powerful algorithms do exist. However, it is

possible to compare all images within a given paper and, and for cases like Sudbø or

Fig. 6 Figures a–d show results from the variance algorithm. All shifts containing a block variance sum
below the cut-point are marked by black areas. Figures a and b show the results from the ‘‘11jigen’’ blog
image, figures c and d are based on the results of the original Kato paper image. The results of the
algorithm are compared to the approximate results obtained by visualisation (marked by a red rectangle).
The variance algorithm detects plausible shifts in the blog data, but not in the original paper data.
Background image: Suzawa et al. (2003)
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Herrmann/Mertelsmann/Brach introduced earlier, it is also useful. The algorithms

can be part of the quality control routine to avoid duplicating images by mistake.

The duplicated images in the recent Tachibana cloning paper cannot be detected at

this stage due to incompatibility and changes in scale, but an improved algorithm

should be able to manage this type of duplication.

In summary, we can state that all three algorithms are helpful tools for scanning

suspicious images. As a next step, they must be supplemented by algorithms which

work for rescaled and rotated images. Furthermore, faster implementation is

desirable to address the runtime problem. In addition to existing approaches (expert

eye and Photoshop procedures), our procedure can generally be used to automat-

ically check large image archives and filter out suspicious images for a precise

expert check. To increase the level of automatization, filtering of unusual results

(outliers) is possible.

We manually monitored the retractions appearing on ‘‘Retraction Watch’’ for six

months, which led us to the assumption that most undetected image manipulation

could be avoided if publishers/editors implemented a routine check for the described

manipulation. Including the features of our and other algorithms, the next step could

be to create a classifier which helps scan for suspicious images. Up to now, the

algorithms were tested on examples and on original data from known cases of fraud.

For statistical inference, it would be preferable to simulate and model types of

image manipulation. The use of algorithms calls for a check of the algorithm itself.

Since it is not appropriate to blindly trust a screening tool, we have to investigate the

precision and recall of our tools (Rossner 2008).

The goal of this study was to develop a systematic approach to classify different

kinds of image manipulation in a suitable form, which can be handled with the basic

algorithms we have developed. The proposed classification may also be a means to

sharpen awareness of how images should be treated in scientific teaching. As a next

step towards using the tool in practice, a quality check by a double blind controlled

trial, as recommended by one of our reviewers, is inevitable. However, a set of

algorithms that detects suspicious images will have to be continuously extended

because image manipulators will continue to find new methods, as well.

Finally, we must point out that an automated scan for suspicious images does not

imply an automated judgment. The final decision should always be made by human

experts to avoid false positives, but comparison algorithms should support the

discussion by providing an initial quality check. Once an algorithm detects a suspicious

image, further investigation like the proceeding described in the COPE Flowcharts

(publicationethics.org/resources/flowcharts) about fabricated data will be necessary.
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Suzawa, M., Takada, I., Yanagisawa, J., Ohtake, F., Ogawa, S., Yamauchi, T., et al. (2003). Cytokines

suppress adipogenesis and PPAR-gamma function through the TAK1/TAB 1/NIK cascade. Nature

Cell Biology, 5(3), 224–230.

Suzawa, M., Takada, I., Yanagisawa, J., Ohtake, F., Ogawa, S., Yamauchi, T., et al. (2014). Retraction:

Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB 1/NIK

cascade. Nature Cell Biology, 16(11), 1126.

Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., et al. (2012).

Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153(6), 1228–1238.

Urbanek, S. (2013a). jpeg: Read and write JPEG images. R package version 0.1-6. http://CRAN.R-

project.org/package=jpeg.

Urbanek, S. (2013b). png: Read and write PNG images. R package version 0.1-5. http://CRAN.R-project.

org/package=png.
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