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Part I of a two-part series investigates product accumulate codes, a special class of differentially-encoded low density parity check
(DE-LDPC) codes with high performance and low complexity, on flat Rayleigh fading channels. In the coherent detection case,
Divsalar’s simple bounds and iterative thresholds using density evolution are computed to quantify the code performance at finite
and infinite lengths, respectively. In the noncoherent detection case, a simple iterative differential detection and decoding (IDDD)
receiver is proposed and shown to be robust for different Doppler shifts. Extrinsic information transfer (EXIT) charts reveal that,
with pilot symbol assisted differential detection, the widespread practice of inserting pilot symbols to terminate the trellis actually
incurs a loss in capacity, and a more efficient way is to separate pilots from the trellis. Through analysis and simulations, it is shown
that PA codes perform very well with both coherent and noncoherent detections. The more general case of DE-LDPC codes, where
the LDPC part may take arbitrary degree profiles, is studied in Part II Li 2008.
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1. INTRODUCTION

The discovery of turbo codes and the rediscovery of low-
density parity-check (LDPC) codes have renewed the rese-
arch frontier of capacity-achieving codes [1, 2]. They also
revolutionized the coding theory by establishing a new soft-
iterative paradigm, where long powerful codes are con-
structed from short simple codes and decoded through iter-
ative message exchange and successive refinement between
component decoders. Compared to turbo codes, LDPC
codes boast a lower complexity in decoding, a richer variety
in code construction, and not being patented.

One important application of LDPC codes is wireless
communications, where sender and receiver communicate
through, for example, a no-line-of-sight land-mobile chan-
nel that is characterized by the Rayleigh fading model.It is
well-recognized that LDPC codes perform remarkably well
on Rayleigh fading channels, that is, assuming the carrier
phase is perfectly synchronized and coherent detection is
performed; but what if otherwise?

It should be noted that, due to practical issues like
complexity, acquisition time, sensitivity to tracking errors,

and phase ambiguity, coherent detection may become expen-
sive or infeasible in some cases. In the context of nonco-
herent detection, the technique of differential encoding
becomes immediately relevant. Differential encoding admits
simple noncoherent differential detection which solves phase
ambiguity and requires only frequency synchronization
(often more readily available than phase synchronization).
Viewed from the coding perspective, performing differential
encoding is essentially concatenating the original code with
an accumulator, or, a recursive convolutional code in the
form of 1/(1 + D).

In this series of two-part papers, we investigate the theory
and practice of LDPC codes with differential encoding. We
start with a special class of differentially encoded LDPC (DE-
LDPC) codes, namely, product accumulate (PA) codes (Part
I), and then we move to the general case where an arbitrary
(random) LDPC code is concatenated with an accumulator
(Part II) [3].

Product accumulate codes, proposed in [4] and depicted
in Figure 1, are a class of serially concatenated codes, where
the inner code is a differential encoder, and the outer code
is a parallel concatenation of two branches of single-parity
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Figure 1: PA codes (a), code structure (b). Graph representation.

check (SPC) codes or a structured LDPC code comprising
degree-1 and degree-2 variable nodes. Since the accumulator
can also be described using a sparse bipartite graph, a
PA code is, overall, an LDPC code. Alternatively, it may
also be regarded as a differentially-encoded LDPC code, to
emphasize the impact of the inner differential encoder.The
reasons to study PA codes are multifold. First, PA codes
exhibit an interesting threshold property and remarkable
performance,and are well established as a class of “good”
codes with rates ≥ 1/2 and performance within a few tenths
of a dB from the Shannon limit [4]. Here, “good” is in the
sense defined by MacKay [2]. Second, PA codes are desirable
for their simplicity. They are simple to describe, simple to
encode and decode, and simple enough to allow rigorous
theoretical analysis [4]. Comparatively, a random LDPC code
can be expensive to describe and expensive to implement in
VLSI (due to the difficulty of routing and wiring). Finally, PA
codes are intrinsically differentially encoded, which naturally
permits noncoherent differential detection without needing
additional components.

The primary interest is the noncoherent detection case,
but for completeness of investigation and for comparison,
we also include the case of coherent detection. Under the
assumption that phase information is known, we compute
Divsalar’s simple bounds to benchmark the performance of
PA codes at finite code lengths [5], and we evaluate iterative
thresholds using density evolution (DE) to benchmark the
performance of PA codes at infinite code lengths. The
asymptotic thresholds reveal that PA codes are about from

0.6 to 0.7 dB better than regular LDPC codes, but 0.5 dB
worse than optimal irregular LDPC codes (whose maximal
left degree is 50) on Rayleigh fading channels with coherent
detection. Simulations of fairly long block lengths show a
good agreement with the analytical results.

When phase information is unavailable, the decoder/
detector will either proceed without phase information
(completely blind), or entails some (coarse) estimation and
compensation in the decoding process. We regard either
case as noncoherent detection. The presence of a differential
encoder in the code structure readily lands PA codes to
noncoherent differential detection. Conventional differential
detection (CDD) operates on two symbol intervals and
recovers the information by subtracting the phase of the
previous signal sample from the current signal sample. It is
cheap to implement, but suffers as much as from 4 to 5 dB
in bit error rate (BER) performance [6]. Closing the gap
between CDD and differentially encoded coherent detection
generally requires the extension of the observation window
beyond two symbol intervals.The result is multisymbol
differential detection (MSDD), exemplified by maximum-
likelihood (ML) multisymbol detection, trellis-based mul-
tisymbol detection with per-survivor processing, and their
variations [7, 8]. MSDD performs significantly better than
CDD, at the cost of a considerably higher complexity which
increases exponentially with the window size. To preserve the
simplicity of PA codes, here we propose an efficient iterative
differential detection and decoding (IDDD) receiver which is
robust against various Doppler spreads and can perform, for
example, within 1 dB from coherent detection on fast fading
channels.

We investigate the impact of pilot spacing and filter
lengths, and we show that the proposed PA IDDD receiver
requires very moderate number of pilot symbols, compared
to, for example, turbo codes [6]. It is quite expected that
the percentage of pilots directly affects the performance
especially on very fast fading channels, but much less
expected is that how these pilot symbols are inserted also
makes a huge difference. Through extrinsic information
transfer (EXIT) analysis [9], we show that the widespread
practice of inserting pilot symbols to periodically terminate
the trellis of the differential encoder inevitably [6, 7] incurs
a loss in code capacity. We attribute this to what we call
the “trellis segmentation” effect, namely, error events are
made much shorter in the periodically terminated trellis than
otherwise. We propose that pilot symbols be separated from
the trellis structure, and simulation confirms the efficiency of
the new method.

From analysis and simulation, it is fair to say that PA
codes perform well both with coherent and noncoherent
detection. In Part II of this series of papers, we will show
that conventional LDPC codes, such as regular LDPC codes
with uniform column weight of 3 and optimized irregular
ones reported in literature, actually perform poorly with
noncoherent differential detection. We will discuss why, how,
and how much we can change the situation.

The rest of the paper is organized as follows. Section 2
introduces PA codes and the channel model. Section 3
analyzes the coherently detected PA codes on fading channels
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using Divsalar’s simple bounds and iterative thresholds.
Section 4 discusses noncoherent detection and decoding of
PA codes and performs EXIT analysis. Finally, Section 5
summarizes the paper.

2. PA CODES AND CHANNELMODEL

2.1. Channel model

We consider binary phase shift-keying (BPSK) signaling (0→
+1, 1 → −1) over flat Rayleigh fading channels. Assuming
proper sampling of the outputs from the matched filter, the
received discrete-time baseband signal can be modeled as
rk = αke jθk sk + nk, where sk is the BPSK-modulated signal,
nk is the i.i.d. complex AWGN with zero mean and variance
σ2 = N0/2 in each dimension. The fading amplitude αk
is modeled as a normalized Rayleigh random variable with
E[α2

k] = 1 and pdf pA(αk) = 2αk exp(−α2
k) for αk > 0, and

the fading phase θk is uniformly distributed over [0, 2π].
For fully interleaved channels, αk’s and θk’s are inde-

pendent for different time indexes k. For insufficiently
interleaved channels, they are correlated. We use the Jakes’
isotropic scattering land mobile Rayleigh channel model
to describe the correlated Rayleigh process which has
autocorrelation Rk = (1/2)J0(2kπ fdTs), where fdTs is the
normalized Doppler spread, and J0(·) is the 0th order Bessel
function of the first kind.

Throughout the paper, θk is assumed known perfectly
to the receiver/decoder in the coherent detection case, and
unknown (and needs to be worked around) in the nonco-
herent detection case. Further, the receiver is said to have
channel state information (CSI) if αk known (irrespective of
θk), and no CSI otherwise.

2.2. PA codes and decoding analysis

A product accumulate code, as illustrated in Figure 1(a),
consists of an accumulator (or a differential encoder) as the
inner code, and a parallel concatenation of 2 branches of
single-parity check codes as the outer code. PA codes are
decoded through a soft-iterative process where soft extrinsic
information is exchanged between component decoders
conforming to the turbo principle. The outer code, modeled
as a structured LDPC code, is decoded using the message-
passing algorithm. The inner code, taking the convolutional
form of 1/(1 + D), may be decoded either using the trellis-
based BCJR algorithm, or a graph-based message-passing
algorithm. The latter, thanks to the cycle-free code graph
of 1/(1 + D), performs as optimally as the BCJR algorithm,
but consumes several times less of complexity [4, 10].
Thus, the entire code can be efficiently decoded through a
unified message-passing algorithm, driven by the initial log-
likelihood ratio (LLR) values extracted from the channel [4].
For Rayleigh fading channels with perfect CSI, that is, αk is
known∀k, the initial channel-LLRs are computed using

LCSI
ch

(
sk
) = 4αk

N0
rk, (1)

and for Rayleigh fading channels without CSI,

LNCSI
ch (sk) = 4E[αk]

N0
rk, (2)

where E[α] = √π/2 is the mean of α. Due to the space limit-
ation, we omit the details of the overall message-passing
algorithm, but refer readers to [4].

3. COHERENT DETECTION

This section investigates the coherent detection case on
Rayleigh fading channels. We employ Divsalar’s simple
bounds and the iterative threshold to analyze the ensemble
average performance of PA codes, and simulate individual PA
codes at short and long lengths.

3.1. Simple bounds

Union bounds are simple to compute, but are rather loose
at low SNRs. Divsalar’s simple bound is possibly one of
the best closed-form bounds [5]. Like many other tight
bounds, the simple bound is based on the second Gallager’s
bounding techniques [1]. By using numerical integration
instead of a Chernoff bound and by reducing the number
of codewords to be included in the bound, Divsalar was able
to tighten the bound to overcome the cutoff rate limitation.
Since the simple bound requires the knowledge of the
distance spectrum, a hard-to-attain property especially for
concatenated codes, it has not seen wide application. Here,
the simplicity of PA codes permits an accurate computation
of the ensemble-average distance spectrum (whose details
can be found in [4]), and thus enables the exploitation of
the simple bound.

The technique of the simple bound allows for the com-
putation of either a maximum likelihood (ML) threshold in
the asymptotic sense [4, 5], or a performance upper bound
with respect to a given finite length. Divsalar derived the
general form of the simple bound on independent Rayleigh
fading channels with perfect CSI. Following a similar line of
reasoning, below we extend it to the case of non-CSI.

3.1.1. Gallager’s second bounding technique

Gallager’s second bounding technique sets the base for many
tight bounds including the simple bounds [1]. It states that

Pr (error) ≤ Pr (error, r ∈ R) + Pr (r /∈R), (3)

where r = γ α s + n is the received codeword (N-dimen-
sional noise-corrupted vector), s is the transmitted code-
word vector, n is the noise vector whose components are
i.i.d. Gaussian random variables with zero mean and unit
variance, γ is the known constant (in modulation), α is the
N ×N matrix containing fading coefficients (α is an identity
matrix for AWGN channels),and R denotes a region in the
observed space around the transmitted codeword. To get a
tight bound, optimization and integration are usually needed
to determine a meaningful R.
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3.1.2. Divsalar’s simple bound for independent rayleigh
fading channels with CSI

For Rayleigh fading channels, the decision metric is based on
the minimization of the norm ||r − γαs||, where s, r, and
α are the transmitted signal, received signal, and the fading
amplitude in vector form, respectively, and γ is the amplitude
of the transmitted signal such that γ2/2 = Es/N0.

For a good approximation of the error using (3),and for
computational simplicity, the decision region R was chosen
as an N-dimensional hypersphere centered at ηγαs and with
radius

√
NR, where η and R are the parameters to be

optimized [5].
When perfect CSI is available, the effect of fading can

be compensated through a linear transformation on γ α s. In
particular, a rotation e jϕ and a rescaling ζ have shown to yield
a good and analytically feasible solution [5]

R = {r | ∥∥r− ζe jϕγαs
∥
∥2 ≤ NR2}, (4)

which leads to the upper bound of the error probability of an
(N ,K ,R) code [5]

P(e)

≤
2
√
N−K+1∑

h=2

min

{

e−NE(c,δ,ρ,β,κ,φ), eNγN (δ) 1
π

∫ π/2

0

[
sin2θ

sin2θ+c

]h

dθ

}

,

(5)

where

E(c, δ, ρ,β, κ,φ)

= −ργN (δ) +
ρ

2
log

β

ρ
+

1− ρ

2
log

1− β

1− ρ

+ ρδ log (1 + c(1− 2κφ))

+ ρ(1− δ) log
[

1 + c
(

1− 2κφ − (1− κ2)ρ
β

)]

+ (1− ρ) log
[

1+c
(

1−ρ(1−2κφ)
1− ρ

,− (1− ρ(1− κ))2

(1−ρ)(1−β)

)]
,

(6)

c = γ2

2
= Es

N0
= R

Eb
N0

, (7)

δ = h

N
, (8)

γ(δ) = γN

(
h

N

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
N

log
(
Ah
)
, for word error rate,

1
N

log

(
∑

w

w

K
Aw,h

)

, for bit error rate.

(9)

3.1.3. Extension of the simple bound to the case of No CSI

Another simple and reasonable choice of the decision region
is an ellipsoid centered at ηγs, which can be obtained by

rescaling each coordinate of r so as to compensate for the
effect of fading

R = {r | ∥∥α−1r− ηγs
∥∥2 ≤ NR2}, (10)

where η and R are optimized. For independent Rayleigh
channels without CSI, since accurate information on α
is unavailable,we resort to the expectation of the fading
coefficient α−1 ≈ E[α−1] = (1/0.8862)I in (10), where I is an
identity matrix. By replicating the computations described
in [5], we obtain the upper bound of the bit error rate for
independent Rayleigh channels without CSI:

P(e) ≤
2
√
N−K+1∑

h=2

min

{

e−NE(c,δ,ρ), exp
(
hυNγN (δ)

c

)

×
(

1− 2√
1 + 2/υ + 1

)h}

,

(11)

where

E(c, δ, ρ) = −1
2

log
(
1− ρ + ρe2γN (δ))

+ c
(

1 +
1− δ

δ

(
1 +

1− ρ

ρ
e−2γN (δ)

))−1

,

ρ =
(

1 +
1− β

β
e2γN (δ)

)−1

,

β =
{

2c
1− δ

δ

(
1− e−2γN (δ))−1

+
(

1− δ

δ

)2[
(1 + c)2 − 1

]}
1/2

− (1 + c)
1− δ

δ
,

c = E2[α]
γ2

2
= 0.88622R

Eb
N0

,

υ =
√

(γ2/2)2 − 1 =
√

(REb/N0)2 − 1,

(12)

and δ and γN (δ) are the same as in (8) and (9).
Please note that the aforediscussed extension to the

fading case with no CSI slightly loosens the simple bound,
but it preserves the computational simplicity. It is possible for
a more sophisticated transformation to yield tighter bounds
but not necessarily a feasible analytical expression.

Figure 2 plots the simulated BER performance and the
simple bound of a (1024,512) PA code on independent
Rayleigh fading channels with and without CSI. Since an
optimal ML decoder is assumed, and the ensemble average
distance spectrum is used, in the computation, the simple
bound represents the best ensemble average performance,
and may not accurately reflect the individual PA code being
simulated. Nevertheless, we see that the bound is fairly tight.
It provides a useful indication of the code performance at
SNRs below the cut-off rate, and, at high SNRs, it joins with
the union bound to predict the error floor.

3.2. Threshold computation via the iterative analysis

The ML performance bound evaluated in the previous
subsection factors in the finite length of a PA code ensemble,



Jing Li (Tiffany) 5

2 4 6 8 10 12 14 16

Eb/N0 (dB)

10−6

10−4

10−2

100

B
E

R

Simu., CSI
Simu., no CSI

Divsalar bound, CSI
Divsalar bound, no CSI

K = 512, R = 0.5 PA, independent fading

Figure 2: Divsalar simple bounds for R = 0.5 PA codes.

but the assumption of an ML decoder may be optimistic.
Below we account for the iterative nature of the practical
decoder and compute an asymptotic iterative threshold using
the renowned method of density evolution [11].

A useful tool for analyzing the iterative decoding pro-
cess of sparse-graph codes, density evolution examines the
probability density function (pdf) of exchanging messages
in each step and can,literally speaking, track the entire
decoding process. In general, we are more interested in the
asymptotic SNR thresholds, η, which are defined as the
critical channel condition that isrequired for the decoding
process to converge unanimously to the correct decision:

η(dB) = min
SNR

{
lim
l→∞

∫ 0

−∞
y f (l)

Ly
(ζ) dζ = 0

}
, (13)

where y = ±1 is the BPSK modulated signals, and f (l)
Ly

denotes the pdf of LLR information on y after the lth
decoding iteration.

Tracking the density of the messages requires the
computation of the initial pdf of the LLR messages from
the channel,and the transformation of the message pdf ’s
in each step of the decoding process. Although Gaussian
approximation is reported to incur only very little inaccuracy
on AWGN channels [12, 13], the deviation is larger on fading
channels, since the pdf of the initial LLRs from a fading
channel looks different from a Gaussian distribution. Hence,
exact density evolution is used to preserve accuracy.

3.2.1. Initial LLR pdf from the channel

Hou et al. showed in [14] that the pdf of the LLRs from
independent Rayleigh channelswith perfect CSI is given

by (assuming BPSK signaling and the all-zero sequence is
transmitted)

f CSI
Lch,y

(ζ) =
∫∞

0
N
(

4α2

N0
,

8α2

N0

)
· p(α)dα,

=
√

N0

4π
exp

(

− ζ
(√

N0 + 1− 1
)

2

)

×
∫∞

0
exp

(

−
(
(ζN0/4α)−α√N0 +1

)2

N0

)

dα.

(14)

Using integrals from [15], we further simplify (14) to

f CSI
Lch,y

(ζ) = N0

4
√

1 + N0
· exp

(
ζ − |ζ|√1 + N0

2

)

. (15)

For the case when CSI is not available to the receiver,
we assume that the Rayleigh-faded and AWGN-corrupted
signals follow a Gaussian distribution in the most probable
region. The pdf of the initial messages is then derived as

f NCSI
Lch,y

(ζ) = Δ2
√
N0κN0

π

(

κ +
√

2ΔζQ

(

− Δζ√
π

))

, (16)

where Δ = √N0/2(N0 + 1), κ = exp(−Δ2ζ2/2π), and Q(x) =
(1/
√

2π)
∫∞
x e

−z2/2dz.

3.2.2. Evolution of LLR pdf in the decoder

To track the evolution of the pdf ’s along the iterative
process can either employ Monte Carlo simulation, or,
more accurately and more efficiently, to proceed analytically
through discretized density evolution. The latter is possible
due to the simplicity in the code structure and in the decod-
ing algorithm of PA codes. As a selfcontained discussion,
we summarize the major steps of the discretized density
evolution of PA codes in the Appendix, but for details, please
refer to [4].

Using (15) for perfect CSI case or (16) for no CSI
case (i.e., substituting them in (A.4) and (A.5) in the
Appendix), the thresholds of PA codes on Rayleigh channels
can be computed through (A.3) to (A.12) in the Appendix.
The computed thresholds are a good indication of the
performance limit as the code length and the number of
iterations increase without bound.

Figure 3 plots the thresholds as well as the simulation
results of PA codes on independent Rayleigh channels with
and without CSI. We see that the analytical results are
consistent with the simulation results for fairly large block
sizes. Here, simulations are evaluated after the 50th iteration.
As the block size and the number of iterations continue to
increase, we expect the actual performance to converge to the
thresholds.

Table 1 compares the thresholds of PA codes with those
of LDPC codes for several code rates. The ergodic capacity
of the independent Rayleigh fading channel is also listed as
reference. We see that the thresholds of PA codes are about
0.6 dB from the channel capacity, and simulations of fairly
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Table 1: Thresholds (Eb/N0 in dB) of PA codes on Rayleigh channels ((3, ρ) LDPC data by courtesy of Hou et al. [14]).

Flat Rayleigh CSI Flat Rayleigh no CSI

Rate Capacity (dB) PA (dB) LDPC (dB) Capacity (dB) PA (dB) LDPC (dB)

0.5 1.8 2.42 3.06 2.6 3.33 4.06

0.6 3.0 3.56 — 3.8 4.48 —

2/3 3.7 4.34 4.72 4.4 5.15 5.74

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Eb/N0 (dB)

10−4

10−3

10−2

10−1

B
E

R

Simulations and thresholds of PA codes

R = 1/2, CSI

R = 1/2, no CSI

R = 2/3, CSI

Figure 3: Thresholds computed using density evolution and
simulations (data block size K = 64 K).

large block sizes are about 0.3-0.4 dB from the thresholds.
Compared to the thresholds of LDPC codes reported in
[14], rate 1/2 PA codes are from about 0.6-0.7 dB better
(asymptotically) than (3, 6)-regular LDPC codes, but are
about 0.5 dB worse (asymptotically) than irregular LDPC
codes. It should be noted that these irregular LDPC codes are
specifically optimized for Rayleigh fading channels and have
maximum variable node degree of 50. It is fair to say that
PA codes perform on par with LDPC codes (using coherent
detection).

3.3. Simulationwith coherent detection

To benchmark the performance of coherently detected PA
codes, several PA configurations are simulated on correlated
and independent Rayleigh fading channels. In each global
iteration (i.e., iteration between the inner decoder and the
outer decoder), two local iterations of the outer decoding are
performed. This scheduling is found to strike the best trade-
off between complexity and performance (with coherent
detection).

3.3.1. Coherent BPSK on independent rayleigh channels

Figure 4 shows the performances of rate 1/2 PA codes on
independent Rayleigh fading channels with and without
channel state information, respectively. Bit error rates after
20, 30, and 50 (global) iterations are plotted, and data

block sizes from short to large (512, 1 K, 4 K, and 64 K)
are evaluated to demonstrate the interleaving gain. For
comparison purpose, the corresponding channel capacities
are also shown. The simulated performance degradation due
to the lack of CSI is about 0.9 dB, which is consistent with the
gap between the respective channel capacities.

Compared to the (3, 6)-regular LDPC codes reported in
[14],the performance of this rate 1/2, codeword length N =
128 × 1024 = 1.3 × 105 PA code is about 0.4 and 0.25 dB
better than regular LDPC codes of length N = 105 and 106 on
independent Rayleigh channels. It is possible that optimized
irregular LDPC codes will outperform PA codes (as indicated
by their thresholds), but for regular codes, PA codes seem one
of th best.

3.3.2. Coherent BPSK on correlated rayleigh channels

Figure 5 shows the performance of PA codes on correlated
fading channels. Perfect CSI is assumed available to the
receiver, and an interleaver exists between the PA code and
the channel (to partially break up the correlation between the
neighboring bits). Short PA codes with rate 1/2 and 3/4 are
simulated on two common fading scenarios with normalized
Doppler spreads fdTs = 0.01 and 0.001, respectively.
As expected, the performance deteriorates rapidly as fdTs

decreases, since slower Doppler rate brings smaller diversity
order. Due to the interleaver between the PA code and the
channel, the impact of slow Doppler rate is less severe for
larger block sizes than for smaller ones. Whereas K = 1 K PA
code loses about 7 dB at BER = 10−4 as fdTs changes from
0.01 to 0.001, the loss with K = 4 K PA code is less than 5 dB.

To illuminate how well short PA codes perform on
correlated channels, we compare them with turbo codes
(which are the best-known codes at short code lengths)
in Figure 5. The comparing turbo code has 16-state com-
ponent convolutional codes whose generator polynomial is
(1, 35/23)oct and which are decoded using log-domain BCJR
algorithm. Code rate is 075, data block size is 4 K, and S-
random interleavers are used in both codes to lower the
possible error floors. Curves plotted are for PA codes at
the 10th iteration and turbo codes at the 6th iteration. We
observe that turbo codes perform about 0.6 and 0.7 dB better
than PA codes for fdTs = 0.001 and 0.01, respectively.
However, it should be noted that this performance gain
comes at a price of a considerably higher complexity. While
the message-passing decoding of a rate-0.75 PA code at the
10th iteration requires about 267 operations per data bit [4],
the log-domain BCJR decoding of a rate-0.75 turbo code at
the 6th iteration requires as many as 9720 operations per data
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Figure 4: Performance of PA codes on independent Rayleigh fading channels. Code rate 0.5, data block size 512, 1 K, 4 K, 64 K. (a) With
CSI; (b) without CSI.

2 4 6 8 10 12 14

Eb/N0 (dB)

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E

R

R = 1/2, fdTs = 0.01
R = 1/2, fdTs = 0.001
R = 3/4, fdTs = 0.01

Turbo, R = 3/4, fdTs = 0.01
R = 3/4, fdTs = 0.001
Turbo, R = 3/4, fdTs = 0.001

Correlated fading, K = 4 K, fdTs = 0.01, 0.001

Figure 5: Performance of PA codes on correlated Rayleigh fading
channels with CSI. Data block length 4 K, normalized Doppler rate
fdTs = 0.01, 0.001, rate of PA codes 0.5 and 0.75, rate of turbo codes
0.75, component codes of the turbo code (1, 35/23)oct, 10 iterations
for PA codes, and 6 iterations for turbo codes.

bit, a complexity 35 times larger. Hence, PA codes are still
attractive for providing good performance at low lost.

4. NONCOHERENT DETECTIONOF PA CODES

This section considers noncoherent detection. The channel
model of interest is a Rayleigh fading channel with correlated
fading coefficients.

4.1. Iterative differential detection and decoding

PA codes are inherently differentially encoded which makes it
convenient for noncoherent differential detection. Although
multiple symbol differential detection is possible, for com-
plexity concerns, we consider a simple iterative differential
detection and decoding receiver, whose structure is shown
in Figure 6.The IDDD receiver consists of a conventional
differential detector with 2-symbol observation window (the
current and the previous), a phase tracking filter and the
original PA decoder (that used in coherent detection [4]).
Trellis structure is employed to assist the detection and
decoding of the inner differential code 1/(1 + D), but
unlike the case of multiple symbol detection, the trellis is
not expanded and has 2 states only. Soft information is
passed back and forth among different parts of the receiver
conforming to the turbo principle. Let x denote the input
to the inner differential encoder or the output from the
outer code, and let y denote the output from the differential
encoder or the symbol to be put on the channel (see
Figure 6). The differential encoder implements yk = xk yk−1

for xk, yk ∈ {±1} (BPSK signal mapping 0 → +1, 1 →
−1). The channel reception is given by rk = αke jθk yk + nk,
where the channel amplitudes (αk’s) and phases (θk’s) are
correlated, and the complex white Gaussian noise samples
(nk’s) are independent.

In theory, differential decoding does not require pilot
symbols. In practice, however, pilot symbols are inserted
periodically even with multiple symbol detection, to avoid
catastrophic error propagation in differential decoding. This
is particularly so for the fast fading case where phases (θk)
are changing rapidly (will show later). Hence, some of the
rk’s (and yk’s) in the received sequence are pilot symbols.

We use L to denote the LLR information,superscript (q)
to denote the qth (global) iteration, and subscript i, o, ch,
and e to denote the quantities associated with the inner
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Figure 6: Structure of iterative differential detection and decoding receiver.

code, the outer code, the fading channel, and “the extrinsic”,
respectively.

4.1.1. IDDD receiver

Here is a sketch of how the proposed IDDD receiver operates.
In the first iteration, the switch in Figure 6 is flipped up.
The samples of the received symbols, rk, are fed into the
conventional differential detector which computes uk =
Real(rkr∗k−1) and subsequently soft LLR Lch(xk) from uk. Here
∗ denotes the complex conjugate. Lch(xk) is then treated as

L(1)
e,i (xk) and fed into the outer decoder, which, in return,

generates L(1)
e,o (xk) and passes it to the inner decoder for use

in the next detection/decoding iteration. Starting from the
second iteration, the switch in Figure 6 is flipped down, and

channel estimation for α̂k and θ̂k is performed before the
“coherent” detection and decoding of the inner and outer
code. After Q iterations, a decision is made by combining
the extrinsic information from both the inner and the outer
decoders: xk = sign(L(Q)

e,i (xk) + L(Q)
e,o (xk)). In the above

discussion, we have ignored the existence of the random
interleaver, but it is understood that proper interleaving and
de-interleaving is performed whenever needed.

4.1.2. Conventional differential detector for the first
decoding iteration

With the assumption that the carrier phases are near con-
stant between two neighboring symbols, the conventional

differential detector (in the first iteration) performs uk
Δ=

Real (rkr∗k−1). Hard decision of xk is obtained by simply
checking the sign of uk. Computing soft information Lch(xk)
from uk requires the knowledge of the pdf of uk. The
conditional pdf of uk given αk and xk is [16]

fU|α,X(u|α, x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2N0

exp
(
xu− α2/2

N0

)
, −∞ < xu ≤ 0,

1
2N0

exp
(
xu−α2/2

N0

)
Q
(√

α2

N0
,

√
4xu
N0

)
,

0 < xu <∞,
(17)

where Q(a, b) is the Marcum Q-function. It is then possible
to get the true pdf of ukusing

fU|X(u | x) =
∫∞

0
fU|α,X(u | α, x) fα(α) dα

= 2
∫∞

0
fU|α,X(u | α, x) αe−α

2
dα.

(18)

Since the computation of Marcum Q-function is slow
and does not always converge at large values, an exact
evaluation of (18) and hence the computation of Lch(xk)
can be difficult. We propose a simple approximation which
evaluates (17) with α substituted by its mean E[α]. This leads
to

fU|X(u | x) ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2N0

exp
(
xu− π/8

N0

)
, −∞ < xu ≤ 0,

1
2N0

exp
(
xu− π/8

N0

)
Q

(√
π

4N0
,

√
4xu
N0

)

,

0 < xu <∞.

(19)

The corresponding LLR from the channel can then be
computed by

Lch(xk) = log
Pr (uk | xk = +1)
Pr (uk | xk = −1)

≈ sign (uk)

(
2|uk|
N0

+ log

(

Q

(√
π2

4N0
,

√
4|uk|
N0

)))

.

(20)

An even more convenient compromise is to assume uk
is Gaussian distributed, as is used in [17] and a few other
papers. Under this Gaussian assumption, we get

fU|X(u | x) ≈ N
(
x, 2N0 + N2

0

)
, (21)

Lch(xk) ≈ 2uk
2N0 + N2

0
. (22)

Alternatively, instead of using the conventional differ-
ential decoding in the first iteration, a channel estimation
followed by the decoding of the inner 1/(1 + D) code can
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Figure 7: Distribution of uk = Re{yk y∗k−1} in a conventional
differential detection (assume “+1” transmitted).

be used, which makes the first iteration exactly the same
as subsequent iterations. This third option then leads to
pilot symbol assisted modulation (PSAM), which has slightly
higher complexity than using differential detection in the
first iteration.

To see how accurate the above treatments are, we plot in
Figure 7 several curves approximating the pdf of uk. From
the most sharp and asymmetric to the least sharp and
symmetric, these curves denote the exact pdf of fU|X(u |
x = +1) from Monte Carlo simulations (histogram, can
be regarded as the numerical evaluation of (18)), the
“mean-α approximated” pdf from (19) and the Gaussian
approximated pdf from (21). From the figure, the Gaussian
approximation does not reflect the true pdf well, but this
inaccuracy turns out not severely affecting the overall IDDD
performance. As shown later in Figure 13, all the three treat-
ments (Gaussian approximation, mean-α approximation,
and PSAM) result in very similar decoding performance.We
attribute this to the fact that the inaccuracy affects mostly the
first iteration, and subsequent iterations can help mitigate
the loss. Thus, Gaussian approximation still presents itself
as a simple and viable approach for noncoherent differential
decoding.

4.1.3. Channel estimator

The channel estimator in the IDDD receiver (Figure 6) may
be implemented in several ways. Here we use a linear filter of
(2L + 1) taps to estimate αk’s and θk’s in the qth iteration

α̂
(q)
k e jθ̂

(q)
k =

L∑

l=−L
pl ŷ

(q−1)
k−l rk−l, (23)

where pl denotes the coefficient of the lth filter tap, and ŷ
(q−1)
k

denotes the estimate on yk from the feedback of the previous

iteration. For soft feedback, ŷ
(q−1)
k is computed using ŷ

(q−1)
k =

tanh((L
(q−1)
e,i (yk))/2), and for hard feedback, ŷ

(q−1)
k = sign

(L
(q−1)
e,i (yk)). The LLR message L

(q−1)
e,i (yk) is generated toge-

ther with L
(q−1)
e,i (xk) by the inner decoder in the (q − 1)th

decoding iteration (please refer to [4] for the step-by-step
message-passing decoding algorithm of 1/(1 + D) code). In

the first iteration, L(0)
e,i (yk)’s are initiated as zeros for coded

bits and a large positive number (i.e., +∞) for pilot symbols.
Regarding the choice of the filter, we take a Wiener filter,

since it is known to be optimal for estimating channel gain in
the minimum mean-square-error (MMSE) sense, when the
correlation of the fading process, Rks, are known [18]. The
filter coefficients, p−L, p−L+1, . . . , pL, are obtained from the
Wiener-Hopf equation

⎛

⎜
⎜
⎜
⎝

R0 −N0 R1 · · · RL−1

R1 R0 −N0 · · · RL−2

· · · · · · · · · · · ·
RL−1 RL−2 · · · R0 −N0

⎞

⎟
⎟
⎟
⎠
·

⎛

⎜
⎜
⎜
⎝

p−L
p−(L−1)

· · ·
pL

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

R−L
R−L−1

· · ·
RL

⎞

⎟
⎟
⎟
⎠

,

(24)

where Rk = (1/2)J0(2kπ fdTs). Since the computation of
pl’s from (24) involves an inverse operation on a matrix
(one-time job), it may not be computable when the matrix
becomes (near) singular, which occurs when the channel is
very slow fading. In such cases, a low-pass filter, or a simple
“moving average” can be used [6].

4.2. Analysis of pilot insertion through EXIT charts

4.2.1. EXIT charts

We perform EXIT analysis [9] to generate further insights
into PA codes and the proposed noncoherent IDDD receiver.
In EXIT charts, the exchange of extrinsic information is
visualized as a decoding/detection trajectory, allowing the
prediction of the decoding convergence and thresholds [9].
Several quantities, like the bit error rate, the mean of
the extrinsic LLR information, and the equivalent SNR
value, were previously used to depict the characteristics
and relations of the component decoders, but the mutual
information is shown to be the most robust among all [9].
The mutual information between the binary bit yk and its
corresponding LLR values is defined as

I(Y ,L(Y))

Δ= 1
2

∑

y=±1

∫∞

−∞
fL(y)(η | Y = y)

· log2

2 fL(y)(η | Y = y)

fL(y)(η | Y = +1) + fL(y)(η | Y = −1)
dη

=
∫∞

−∞
fL(y)(η | Y = +1)

· log2

2 fL(y)(η | Y = +1)

fL(y)(η | Y = +1) + fL(y)(−η | Y = +1)
dη

= 1−
∫∞

∞
fL(Y)(η | Y = +1) · log2

(
1 + e−η

)
dη,

(25)
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Figure 8: Trellis diagram of binary differential PSK with pilot insertion. (a) Pilot symbols periodically terminate the trellis. (b) Pilot symbols
are separated from the trellis structure.

where L(Y) is either the a priori information La(Y) or the
extrinsic information Le(Y), and fL(Y)(η | Y = y) is the
conditional pdf. The second equality holds when the channel
is output symmetric such that fL(y)(η | Y = − y) =
fL(y)(−η | Y = y), and the third equality holds when
the received messages satisfy the consistency condition (also
known as the symmetry condition): fL(y)(η | Y = y) =
fL(y)(−η | Y = y)eyη [11]. Note that the consistency
condition is an invariant in the message-passing process on
a number of channels including the AWGN channel and
the independent Rayleigh fading channel with perfect CSI;
but it is not preserved on fading channels without CSI or
with estimated (thus imperfect) CSI, since the initial density
function evaluated in the latter cases is but an approximation
of the actual pdf of the LLR messages. Thus, (25) should
be used to compute the mutual information in those cases.
We use the X-axis to represent the mutual information to
the inner code (a prior) or from the outer code (extrinsic),
denoted as Ia,i/Ie,o, and the Y-axis to represent the mutual
information from the inner code or to the outer code,
denoted as Ie,i/Ia,o.

4.2.2. Pilot symbol insertion

A practicality issue about noncoherent detection is pilot
insertion. The number of pilot symbols inserted should be
sufficient to attain a reasonable track of the channel, but not
in excess. Many researchers have reported that excessive pilot
symbols not only cause wasteful bandwidth expansion, but
actually degrade the overall performance, since the energy
compensation for the rate loss due to excessive pilot more
than outweighs the gain that can be obtained by a finer
channel tracking. This trade-off issue has long been noted
in literature, but little attention has been given to another
issue of no less importance, namely, how pilots should be
inserted when differential encoding or other trellis-based
coding/modulation front-end is used.

There exist at least two ways to insert pilot symbols in
a differential encoder. The widespread approach is to peri-
odically terminate the trellis [6, 7], as shown in Figure 8(a),
such that pilot symbols are used to estimate the channel
and at the same time participate in the trellis decoding.
Seemingly plausible, this turns out to be a bad strategy,
since segmenting the trellis into small chunks significantly
increases the number of short error events, and consequently
incurs a loss in performance.

The negative effect of trellis segmentation is best illus-
trated by the EXIT chart in Figure 9. EXIT curves corre-
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Figure 9: The effect of pilot symbols segmenting the trellis on the
performance of the differential decoder. Normalized Doppler rate
fdTs = 0.01, Es/N0 = 4.75 dB and 0 dB, perfect CSI.

sponding to the differential decoder with 0%, 4%, 10%, and
20% pilot insertion are plotted for two different SNR values.
To eliminate the impact of other factors, the four curves
in each SNR set are given the same energy per transmitted
symbol and perfect knowledge on the fading phase and
amplitude is provided to all the decoders (irrespective of the
number of pilot symbols). Thus the difference between the
curves in each family is only due to the difference in pilot
spacing. At the left end of the curves (when input mutual
information is small), a larger number of pilot symbols
correspond to a better performance (a higher output mutual
information). This is because when little information is
provided from the outer code, pilot symbols become the
primary contributor to a priori information. However, the
situation is completely reversed toward the right end of
the EXIT curves. We see that more pilot symbols actually
degrade the performance, the reason being, given sufficient
information provided by the outer code, pilot symbols no
longer constitute the key source of a priori information; on
the other hand, they segment the trellis and shorten error
events, rendering an opposite effect to spectrum thinning
and thus deteriorating the performance. The performance
loss is more severe when more pilot symbols are inserted
and when the code is operating at a relatively low SNR
level. It is worth noting, for example, with 20% of pilot
insertion (pilot spacing is 5), even provided with a perfect
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mutual information from the outer code (Ia,i = 1, but
the channel remains noisy), the trellis decoder nevertheless
fails to produce sufficient output mutual information Ie,i. As
such, the inner EXIT curve is bound to intersect the outer
EXIT curve at a rather early stage of the iterative process,
causing the iterative decoder to fail at a high BER level
(not to mention this EXIT curve has 20% more of energy
consumption than the no-pilot case).

The implication of this EXIT analysis is that the
widespread approach of inserting pilot symbols as part of
the trellis could cause deficiency for differential encoding
(and other serial concatenated schemes with inner trellis
codes). Specifically, unless the outer code is itself a capacity-
achieving code at some SNR, the inner and outer EXIT
curves will intersect, result in convergence failure and cause
error floors. We observe that the more the pilot symbols, the
higher the error floor; and the lower the code rate (lower
SNR), the more severe the impact. It is therefore particularly
important to keep the number of pilot symbols in such
schemes minimal, so that error floors do not occur too early.
This analysis also suggests an alternative, and potentially
better-performing, way of pilot insertion, namely, separating
pilots from the trellis and thus not affecting error events; see
Figure 8(b).

It should be pointed out, that the level of the impact
caused by trellis segmentation may be very different for
different outer codes. Many (outer) codes, including single
parity check codes, block turbo codes (i.e., turbo product
codes) and convolutional codes, will see a large impact, since
these (outer) codes require sufficient input information in
order to produce perfect output information, or, put another
way, these codes alone are not “good” codes (good in the
sense as MacKay defined in [2]). However, “good” codes like
LDPC codes will likely see a much smaller impact. This is
because an ideal LDPC code has an EXIT curve shaping like a
box (e.g., see [3, Figure 3]) which can produce perfect output
information as long as the input information is above some
threshold (without requiring Ia,i = 1). Alternatively, one may
also interpret it as: ideal LDPC codes have large minimum
distances and are capable of correcting short error events
including those caused by the segmentation effect.

To verify the analytical results, we simulate the perfor-
mance of a rate 1/2, data block size K = 32 K PA code with
different strategies of pilot insertion; see Figure 10. The nor-
malized Doppler spread is fdTs = 0.01, and error rates eval-
uated after 10 decoding iterations. Solid lines represent the
cases where perfect channel knowledge is known to the
receiver, and dashed lines represent the case where nonco-
herent detection is used. Comparing solid curves, we see a
drastic performance gap results from different strategies of
pilot insertion. In this specific case, by segmenting the trellis
every 10 symbols, trellis-segmented pilot insertion losses
more than 3 dB at BER of 10−4 than otherwise.The dashed
curve corresponds to the same PA code noncoherently-
detected via the IDDD receiver discussed before, where 10%
of pilot symbols are inserted using the strategy in Figure 8(b)
and where an 81-tap wiener filter is used to estimate the
channel. It is interesting to note that if one overlooks
the impact of pilot insertion strategies, one might arrives
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different pilot insertion strategies

Figure 10: Performance of PA codes with different pilot insertion
strategies. Normalized Doppler rate fdTs = 0.01, code rate 0.5, data
block size 32 K, 0% or 10% pilot insertion, 10 iterations.

at a paradox result that noncoherent detection (dashed
line) performs (noticeably) better than coherent detection
(rightmost solid line)!

4.3. Impact of the pilot symbol spacing
and filter length

We now investigate how the number of pilot symbols and
the length of the estimation filter affect the performance
of noncoherent detection. Figure 11 illustrates the impact
of different pilot spacing on the BER performance of fast
fading channels where the normalized Doppler spread takes
fdTs = 0.05, 0.02 or 0.01. We observe the following: (1) The
IDDD receiver is rather robust for different Doppler rates.
(2) Smaller pilot spacing, such as <6 symbols, is undesirable,
whose consumption of additional energy more than out-
weighs any gain it may bring. (3) The code performance at
high Doppler rates is more sensitive to pilot spacing than that
at lower Doppler rates. At the normalized Doppler rate of
0.01 (already fast fading), noncoherently detected PA codes
tolerate pilot spacing as small as 6 symbols and as large
as 45 to 50 symbols (put aside the bandwidth issue); but
at very fast Doppler rate of 0.05, pilot spacing beyond 7–9
symbols will soon cause drastic performance degradation.
For comparison, we also plot the case where pilot symbols
periodically terminate the trellis (dashed line), which, due
to trellis segmentation, experiences inferior performance
when pilot spacing is small. Compared to differentially
encoded turbo codes [6], PA codes appear to require fewer
pilot symbols (we note that in the study of differentially
encoded turbo codes in [6], the authors terminated the trellis
periodically with pilot symbols, which may have made the
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Figure 11: Effect of the number of pilot symbols on the perfor-
mance of noncoherent detected PA codes on correlated Rayleigh
channels with fdTs = 0.01. Code rate 0.75, data block size 1 K, filter
length 65, 10 (global) iterations, 4 (local) iterations within the outer
code of PA codes.
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Figure 12: Comparison of BER performance for several noncoher-
ent receiver strategies on correlated Rayleigh channels with fdTs

= 0.01. Code rate 0.75, data block size 1 K, 4% of bandwidth
expansion, filter length 65, 10 (global) iterations each with 4 (local)
iterations for the outer decoding.

tolerant range of pilot spacing (at the small spacing end)
smaller than otherwise).

The impact of the length of the channel tracking filter is
also studied. We observe that while the filter length affects
the overall performance, the impact is limited compared to
pilot spacing.This is consistent with what has been reported

in other studies [6] and is not a new discovery. Hence, we
omit the plot.

4.4. Simulation results of noncoherent detection

The performance of noncoherently detected PA codes on
fast Rayleigh fading channels are presented below. Unless
otherwise indicated, the BER curves shown are after 10 global
iterations, and in each global iteration, 4 to 6 local iterations
of the outer code are performed. We have chosen these
parameters on the basis of a set of simulations and trading-
off between performance and complexity.

4.4.1. Noncoherent detection of PA codes with different
receiver strategies

We compare the BER performance of 4 types of IDDD strate-
gies for aK = 1 K, R = 3/4 PA code on a fdTs = 0.01 Rayleigh
fading channel in Figure 12. “IDDD-1” uses the conventional
differential detection with Gaussian approximation (22) to
compute Lch(xk) in the first iteration, and soft feedback of
ŷk in all iterations to assist channel estimation; “IDDD-
2” uses conventional differential detection with “mean-α”
approximation (20) in the first iteration and soft feedback
in all iterations; “IDDD-3” is PSAM with soft feedback; and
“IDDD-4” is PSAM with hard feedback. In all cases, 4% of
pilot symbols are inserted and curves shown are after 10
iterations. Different decoding strategies in the first iteration
does not affect the performance much, and the performance
is not very sensitive to hard or soft feedback either. Although
not shown, simulations of a long PA code (K = 48 K) of the
same (high) rate (R = 3/4) reveal a similar phenomenon. It is
possible, however, that other codes may be more sensitive to
the difference in decoding strategies especially the difference
in the feedback information [6].

4.4.2. Comparison of noncoherent detection with
coherent detection

Figure 13 shows the performance of rate 3/4 PA codes after
10 iterations on fast Rayleigh fading channels with Doppler
rate Ts fd = 0.01.Short block size of 1 K and large block
size of 48 K are evaluated. In each case, a family of 5 BER-
versus- Eb/N0 curves, accounting for rate loss due to pilot
insertion, are plotted. The three leftmost curves are the
ideal coherent case with knowledge of fading amplitudes
and phases provided to the receiver, and the two right
curves are the noncoherent case where IDDD is used to
track amplitudes and phases. In both the coherent and
the noncoherent case, trellis segmentation incurs a small
performance loss, but since the pilot spacing is not very
small (every 25 symbols), the effect is not as drastic as the
case in Figure 10. The noncoherent cases are about 1 dB and
0.55 dB away from the ideal coherent case at BER of 10−4

for block sizes of 48 K and 1 K, respectively. This satisfying
performance is achieved with only 4% of pilot insertion and
a very low-complexity IDDD receiver.
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Figure 13: Comparison of BER performance for several transmis-
sion/reception strategies for PA codes of large and small block sizes
on correlated Rayleigh channels with fdTs = 0.01. Code rate 0.75,
data block size 48 K and 1 K, 4% of bandwidth expansion, filter
length 65, 10 (global) iterations each with 4 (local) iterations for
the outer decoding.

5. CONCLUSION

Previous work has established product accumulate codes as
a class of provenly “good” codes on AWGN channels, with
low linear-time complexity and performances close to the
Shannon limit. This paper performs a comprehensive study
of product accumulate codes on Rayleigh fading channels
with both coherent and noncoherent detection. Useful
analytical tools including Divsalar’s simple bounds, density
evolution, and EXIT charts are employed, and extensive
simulations are conducted. It is shown that PA codes not
only perform remarkably well with coherent detection, but
the embedded differential encoder makes them naturally
suitable for noncoherent detection. A simple iterative dif-
ferential detection and decoding (IDDD) strategy allows PA
codes to perform only 1 dB away from the coherent case.
Another useful finding reveals that the widespread practice
of inserting pilot symbols to terminate the trellis actually
incurs performance loss compared to when pilot symbols are
inserted as separate parts from the trellis.

We conclude by proposing product accumulate codes
as a promising low-cost candidate for wireless applications.
The advantages of PA codes include (i) they perform very
well with coherent and noncoherent detection (especially
at high rates), (ii) the performance is comparable to turbo
and LDPC codes, yet PA codes require much less decoding
complexity than turbo codes and much less encoding
complexity and memory than random LDPC codes, and (iii)
the regular structure of PA codes makes it possible for low-
cost implementation in hardware.

APPENDIX

DISCRETIZED DENSITY EVOLUTION FOR PA CODES

Using message-passing decoding, the relevant operations on
the messages (in LLR form) include the sum in the real
domain and the tanh operation (also known as the check
operation or � operation). For independent messages to
add together, the resulting pdf of the sum is the discrete
convolution (denoted by ∗) of the component pdf ’s which
can be efficiently implemented using a fast Fourier transform
(FFT). For the tanh operation on messages, define:

γ = α� β
Δ= Q(2tanh−1(tanh(α/2) tanh(β/2))),

where α, β, and γ are quantified messages, and Q
defines the quantization operation. The pdf of γ, fγ, can be
computed using

fγ[k] =
∑

(i, j):kΔ=iΔ� jΔ

fα[i] · fβ[ j], (A.1)

whereΔ is the quantization interval. To simplify the notation,
we denote this operation (A.1) as fγ = R( fα, fβ), and using
induction on the above equation, we further denote

Rk( fα)
Δ=R

(
fα,
(
R
(
fα, . . . ,R

(
fα, fα

) · · · ))
︸ ︷︷ ︸

k−1

. (A.2)

The following notations are also used:

(i) fLch,y : pdf of the messages of the received signals y
obtained from the channel (see Figure 1(b)),

(ii) f (k)
Lo,x

: pdf of the (a prior) messages of the input x to
the inner 1/(1 +D) code in the kth iteration (obtained
from the outer code in the k − 1th iteration) (see
Figure 1(b)),

(iii) f (k)
Le ,x: pdf of the (extrinsic) messages passed from the

inner code to the outer code in the kth iteration,
(iv) f (k)

Le1,(·) and f (k)
Le2,(·): pdf ’s of the extrinsic information

computed from the upper and lower branch of the
outer code in the kth iteration, respectively. Subscripts
d and p denote data and parity bit, respectively.

Obviously, f (0)
Le2,d

= f (0)
Le2,p

= δ(0), the Kronecker delta
function.

The discretized density evolution of a rate t/(t + 2) PA
code can then be summarized as follows [4]:

initialization: f (0)
Lo,x
= f (0)

Le,y
= f (0)

Le1,d = f (0)
Le2,d = δ(0), (A.3)

inner code: f (k)
Le,y
=R

(
f (k−1)
Lo,x

, fLch,y∗ f (k−1)
Le,y

)
, (A.4)

f (k)
Le ,x =R2

(
fLch,y∗ f (k)

Le,y

)
, (A.5)

inner-to-outer: f (k)
Lo ,d = f (k)

Le,x
, (A.6)

f (k)
Lo,p = f (k)

Le,x
, (A.7)
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outer code: f (k)
Le1,d =R

(
f (k)
Lo ,p,R(t−1)

(
f (k)
Lo,d∗ f (k−1)

Le2,d

))
, (A.8)

f (k)
Le1,p =Rt

(
f (k)
Lo,d∗ f (k−1)

Le2,d

)
, (A.9)

f (k)
Le2,d =R

(
f (k)
Lo,p,R(t−1)

(
f (k)
Lo ,d∗ f (k)

Le1,d

))
, (A.10)

f (k)
Le2,p =Rt

(
f (k)
Lo,d∗ f (k)

Le1,d

)
, (A.11)

outer-to-inner: f (k+1)
Lo,x

= t
(
f (k)
Le1,d + f (k)

Le2,d

)

t + 2
+

f (k)
Le1,p + f (k)

Le2,p

2t + 2
.

(A.12)

Although the outer code of PA codes can be viewed
as an LDPC code, it is desirable to take a serial update
procedure as described above rather than a parallel one as
in a conventional LDPC code, since this allows the checks
corresponding to the two SPC branches to take turns to
update, which leads to a faster convergence [4].
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