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This paper presents a reduced-complexity deterministic annealing (DA) approach for vector quantizer (VQ) design by using soft
information processing with simplified assignment measures. Low-complexity distributions are designed to mimic the Gibbs
distribution, where the latter is the optimal distribution used in the standard DA method. These low-complexity distributions are
simple enough to facilitate fast computation, but at the same time they can closely approximate the Gibbs distribution to result
in near-optimal performance. We have also derived the theoretical performance loss at a given system entropy due to using the
simple soft measures instead of the optimal Gibbs measure. We use the derived result to obtain optimal annealing schedules for
the simple soft measures that approximate the annealing schedule for the optimal Gibbs distribution. The proposed reduced-
complexity DA algorithms have significantly improved the quality of the final codebooks compared to the generalized Lloyd
algorithm and standard stochastic relaxation techniques, both with and without the pairwise nearest neighbor (PNN) codebook
initialization. The proposed algorithms are able to evade the local minima and the results show that they are not sensitive to the
choice of the initial codebook. Compared to the standard DA approach, the reduced-complexity DA algorithms can operate over
100 times faster with negligible performance difference. For example, for the design of a 16-dimensional vector quantizer having
a rate of 0.4375 bit/sample for Gaussian source, the standard DA algorithm achieved 3.60 dB performance in 16 483 CPU seconds,
whereas the reduced-complexity DA algorithm achieved the same performance in 136 CPU seconds. Other than VQ design, the
DA techniques are applicable to problems such as classification, clustering, and resource allocation.

Keywords and phrases: deterministic annealing, complexity reduction, vector quantization, stochastic relaxation, Gibbs distribu-
tion, codebook initialization.

1. INTRODUCTION

Vector quantization is a source coding technique that ap-
proximates blocks (or vectors) of input data by one of a finite
number of prestored vectors in a codebook. The challenge is
to find the set of vectors (or quantization levels) such that
a given criterion for the total distortion between the actual
source and the quantized source is as small as possible un-
der a constraint on the overall rate [1]. Since distortion de-
pends on the codebook design, vector quantizer design is a
key optimization problem to determine the performance of
a VQ-based system [2, 3, 4, 5].

The traditionally used VQ design approach is the general-
ized Lloyd algorithm (GLA), also referred to as the LBG algo-
rithm [6]. The GLA is an iterative descent algorithm, which
converges to a final codebook relatively quickly, but such that

the resulting codebook is only locally optimal. This is because
the algorithm gets trapped in a local minimum of the distor-
tion (energy) surface to which the initial codebook is closest.
Consequently, the performance of GLA can be poor com-
pared to that of a globally optimal quantizer.

A powerful approach to reduce the sensitivity of the al-
gorithm to the initial codebook is the introduction of ran-
domness. Several randomized optimization techniques have
been investigated in the past. In [7] such “random search”
techniques are discussed, where the idea is to randomly per-
turb the system at each iteration and determine the result-
ing change in performance. In some of its variations, a per-
turbation is only accepted if the performance increases, oth-
erwise it is rejected; and in other variations, perturbations
that decrease performance are also accepted under certain
conditions. In general, if a random search technique allows

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81801274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kemaldemirciler@yahoo.com
mailto:ortega@sipi.usc.edu


1808 EURASIP Journal on Applied Signal Processing

temporary decreases in an objective function with nonzero
probability, then the algorithm is in the class of stochastic re-
laxation (SR) [8, 9], or stochastic local search techniques.

An important SR technique is simulated annealing (SA)
[9], where in each iteration a new codebook is generated in
the neighborhood of the old one, and the new codebook is
accepted or rejected according to the Metropolis algorithm
[10]. If sufficient computational resources are devoted, the
SA algorithm is guaranteed to yield globally optimal solu-
tions [11]. A reduced-complexity quantizer design based on
SR is proposed in [9], achieving similar or slightly better re-
sults than SA inmuch less time under similar iteration sched-
ules. Basically, the reduced-complexity SR algorithm is the
generalized Lloyd algorithm together with a stochastic per-
turbation step that could either be on the encoder (SR-C)
or the decoder (SR-D). Another method that uses a similar
randomized search technique is suggested in [12] and has
an average performance comparable to SR-D but with higher
complexity. In the above approaches, random search moves
were allowed on the energy surface in order to give the system
the ability to avoid local minima.

Unlike these SR techniques, a deterministic annealing
(DA) approach for optimal vector quantizer design puts the
problem in a probabilistic framework, and deterministically
optimizes the probabilistic objective function in each iter-
ation [13]. In DA there are no random moves on the en-
ergy (cost) surface. At high temperatures, the energy sur-
face is smoothed, so that the algorithm starts at the global
minimum on the smoothed energy surface. Through a care-
ful annealing schedule, the algorithm traces the global mini-
mum as the energy surface assumes its nonconvex “rugged”
form with decreasing temperature. The Gibbs distribution is
used to associate sample vectors in the training set with code-
vectors since it maximizes the entropy under the constraint
of a given average distortion. Note that the sample vector-
codevector associations are not one-to-one, but rather one-
to-many. In other words, each sample vector in the training
set is assigned to all codevectors with a given probability:
a sample vector gets assigned to each sample vector with a
probability that increases as the distance to the sample vector
decreases.

The DA method can construct high-performance vector
quantizers by avoiding local minima. The main obstacle to
its widespread utilization is the very significant computation
complexity involved. Note that while codebook design is a
one-time cost in many applications, there are others where
codebook adaptation is required. Our focus then is on re-
ducing codebook design complexity for these situations. The
computation complexity of the DA approach is due to three
factors: first, computation of the Gibbs distribution to ob-
tain each association probability involves the computation of
an exponential term; second, this function has to be com-
puted for a very large number of pairings (as many pairings
as codevectors, for each of the training samples); third, this
process has to be repeated for each iteration of the annealing
process. Our proposed technique will address all these factors
that contribute to the complexity by (i) defining simple func-
tions to compute the association probability, (ii) reducing the

number of association probabilities to compute per training
vector, and (iii) speeding up the iterations in the annealing
process.

Although the literature is rich in fast search vector quan-
tization techniques, where the aim is to have low encoding
complexity [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26],
there is relatively less work toward low-complexity VQ design
techniques [9, 27, 28].

Our proposed reduced-complexity deterministic anneal-
ing approach is based on using soft information processing
with simplified assignment measures. In digital communi-
cations engineering, soft information is “a reliability mea-
sure over the sample space of the investigated random vari-
able.” More specifically when considering multiple decod-
ing choices for a received noisy signal, soft information pro-
vides a measurement of how much confidence there is in
making each possible decoded signal choice [29, 30, 31]. By
analogy, in our VQ design, we will call soft information the
relative “strength” of the association of each codevector to
each sample vector. We will refer to this formulation as a soft
vector quantizer (SVQ) design, where the encoding is “soft”
in that each input vector in the training set gets assigned
to multiple codewords. We develop reduced-complexity DA
techniques through the design of simple soft measures that
can mimic the effect of the Gibbs distribution used in the
standard DA. Hence, while the designed soft measures are
simple enough to facilitate fast computation, they also keep
the performance penalty to a minimum by mimicking the
Gibbs distribution’s functionality. We also derive a theoreti-
cal analysis of the performance loss when using a simplified
measure instead of the optimal one, and further use the re-
sult to derive optimal annealing schedules for the proposed
simple soft measures. In contrast to the standard DA which
starts with essentially a single codevector and increases the
size of the codebook through iterations, in SVQ the design
starts with the required number of codevectors and opti-
mizes their locations through iterations. It is also observed,
and empirically shown, that the importance of a codevec-
tor for a given sample vector (in terms of the amount of
probability mass associated with it) decreases exponentially
fast with the distance from the sample vector, even at rela-
tively high temperatures. Hence, major computational gains
can be obtained with negligible performance degradation by
considering only the nearest few codevectors from each sam-
ple vector. We present experimental evidence indicating that
through these techniques significant performance gains are
achieved by the SVQ algorithms over the traditionally used
GLA and over SR-D, where the latter is widely thought to
provide near-optimal performance. Compared to the stan-
dard DA, the results show drastic reductions in computa-
tional complexity with very small sacrifice in performance.
It is also shown that using the SR technique [9] in combina-
tion with the SVQ algorithms results in further improvement
in performance, although the added benefits of the SR tech-
niques are less when the performance of the SVQ approaches
the optimal.

This paper is organized as follows. Section 2 briefly
introduces the standard DA method for VQ design and
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points out its computational complexities. In Section 3, the
reduced-complexity Gibbs distribution and low-complexity
soft information measures for VQ design are proposed
and analyzed. Optimal annealing schedules for the low-
complexity soft information measures are also derived.
Section 4 presents experimental results comparing the per-
formances of the proposed algorithms with that of GLA, SR,
and the standard DA on various Gauss-Markov, speech, and
image sources. The effect of codebook initialization is also
investigated. Finally, Section 5 concludes the paper.

2. VECTOR QUANTIZER DESIGN BY
DETERMINISTIC ANNEALING

In the deterministic annealing algorithm proposed by Rose
et al. [13], the main principle is the application of a prob-
abilistic hierarchical clustering process, where each sample
vector in the training set is associated to a cluster with a cer-
tain degree of membership. Each cluster Rj is represented by
a codevector cj . Thus, the distortion (energy) function to be
minimized is an expected distortion function,

E{D} =
∑
x

∑
j

P
(
x ∈ Rj

)
d
(
x, cj

)
, (1)

where d(x, cj) is the distortion measure incurred in repre-
senting sample vector x by codevector cj , and P(x ∈ Rj) is
the probability that x belongs to the cluster represented by
cj . The probability distribution used to define the associa-
tions is the Gibbs distribution, which maximizes the entropy
under the constraint (1) [13]:

P
(
x ∈ Rj

) = e−βd(x,cj )∑|�|−1
i=0 e−βd(x,ci)

, (2)

where |�| is the cardinality of the cluster set, {R0,
R1, . . . ,R|�|−1}. Notice that the distribution in (2) is a form
of soft information. In other words, it gives a reliability value
for assigning the sample vector x to cluster Rj over the sam-
ple space of the cluster set. The parameter β is a term that
is inversely proportional to the temperature in the anneal-
ing process. Hence, at infinite temperature, which corre-
sponds to β = 0, the probability associations are uniform:
P(x ∈ Rj) = 1/|�|, for all x, j. This means that each sam-
ple vector x is equally assigned to all the clusters. As β gets
large, that is, the temperature is lowered, the probability as-
signments for a sample vector x start to favor clusters closer
to x; the closer a cluster representative cj to x, the higher its
probability assignment. In the limit as β → ∞, each sample
vector gets assigned exactly to one cluster, namely, the clus-
ter corresponding to the nearest codevector. We refer to this
as the hard assignment, as opposed to the soft assignment
where a sample vector gets assigned to more than one repre-
sentative.

The codevector locations are defined as the weighted av-
erage of the sample vectors, where the weights are the proba-
bility associations of the sample vectors to the specific code-
vector being considered:

cj =
∑

x x · P(x ∈ Rj)∑
x P
(
x ∈ Rj

) . (3)

Thus, at β = 0 all cluster representatives are at the center of
mass of the training set,

cj =
(
1/|�|)∑x x(
1/|�|)∑x 1

= 1
K

∑
x, ∀ j, (4)

where K is the number of sample vectors in the training set.
Essentially, at β = 0, there is, only one cluster (or Voronoi
region), which is the whole set, and a single representative
codevector at its center of mass. The hierarchical design al-
gorithm in [13] starts the annealing process with the whole
training set as one cluster at β = 0, gradually increases β, and
reoptimizes by solving (3) at each β. As β is increased, the
probability associations start to get “harder”, that is, more
biased towards the closest codevector, and the system goes
through a sequence of splitting of the clusters at phase tran-
sitions until the required number of clusters (or codevec-
tors) are reached. The main focus in [13] is the derivation
of the critical values of β, denoted by βc, at which these
phase transitions occur. The authors show that in order to
be able to attain the global minimum, the splitting of the
clusters should be at these critical moments, which corre-
spond to optimal cluster splitting temperatures. Note that β
does not control the size of the codebook; the system goes
through a sequence of phase transitions until the required
number of representatives (codevectors) is reached. During
the annealing process whenever β reaches βc for an existing
cluster, that cluster splits into smaller clusters. In the limit
β → ∞, the associations become hard and each sample vec-
tor is associated with one representative as in the GLA algo-
rithm.

The work by Rose et al. [13] provides the theoretical
framework explaining how the DA approach avoids local
minima, and shows that through the proposed annealing
process a global minimum can be achieved. However, for
practical applications this algorithm has some drawbacks:
in particular, the annealing of the temperature has to be
very slow especially in the vicinity of βc, and the associa-
tion probabilities for each sample vector have to be calcu-
lated for all codevectors. Such complexity may be excessive
for many applications. In the next section, we present and
analyze reduced-complexity techniques for VQ design that
result in very significant computational gains with negligible
performance degradation. In the sequel, we will refer to the
method explained in this section as the standard DA.
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3. REDUCED-COMPLEXITY DETERMINISTIC
ANNEALING

3.1. Introduction

In our proposed soft vector quantizer (SVQ) algorithms, we
formulate the vector quantizer design problem in a proba-
bilistic framework as in the standard DA. However, unlike
standard DAwhere each training vector is associated in prob-
ability with all of the codevectors, in SVQ algorithms each
training vector is allowed to be associated with only a subset
of the codevectors. These probability associations provide the
relative reliability of each of the codevectors that the train-
ing vector can be mapped to and are a function of the rela-
tive distances of the codevectors to the training vector. The
cost of the computation of the Gibbs soft assignment in (2),
which involves exponentials, is high; if we count each of the
basic operations (addition, subtraction, and multiplication )
to take one floating point operation, flop, then an exponen-
tial computation takes 8 flops, and since soft assignments for
all codevectors have to be updated for all sample vectors in
every iteration in the standard DA, this results in a system of
very high computational complexity. In order to reduce the
computational complexity of the system, we would like to de-
fine and use a simpler distribution, preferably one that does
not involve exponential terms. We define a general “simple”
distribution as

p0
(
ci
∣∣xk) = µ

(
xk, ci

)∑
j µ
(
xk, cj

) , (5)

where µ(xk, ci) is a computationally easy-to-compute mea-
sure of the goodness of match of codevector ci to sample vector
xk. The denominator is the sum of the goodness of matches
with respect to a subset of N codevectors that are most rel-
evant to xk, where N ≤ |C| and |C| is the codebook size.
Note that, when N = |C|, all of the codevectors are regarded
as relevant. Therefore, in (5) the softness of the assignment
can be controlled by adjusting N (as N is reduced the as-
signment becomes hard). Recall that in (2) the term β acts
as a softness control factor (i.e., as β increases assignments get
harder), but for any given β assignment to all the codevectors
was required. Thus, using a simple function, µ(xk, ci), cou-
pled with N � |C| can result in major computational gains
at the expense of some reduction in performance, as only a
fraction of codevector assignments is required.

For a given set of soft assignments, p0(ci|xk), for all
i, for all k, the codevector locations can be computed as the
weighted average of the sample vectors as in (3),

c∗i =
∑
k

xk p0
(
xk
∣∣ci) =

∑
k xk p

(
xk
)
p0
(
ci
∣∣xk)∑

k p
(
xk
)
p0
(
ci
∣∣xk)

=
∑

k xk p0
(
ci
∣∣xk)∑

k p0
(
ci
∣∣xk) ,

(6)

where sample vector probabilities are assumed to be uniform,
p(xk) = 1/K , and where K is the size of the training set.
The general iterative framework for updating the soft assign-

Iteration:m = 0

Initial codebook:

C(0) =
{
c(0)0 , c(0)1 , . . . , c(0)M−1

}

Given
{
c(m)
i

}

Update
{
p
(
c(m)
i |xk

)}

m = m + 1

Given
{
p
(
c(m−1)i |xk

)}

Update
{
c(m)
i

}

Figure 1: The iterative procedure showing the updating of the soft
assignments and the codevectors.

ments and codevector locations is shown in Figure 1. Note
that this framework is independent of the type of soft assign-
ment used and can be applied for any choice of µ(xk, ci).

Ideally, in any annealing algorithm, the annealing tem-
perature should start at a very high level (theoretically infi-
nite) and gradually cool down to zero. However, as we have
seen in the standard DA, this results in a very slow conver-
gence. In our proposed SVQ algorithm, the temperature is
not infinite at the start; we demonstrate that starting with a
low temperature and with fixed (required) number of code-
vectors, it is possible to achieve near-optimal performance,
even though starting with a low temperature means starting
the algorithmwith a nonconvex energy surface.We show that
introduction of controlled randomness into the iterations, as
in standard SR, helps in reducing the impact of this noncon-
vexity on the final design.

3.2. Reduced-complexity Gibbs distribution for VQ
design

We know that as a result of soft association every sample vec-
tor xk has a certain degree of belonging to all of the code-
vectors in the codebook. However, when we take all the soft
associations into account, the effect of very small soft asso-
ciations on (6) and on the converged codebook is negligi-
ble. Thus, in order to reduce the complexity, we compute the
soft associations only for the N closest codevectors and set
the other |C| − N associations to zero. Note that the size of
the codebook is not changed. This approach requires com-
puting the distance from one input to all codevectors (which
is required for any VQ design) and identifying the N near-
est codevectors. Note that after the first few iterations the N
nearest codevectors for training vectors need not be com-
puted in every iteration, because the displacement of the
codevectors from one iteration to the next tend to be small.
Periodic updates of the list of Nclosest codevectors can be
used to prevent changes in this list leading to inaccurate as-
signment probabilities. Denoting N(xk,N) to be the nearest
N codevectors from a given xk, the soft information is com-
puted by

p
(
ci
∣∣xk) = e−βd(xk ,ci)∑

cj∈N(xk ,N) e
−βd(xk ,cj ) , (7)
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Table 1: Average performance and running time comparison for N
= |C| = 128 andN = 4. The source is uncorrelated Gaussian, the vec-
tor dimensions are 16, and the soft informationmeasure is reduced-
complexity Gibbs distribution. The results are averaged over 20 ex-
periments (details on experimental setup are in Section 4).

N Ave. SNR Ave. CPU time
4 3.595 dB 136 s
128 3.598 dB 16483 s

where d(xk, ci) = ‖xk − ci‖2. Note that with this kind of ex-
ponential function the assignment probabilities decay very
rapidly, even when β is low.

3.2.1. Fixed number of associations

One can first consider an approach with a fixed N . Experi-
mentally, we have found N = 4 to be a good tradeoff value
between performance and complexity. In other words, results
obtained by setting N = 4 and with N = |C| (i.e., using all
the codevectors in the codebook) resulted in negligible per-
formance difference, however, the computational savings are
significant, especially for large codebooks (e.g., |C| > 128). A
comparison of N = 4 and N = |C| = 128 using the same
annealing schedule is given in Table 1. The loss in perfor-
mance incurred by considering only the nearest 4 codevec-
tors for each sample vector instead of the whole codebook
is negligible for all practical purposes, while a very signifi-
cant complexity reduction (about a factor of 120 speedup) is
achieved.

The proposed algorithm is shown in Figure 2, where the
iterations start with N = 4, β = 1/(4σ2X), where σ2X is the
source variance, and an initial codebook C0. The initial value
of β, β = 1/(4σ2X), is found empirically to be a good start-
ing value. At each iteration, we gradually increase β (κ > 1.0),
update the soft information according to (7), and reoptimize
the codevector locations using (6). We can then apply the
codevector perturbation method of [9]. As β increases, the
softness of the codevector associations decreases. In the limit,
when all the probability mass is assigned to the nearest code-
vector for all sample vectors, we reach the nearest neighbor
condition.

3.2.2. Variable number of associations

When we need to design quantizers for very large codebook
sizes (e.g., |C| = 512, 1024, . . . ), it is useful to use N larger
than 4 (e.g., 10, 12, 15, . . . ). However, we know that while
the Nth furthest away codevector from a given sample vector
plays an important role (has large probability mass) in the
early iterations, its importance decreases in each iteration. As
the temperature decreases, the probability mass is gradually
transferred from the distant to the closer codevectors. Hence,
after a while, theNth codevector will contain negligible mass
and it can be discarded without any significant effect on the
final performance. Thus to simplify the computation with-
out affecting the performance, we can modify our algorithm
as follows: whenever the average probabilitymass of the near-
est N − 1 codevectors, PM(N − 1) exceeds a certain mass π

Iteration:m = 0
Initial codebook: C(0)

Set β(0)

Update{
p
(
c(m)
i |xk

)}

∀iεN,∀k

m = m + 1
Update temperature

β(m) = β(m−1) · κ

Update C(m)

N = 1∀xk
Without
stochastic
relaxation

With
stochastic
relaxation

Perturb C(m)

Stop
Yes

No

Figure 2: Flowchart for the reduced-complexity Gibbs soft assign-
ment measure algorithm.

(e.g., π = 0.99), N is reduced by one, N = N − 1, that is,

if PM(N − 1) = 1
K

∑
k

∑
ci∈N(xk ,N−1)

p
(
ci|xk

)
π,

then N = N − 1,

(8)

where K is the size of the training set. Gradually decreasing
N , as the temperature changes, results in considerable com-
plexity reduction, except when N becomes small. This is be-
cause reducing N requires computing PM(N − 1) at each it-
eration, which adds to the overall complexity. Therefore, in
our algorithm, when N reaches a small value, for example,
N = 4, the process of gradual reduction of N stops.

3.3. Low-complexity soft informationmeasures
for VQ design

As previously stated, in order to reduce further the computa-
tional complexity of the system, we can use in (5) a less com-
plex distribution than the optimal Gibbs distribution. One
of the simplest distributions that readily comes to mind is
the “inverse Euclidean distance” distribution, in which, for
a given sample vector xk, the “importance” of the codevec-
tors decreases with increasing distance from xk. “Inverse Eu-
clidean distance” in a soft information measure can be de-
fined as

p
(
ci
∣∣xk) = 1/di∑N−1

j=0 1/dj

. (9)

The distances in (9) are the Euclidean norms between xk and
the codevectors (n is the vector dimension), di = d(xk, ci) =√
(xk,0 − ci,0)2 + (xk,1 − ci,1)2 + · · · + (xk,n−1 − ci,n−1)2. The

number of codevectors to be taken into consideration for
each xk can be determined by a circle centered on xk with
a radius R. R is chosen so that it includes the N nearest
codevectors to xk. The radius R decreases from one iteration
to the next, R(m) = R(m−1)ρ, where 0 < ρ < 1.0. Note that as
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mx

h5

h0
h0′

1
h1

h1′

h3′

h3

c2 c5 c0 xk c1 c3 c4

d0 d1
d5 d3

Rx

R
′
x

xk = Sample vector

{ci} = Code vectors

Figure 3: Triangular membership function used as a soft informa-
tion measure. Codevectors within the spread of the function com-
prise the nearest N codevectors for the considered sample vector.

R decreases at some point it will include less than N code-
vectors, when that happens we take only those codevectors
within the circle into consideration.

Another soft information measure can be defined using a
triangle function centered on the sample vector, xk, as shown
in Figure 3. The function, with height h = 1 and a spread Rx,
is chosen such that it will contain the N codevectors within
an Euclidean distance Rx from xk. Using the fuzzy systems
terminology, we can define this triangle function as themem-
bership function of xk and denote it by mx. The soft asso-
ciations are computed by using the heights of the member-
ship function corresponding to the Euclidean distances of the
codevectors from xk,

p
(
ci
∣∣xk) = hi∑N−1

j=0 hj

. (10)

The spread Rx decreases gradually in each iteration giving
more and more importance to the nearer codevectors as the
iterations increase. Note that we start with fixed N but as Rx

decreases it will include less than N codevectors, when that
happens we take only those codevectors within the spread
into consideration. At the limit, when only one codevector
stays within the nearest neighbor set (spread), that is, N = 1,
the soft information measure becomes hard and all the prob-
ability mass gets assigned to the nearest codevector. Note that
as the spread is decreased, for some sample vectors, N = 1
will be reached earlier than the others since the nearest code-
vector distance cannot be the same for each sample vector.

As the spread continues to decrease, at some point for
some sample vectors, Rx < d(xk, ci) for all i. In these cases,
the algorithm assigns all the probability mass to the nearest
codevector. The spread at themth iteration is controlled by a
geometric schedule as in the Gibbs case:

R(m)
x = R(m−1)

x ρ, (11)

where ρ is the reduction factor, 0 < ρ < 1.0. The soft informa-
tionmeasure in (10) can be defined in terms of the spread, Rx

and the distances, di = d(xk, ci) using triangular similarities,
where the height of the triangle is h = 1:

h

Rx
= hi

Rx − di
=⇒ hi = Rx − di

Rx
. (12)

Therefore, (10) becomes

p
(
ci
∣∣xk) = Rx − di

NRx −
∑N−1

j=0 dj

. (13)

This is a better soft information measure than the inverse
Euclidean distance measure in (9), because it can mimic bet-
ter the effect of the temperature reduction in the Gibbs dis-
tribution. With (9) the only time the soft assignments will
change as the radius is decreased is when a codevector is left
out of the circle of radius R. However, using (10) the heights
get affected by the reduction in the spread Rx as seen in (13).
This is desired in order to approximate the effect of the tem-
perature reduction in the Gibbs distribution because as the
spread decreases the codevectors closer to xk should increase
their relative share of the soft assignment in conformity with
their distances from xk.

The experimental results will also demonstrate that (13)
is in fact a better measure than (9). Note also that the com-
putational cost of computing one soft assignment using (9)
requires 5N + 4 flops, whereas using (13) it requires N + 7
flops, counting addition, subtraction, and multiplication as
one flop and division as four flops (N is the number of
codevectors taken into computation). Hence, for N ≥ 1,
N + 7 < 5N + 4, implying that (13) is also less costly than
(9). Recalling that an exponential computation is 8 times
more costly than a basic operation (8 flops compared to one
flop of operation time for a basic operation), then (7) takes
N(8 + 1 + 1) + 4 = 10N + 4 flops, which is much larger than
N +7. Therefore, the height-defined triangular soft informa-
tion measure is a computationally less complex distribution
than the Gibbs distribution.

The algorithm for the low-complexity soft information is
similar to the one shown in Figure 2. In this case, the temper-
ature control is done by the spread of the triangle function.

The initial spread R(0)
x = 4σ2X was empirically found to give

good performance when N is initialized to 4, where σ2X is the
variance of the training set components.

3.4. Optimal temperature schedule

In the previous section, we have proposed a low-complexity
soft assignment measure, namely, the triangular soft infor-
mation measure, as a simplified way of computing the soft
assignments. Although this measure will significantly reduce
the computational cost of the soft assignments compared
to the Gibbs soft measure, the reduction in computational
cost will be at the expense of some loss in performance,
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since Gibbs is the optimal soft measure. In this section, we
will show how this performance loss can be reduced if, in
the low-complexity approach, we can find temperature re-
duction schedules that approximate those from the Gibbs β
schedule. To achieve this, we will want to minimize the L1
distance between the two distributions [32],

∥∥p0(c|x)− pG(c|x)
∥∥
1 =

∑
i

∣∣p0(ci∣∣x)− pG
(
ci
∣∣x)∣∣. (14)

More specifically, we would like to find the spread reduc-
tion schedule Rx for a given Gibbs β schedule such that (14)
is minimized. Note that minimizing (14) is related to min-
imizing the relative entropy between p0(c|x) and pG(c|x),
D(p0(c|x)‖pG(c|x)), since we know from [32] that

D
(
p0(c|x)

∥∥pG(c|x)) ≥ 1
2 ln 2

∥∥p0(c|x)− pG(c|x)
∥∥2
1 (15)

with equality when p0 = pG. Although it is intuitive that
in order to minimize the performance difference between a
simplified soft measure and the optimal soft measure, the
relative entropy between the two should be minimized, we
refer to the appendix for a more formal justification. The
error analysis in the appendix shows that at a given system
entropy (softness) the performance loss in terms of distor-
tion between two distributions (soft measures) is a function
of the relative entropy between the distributions, so that we
can show that minimizing the relative entropy results in min-
imizing the distortion penalty paid for using a simplified soft
measure.

We can show that the relative entropy is approximately
minimized when the variances of the two distributions,
p0(c|x) and pG(c|x), are equal. The variances of pG(c|x) and
p0(c|x), respectively, are (the lower limits of the integrals
start from zero because we use absolute distances between
sample vector and each of the codevectors):

varG = EG
{
z2
}− (EG{z}

)2

=
∫∞
z=0 z2e−βz

2
dz∫∞

z=0 e−βz
2dz

−
(∫∞

z=0 ze−βz
2
dz∫∞

z=0 e−βz
2dz

)2

= 1
2β
−
(√

1
π · β

)2

= π − 2
2π · β ,

(16)

var0 = E0
{
z2
}− (E0{z}

)2

=
∫ Rx

z=0 z2
(
Rx − z

)
dz∫ Rx

z=0
(
Rx − z

)
dz

−
(∫ Rx

z=0 z
(
Rx − z

)
dz∫ Rx

z=0
(
Rx − z

)
dz

)2

= R2
x

6
−
(
Rx

3

)2
= R2

x

18
.

(17)

1

x c0 c1 c2 · · · cL−2 cL−1 z

e−βz2

Rx − z

Rx

Rx

z = 0

Figure 4: An instance of the Gibbs function with parameter β and
an instance of the triangle function with parameter Rx are shown.
There are L codevectors at increasing distance from sample vector x.

Equating (16) and (17), and solving for Rx, we get

Rx =
√

9(π − 2)
π · β . (18)

Hence, using (18) we can obtain a schedule for Rx given a
schedule for β.

We have used the setup in Figure 4 to show that for a
given β for the Gibbs distribution, the spread Rx obtained
by (18) for the triangle distribution minimizes the relative
entropy. In the figure, there is a set of L codevectors at in-
creasing distances from a sample vector x. For each β in a
set {β1,β2, . . . ,βm}, the soft Gibbs assignments of the code-
vectors is computed using (7) with N = L. Then, through
an exhaustive search, the spread Rx that gives the soft as-
signments using (13) which minimizes the relative entropy
D(p0(c|x)‖pG(c|x)) is obtained.

The resulting minimum relative entropy curve is shown
in Figure 5 by the solid line. This is compared with the re-
sult obtained using (18) by the dashed curve. We can see that
the derived relation in (18) can approximate well the mini-
mum relative entropy curve, and hence the best Rx schedule
for a given β schedule. The error is due to the fact that we ap-
proximate the relative entropy using the variance of the two
functions.

The reduced-complexity Gibbs algorithm and the low-
complexity soft measure algorithm for the triangular mem-
bership function using two different spread reduction sched-
ules are used to design codebooks of sizes 128 and 256
(for details on the experiments, see Section 4). The results
are shown in Table 2. Of the two schedules for triangu-
lar soft information measure, the first one is the geomet-
ric spread reduction given in (11), and the second one is
obtained using (18) and the Gibbs schedule (referred to as
Gibbs guided spread reduction in Table 2). Observe from
the results in Table 2 that the performance of the triangu-
lar soft information measure using the Gibbs guided spread
reduction schedule outperformed the geometric spread re-
duction when both are operated with the same number
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Table 2: Comparing the geometric and the Gibbs guided spread (temperature) reduction for the triangular membership function for the
design of 128 and 256 sized codebooks for uncorrelated Gaussian source with vector dimension 16.

Codebook size

Reduced-complexity Gibbs soft
information measure (κ = 1.005)

Low-complexity soft information
measure (triangular)

Geometric spread reduction (ρ = 0.995)

Low-complexity soft information
measure (triangular)

Gibbs guided spread reduction
Ave. SNR Ave. CPU time Ave. SNR Ave. CPU time Ave. SNR Ave. CPU time

128 3.595 dB 136 s 3.392 dB 91 s 3.411 dB 91 s

256 5.210 dB 329 s 4.919 dB 232 s 4.952 dB 232 s
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Figure 5: Plot showing the minimum relative entropy between the
triangle soft measure and the Gibbs soft measure at various spread
Rx and β pairs. The solid curve is obtained by an exhaustive search
for Rx that gives the minimum relative entropy for a given value
of β. The dashed curve is obtained using the derived relationship
between Rx and β to give the minimum relative entropy.

of iterations. Therefore, for a given β-schedule the rela-
tion in (18) provides a better Rx-schedule than the geo-
metric reduction. Note that β-schedule is itself geometric,
β(m) = β(m−1) · κ. But since the Gibbs soft information
measure is the optimal measure, following the β-schedule
for the simple soft information measure results in an in-
crease in performance as demonstrated in Table 2. Note also
that to obtain the β-schedule the Gibbs algorithm need not
be run, it can be obtained using β(m) = β(m−1) · κ, κ >
1.0.

4. EXPERIMENTAL RESULTS

We now present the results obtained when our algorithms
were used to design codebooks of various sizes and sources.
The results are compared with other algorithms of interest,
namely, GLA, SR-D, and standard DA. Our quoted execution
times (CPU times) are based on those obtained with an Intel
PIII-550MHzmachine.

The first set of training sources we considered was two
cases of first-order Gauss-Markov sources, one with corre-
lation coefficient α0 = 0.0 (uncorrelated source) and the
other with α0 = 0.9 (correlated source). We divided 16 384
samples into 1024 16-dimensional training vectors, and de-
signed codebooks of sizes 32, 64, 128, and 256 for both train-
ing sets, where the initial codebooks were obtained randomly
from the training sets. Since both GLA and SR-D are sensi-
tive to the choice of the initial codebooks, in order to inves-
tigate the effect of initialization, we have also designed code-
books of sizes 32, 64, 128, and 256, where the pairwise nearest
neighbor (PNN) algorithm [33] is used to obtain the initial
codebooks. For this we have used the uncorrelated Gaussian
source with 4096 16-dimensional training vectors.

The second source examined was a segment of human
speech sampled at 8 kHz and partitioned into 2048 16-
dimensional vectors, and we have designed five codebooks of
sizes 16, 32, 64, 128, and 256. The final source considered was
obtained by extracting 8192 16-dimensional vectors (corre-
sponding to 4× 4 blocks) from two 512× 512 monochrome
training images from the USC image database, with each
pixel amplitude quantized to 8 bits. Four codebooks of sizes
32, 64, 128, and 256 were designed using this training set,
and the performance of these codebooks is tested in coding
the image “Lena” which was outside of the training set. The
effect of the PNN initialization on the speech and the image
sources is also demonstrated.

We designed codebooks for the following algorithms
where in the plots an “a” appended to an algorithm name
means that stochastic perturbation was used (e.g., SVQ-Ga
would mean the same as SVQ-G but without perturbation).

(1) SVQ-G: soft vector quantizer design using the
reduced-complexity Gibbs distribution as the soft
measure, and with stochastic perturbation.

(2) SVQ-E: soft vector quantizer design using the inverse
Euclidean distance distribution as the soft measure,
and with stochastic perturbation.

(3) SVQ-T: soft vector quantizer design using the height-
defined distribution with triangular membership
function as the soft measure, and with stochastic per-
turbation.

(4) VQ-DA: vector quantizer design using the standard de-
terministic annealing [13].

(5) SR-D: vector quantizer design using the reduced-
complexity decoder perturbation algorithm [9].
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Figure 6: Improvements over GLA for Gaussian source; vector di-
mension = 16 samples/vector.

(6) GLA: vector quantizer design using the generalized
Lloyd algorithm [6].

In the cases where PNN initialization is not used, for each
algorithm, except VQ-DA, the average performances for 20
different initial codebooks are computed. To allow us to com-
pare the average performances of the different algorithms,
the same set of initial codebooks is used. Recall that VQ-
DA uses the center of mass of the training set as the initial
codebook, so its performance with this initial condition is
recorded. In the cases where PNN initialization is used, a
unique initial codebook is obtained from the training set.
The performance measure used for the image source is peak
signal-to-noise ratio (PSNR) and for the others is signal-to-
noise ratio (SNR), defined as PSNR = 10 · log10(2552/D) and
SNR = 10 · log10(Ps/D), where Ps is the signal power and
D is the distortion per sample. The SR-D algorithm was run
for 200 iterations as given in [9], and the GLA was run until
convergence.

4.1. Gauss-Markov sources

The performances of the first 5 algorithms (listed above, both
with and without perturbation) with initial codebooks ob-
tained randomly from the training set are compared with
the GLA performances in Figures 6 and 7. In all cases, the
reduced-complexity DA algorithms (SVQ) achieved signifi-
cant improvements over the traditionally used GLA and over
SR-D, which is said to give near-optimal results [9]. From
the figures we observe that the SVQ-G algorithm (reduced-
complexity Gibbs distribution) performed better than the
other SVQ algorithms; however, the performance of SVQ-T
is competitive. Note the progression of performances of the
low-complexity soft information measures: the performance
improves from the inverse Euclidean distance soft measure
(SVQ-E and SVQ-Ea) to the triangular soft measure (SVQ-

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.3125 0.375 0.4375 0.5

Rate (bits/sample)

SN
R
im

pr
ov
em

en
t
ov
er

G
LA

(d
B
)

SVQ-G
SVQ-Ga
SVQ-Ea
SVQ-E

SVQ-Ta
SVQ-T
SR-D
VQ-DA

Figure 7: Improvements over GLA for Gauss-Markov source; vec-
tor dimension = 16 samples/vector.

T and SVQ-Ta). This was an expected result since the trian-
gular soft measure was designed to better approximate the
optimal Gibbs distribution. Note also the gain achieved by
the stochastic relaxation (SR) in the SVQ algorithms com-
pared to nonstochastic cases. The gain ranges from a high
0.2 dB for SVQ-E to a low 0.02 dB for SVQ-G algorithms. It
should be noted that the better an algorithm performs with-
out the SR, the lesser the additional gain achieved by the
SR in the SVQ algorithms. In other words, as an algorithm
comes closer to the global optimum using the principles of
soft information processing, it requires less help from the
SR to attain an improved performance. In the limit, grant-
ing enough computational resources for the full power of the
soft information processing to be utilized, the global opti-
mum can be reached without requiring any help from SR.
But as the results demonstrate, for reduced-complexity DA
approaches, SR has a positive effect in the improvement of
the performances with negligible computational complex-
ity.

The results for VQ-DA (standard DA) were obtained
starting with all the sample vectors being equally associated
with all the codevectors, which dictates an initial codebook
where all the codevectors are at the center of mass of the
training set. The simulations were conducted with a conser-
vative annealing schedule, where it took over 120000 CPU
seconds (about 24 hours) for the codebook of size |C| = 256
to converge. Recall that in VQ-DA the probability associa-
tions are computed to all codevectors for each sample vector,
thus the algorithm executes very slowly especially for large
codebooks. The figures show that the performance of VQ-DA
compared to reduced-complexity DA algorithms is inferior
in all cases. Moreover, the SVQ algorithms run much faster
than VQ-DA, requiring 350 CPU seconds for |C| = 256 and
16-dimensional vectors. While, if enough computational re-
sources are allocated, VQ-DA is expected to be very close to
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Figure 8: The effect of PNN initialization as improvement over
GLA. Source is Gaussian, vector dimension = 16 samples/vector.

optimal as shown in [13], the performance of the reduced-
complexity DA algorithms proved that for most practical ap-
plications the expected performance of VQ-DA does not jus-
tify its computational burden.

Both GLA and SR-D algorithms are sensitive to the initial
codebooks. Hence, in order to investigate the effect of initial-
ization on these algorithms and on our proposed algorithms,
we have used the PNN initialization for the codebooks [33].
In Figure 8, we show the performances of the 4 codebooks
on (uncorrelated) Gaussian source as improvement over the
PNN initialized GLA. For clarity of presentation, we have
only included the SVQ-Ga performance from our proposed
algorithms; the other SVQ algorithms behave comparatively
the same with SVQ-Ga as in Figure 6. Note from the figure
that the PNN initialization improves the GLA and SR-D al-
gorithms, however, the SVQ-Ga algorithm is not affected.
This is a positive result for the SVQ algorithms for it shows
that they can evade the local minimum dictated by the ini-
tial codebook, and hence are insensitive to the choice of the
initial codebook. The PNN and its fast but sup-optimal ver-
sion, fast-PNN, require O(K3) and O(K logK) time, respec-
tively, where K is the size of the training set [33]. The results
presented in Figure 8 are obtained using the full search PNN
algorithm (with complexity O(K3)) in order to get the best
possible results with the GLA and the SR-D algorithms. The
fast-PNN initialization would result in reduced performance;
it is shown in [33] that the fast-PNN algorithm increased the
coding error by 0.4–0.6 dB for image sources compared to
full search PNN. The SVQ algorithms outperform both GLA
and SR-D algorithms without the complexity of the initial-
ization process, which gets computationally more impracti-
cal as the size of the training set increases. The running time
for the generation of the PNN codebooks from a training
set of 4096 16-dimensional vectors was 2374 CPU seconds,

and the design of the size 256 codebooks for GLA, SR-D, and
SVQ-Ga algorithms on average was 44, 366, and 1552 CPU
seconds on the same machine. Therefore, with the PNN ini-
tialization, the total running times for the GLA and the SR-
D algorithms are higher than the SVQ-Ga algorithm. Since
SVQ-Ga performs the same with and without the initializa-
tion, the SVQ-Ga algorithm outperforms GLA and SR-D in
less running time.

4.2. Speech source

The performance on the speech source using the three algo-
rithms, GLA, SR-D, and SVQ-Ga, with and without the code-
book initialization, is shown in Figures 9 and 10. In Figure 9,
the performance improvement over GLA and in Figure 10,
improvement over PNN initialized GLA are shown. Note that
while the performance improvement of SVQ-Ga over GLA
is large (0.95 dB at 0.5 bit/sample), compared with the PNN
initialized GLA the improvement is rather modest. But note
again that the effect of the initialization is very small on the
SVQ-Ga performance, whereas improvements of 0.85 dB and
0.2 dB are obtained at 0.5 bit/sample for GLA and SR-D, re-
spectively, after initialization. Therefore, as in the Gaussian
source, the SVQ-Ga renders the initialization unnecessary.

4.3. Image source

The last source considered was the image source, where the
results are shown in Figure 11 for the coding of the image
source “Lena.” As in the previous two source cases, the SVQ-
Ga performance is practically not sensitive to the initial code-
book initialization and it outperformed the GLA and the
SR-D algorithms by 0.3–0.4 dB and 0.2–0.3 dB, respectively,
both being initialized with PNN. Therefore, as in the Gaus-
sian and the speech sources, the SVQ-Ga outperformed the
PNN+GLA and PNN+ SR-D without the need of initializa-
tion.

5. CONCLUSION

In this paper, we have designed reduced/low-complexity
methods for deterministic annealing (DA) for the vector
quantizer design problem, which we called soft vector quan-
tizer (SVQ) design algorithms. The proposed low-complexity
soft measures are used as the soft association probabilities in
the probabilistic framework of the DA to reduce the com-
putational cost compared to the optimal Gibbs soft measure
used in the standard DA. Although the simple soft measures
significantly reduce the computational complexity of the sys-
tem, this improvement comes at a price since these soft mea-
sures are not the optimal distributions. Hence, we have also
derived the theoretical performance loss for using a simpli-
fied measure instead of the optimal measure, and used the
result to derive optimal annealing schedules for the proposed
simple soft measures. We have demonstrated that using the
derived optimal schedule for the low-complexity soft mea-
sures increases the quality of the final codebook compared to
using a geometric reduction schedule which is usually sug-
gested in the annealing algorithms. We have also shown that
the low-complexity DA methods benefit from the stochastic
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Figure 9: Improvements over GLA for human speech source sam-
pled at 8 kHz; vector dimension = 16 samples/vector.
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Figure 10: Improvements over PNN-initialized GLA for human
speech source sampled at 8 kHz; vector dimension = 16 sam-
ples/vector.

relaxation techniques with decreasing benefits as the perfor-
mance approaches the optimal.

We have demonstrated the effectiveness of our
low/reduced-complexity DA (SVQ) algorithms by designing
codebooks for a variety of sources, namely, Gauss-Markov,
speech, and image, at different rates. In each case, the
proposed SVQ algorithms significantly improved the quality
of the final codebooks compared to the traditionally used
GLA and compared to the SR-D algorithm, where the latter
is accepted as a benchmark reference by some researchers to
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Figure 11: Improvements over GLA for the coding of image source
“Lena.” Vector dimension = 16 samples/vector (corresponding to
4× 4 blocks).

be a VQ design technique that performs near-optimally. We
have also investigated the effect of codebook initialization
on GLA, SR-D, and SVQ algorithms and showed that, while
GLA and SR-D receive major benefit from this initialization
at the expense of increased computational complexity, the
SVQ algorithms are able to attain the same performance
without the need of initialization. Hence, the SVQ algo-
rithms are not sensitive to the choice of the initial codebook
and outperform codebook initialized GLA and SR-D algo-
rithms. Compared to the standard DA, the computational
complexity of the SVQ algorithms is shown to be drastically
reduced. Using the same annealing temperature, the SVQ
algorithms run more than a factor of 100 faster than the
standard DA algorithm with negligible performance differ-
ence. We believe that the proposed algorithms, with their
significantly higher performance over the widely used GLA
and SR-D, and with their low-computational complexity
with negligible performance difference compared to the
standard DA, have proved themselves to be important VQ
design techniques.

APPENDIX

Our proposed triangular soft information measure signif-
icantly reduces the computational cost of the soft assign-
ments compared to the optimal Gibbs soft measure, at the
cost of some loss in performance. In this appendix, we de-
rive the penalty paid in distortion for using the simplified
soft measure instead of the optimal one at a given system en-
tropy (softness), and show that minimizing the relative en-
tropy between the two measures minimizes the distortion
penalty.

For a given soft assignment measure (conditional prob-
ability), p(c|x), we have the expected distortion and the
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nonoptimal assignment measures, respectively. |C| is the codebook size, and H(C) is the codebook rate.

average mutual information in (A.1) and (A.2), respectively.

D
(
p(c|x)) =∑

x

p(x)
∑
c

p(c|x)d(x, c), (A.1)

I(X ;C) =
∑
x

p(x)
∑
c

p(c|x) log p(c|x)
p(c)

. (A.2)

Let PI be the set of all I-admissible soft assignment measures,

PI =
{
p(c|x) : I(X ;C) ≤ I

}
, (A.3)

and hence, for fixed I ,

D(R) = min
p(c|x)∈PI

D
(
p(c|x)), (A.4)

where R(D) = minp(c|x)∈PI I(X ;C). Now, let pG(c|x) and
p0(c|x) be two different soft assignment measures, and as-
sume that pG(c|x) is the optimal I-admissible soft assignment
measure for some rate I , pG(c|x) ∈ PI , and the expected dis-
tortion corresponding to pG(c|x) isD(pG(c|x)). Let the other
soft assignment measure, p0(c|x), be defined as

p0(c|x) = pG(c|x) + ∆p(c|x) ∀c, x. (A.5)

We require that (A.5) satisfy two conditions:

∑
c

∆p(c|x) = 0 ∀x, (A.6)

∆I = I0(X ;C)− IG(X ;C) = 0. (A.7)

The condition in (A.6) is required so that p0(c|x) in (A.5)
is a valid pmf,

∑
c p0(c|x) = 1, and the condition in (A.7)

requires that the difference in mutual information be zero
so that p0(c|x) ∈ PI and the system entropy remains un-
changed. We would like to obtain the difference in the ex-
pected distortion, ∆D = D(p0(c|x))−D(pG(c|x)), subject to
the conditions in (A.6) and (A.7). The situation is depicted
in Figure 12, where the results of the iterations are plot-
ted for rate versus distortion for two assignment measures.
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Figure 13: Plot showing the convergence of two experiments, one
with Gibbs soft assignment measure and the other with triangular
soft assignment measure, for the design of a codebook of size 64,
vector dimension 16, and the source type zero-mean, unit variance
Gaussian.

A real simulation result is shown in Figure 13. The curves are
obtained by starting with uniform sample vector-codevector
assignments (maximum softness) and plotting rate against
the distortion obtained using the intermediate codebooks
in each iteration (nearest sample vector-codevector assign-
ments). Note that the conditional entropyH(C|X) is the sys-
tem entropy and it measures the softness of the assignments,
where I(X ;C) = H(C)−H(C|X) and H(C) is the codebook
rate. For example, in Figure 13, where the codebook size is
|C| = 64 and the vector dimension is n = 16, the codebook
rate is log2 |C|/n = 0.375 bit/sample. Through iterations the
softness of the assignments is reduced until finally we reach
the hard assignments, where H(C|X) = 0 and each sample
vector x is assigned to a single codevector with probability
one.
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We will start by expanding ∆I = I0(X ;C)− IG(X ;C),

∆I =
∑
x

p(x)
∑
c

p0(c|x) log p0(c|x)
p0(c)

−
∑
x

p(x)
∑
c

pG(c|x) log pG(c|x)
pG(c)

.

(A.8)

Substitute pG(c|x) = p0(c|x)−∆p(c|x) from (A.5) into (A.8):

∆I =
∑
x

p(x)
∑
c

p0(c|x) log p0(c|x)
p0(c)

−
∑
x

p(x)
∑
c

(
p0(c|x)− ∆p(c|x)) log pG(c|x)

pG(c)

=
∑
x

p(x)
∑
c

∆p(c|x) log pG(c|x)
pG(c)

+
∑
x

p(x)
∑
c

[
p0(c|x) log p0(c|x)

pG(c|x)

− p0(c|x) log p0(c)
pG(c)

]
.

(A.9)

Simplifying the above expression, we get

∆I =
∑
x

p(x)
∑
c

∆p(c|x) log pG(c|x)
pG(c)

+D
(
p0(c|x)‖pG(c|x)

)−D
(
p0(c)‖pG(c)

)
.

(A.10)

The optimal distribution is the Gibbs distribution, pG(c|x) =
e−βd(x,c)/

∑
c′ e

−βd(x,c′), where pG(c) is uniform. Let pG(c) = ζ ,
a constant for all c, and substitute the Gibbs distribution in
the first term in (A.10):

∑
x

p(x)
∑
c

∆p(c|x) log pG(c|x)
pG(c)

=
∑
x

p(x)
∑
c

∆p(c|x) log
(

e−βd(x,c)

ζ ·∑c′ e−βd(x,c
′)

)

=
∑
x

p(x)
∑
c

∆p(c|x)
(
−βd(x, c)

ln 2
− log

∑
c′
ζ · e−βd(x,c′)

)
.

(A.11)

Therefore,

∑
x

p(x)
∑
c

∆p(c|x) log pG(c|x)
pG(c)

= −β
ln 2

∑
x

p(x)
∑
c

∆p(c|x)d(x, c)
︸ ︷︷ ︸

=∆D

−
∑
x

p(x)
(
log
∑
c′
ζ · e−βd(x,c′)

)∑
c

∆p(c|x)
︸ ︷︷ ︸
=0 ∀x

= −β
ln 2

∆D.

(A.12)

Substituting (A.12) into (A.10), and using the condition in
(A.7) that ∆I = 0, we get

∆I = −β
ln 2

∆D +D
(
p0(c|x)

∥∥pG(c|x))−D
(
p0(c)

∥∥pG(c)) = 0.

(A.13)

Finally, the difference in the expected distortion is

∆D = ln 2
β

[
D
(
p0(c|x)

∥∥pG(c|x))−D
(
p0(c)

∥∥pG(c))].
(A.14)

Note that for large vector dimensions [32],−D(p0(c)‖pG(c))∼= D(pG(c)‖p0(c)). Hence, for large dimensions, the penalty
paid in terms of distortion at a given system entropy for using
the nonoptimal soft assignment measure, p0(c|x), instead of
the optimal one, pG(c|x), is

∆D = ln 2
β

[
D
(
pG(c)‖p0(c)

)
+D

(
p0(c|x)‖pG(c|x)

)]
.

(A.15)

Note also that pG(c) is uniform and p0(c) depends on
p0(c|x). Hence, minimizing the conditional relative entropy,
D(p0(c|x)‖pG(c|x)), in (A.15) minimizes ∆D.
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