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Abstract: We analyze the phenomenon of fermion pairing into an effective boson associ-

ated with anomalies and the anomalous commutators of currents, bilinear in the fermion

fields. In two spacetime dimensions the chiral bosonization of the Schwinger model is de-

termined by the chiral current anomaly of massless Dirac fermions. A similar bosonized

description applies to the 2D conformal trace anomaly of the fermion stress-energy tensor.

For both the chiral and conformal anomalies, correlation functions involving anomalous

currents, jµ5 or Tµν of massless fermions exhibit a massless boson 1/k2 pole, and the asso-

ciated spectral functions obey a UV finite sum rule, becoming δ-functions in the massless

limit. In both cases the corresponding effective action of the anomaly is non-local, but may

be expressed in a local form by the introduction of a new bosonic field, which becomes a

bona fide propagating quantum field in its own right. In both cases this is expressed in

Fock space by the anomalous Schwinger commutators of currents becoming the canonical

commutation relations of the corresponding boson. The boson has a Fock space operator

realization as a coherent superposition of massless fermion pairs, which saturates the in-

termediate state sums in quantum correlation functions of fermion currents. The Casimir

energy of fermions on a finite spatial interval [0, L] can also be described as a coherent

scalar condensation of pairs, and the one-loop correlation function of any number n of

fermion stress-energy tensors 〈TT . . . T 〉 may be expressed as a combinatoric sum of n!/2

linear tree diagrams of the scalar boson.
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1 Introduction

In many-body physics it is well-known that gapless fermion excitations in the vicinity of

a Fermi surface can pair up into effective bosonic degrees of freedom. The formation of

such fermion Cooper pairs is the basis for the BCS theory of superconductivity and the

superfluidity of 3He [1]. This amounts to a reorganization of the ground state of the system

from weakly interacting fermions to interacting effective bosons, themselves consisting of

bound fermion pairs.

In this paper we study the mechanism of fermion pairing in relativistic quantum field

theory, emphasizing that the pairing is a direct result of quantum anomalies in otherwise

classically conserved currents that are bilinear in the fermion fields. The particular focus of

the paper is the 2D conformal anomaly of the stress-energy tensor [2–4] and the bosonized
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description it leads to. By studying this case in detail, our aim is to lay the groundwork for

the extension of our considerations of anomaly induced pairing and corresponding bosons

in four (and higher) dimensions with the appropriate modifications.

The best known example of fermion pairing in a relativistic quantum field theory is

provided by the Schwinger model, i.e. quantum electrodynamics of massless fermions in

two spacetime dimensions [5, 6]. The study of this model has a long history, and over the

years has been solved by a number of different techniques [7–19]. We begin in section 2 by

reviewing the Schwinger model, and emphasizing that its main feature of fermion pairing

into an effective massive boson may be understood by both functional integral and operator

methods most simply and directly as a consequence of its chiral current anomaly.

The basic signature of an anomaly is the existence of a bosonic excitation in correlators

involving anomalous currents, which becomes an isolated 1/k2 pole when the underlying

fermions are massless [20–23]. In d = 2 QED, the one-loop current polarization tensor

〈jµ(x)jν(x′)〉 has an imaginary part and spectral representation which obeys an ultraviolet

finite sum rule and becomes a δ-function in the limit of massless fermions, indicating the

presence of a massless boson intermediate state composed of fermion pairs. Correspond-

ingly, the real part of the same correlation function exhibits a 1/k2 pole, which is the

propagator of a dynamical massless boson. The residue of this massless pole in the cor-

relation function of non-anomalous currents is proportional to the coefficient of the chiral

current anomaly.

In the functional integral approach, the non-local effective action of the anomaly may

be expressed in a local form describing a massless boson, which becomes a bona fide

propagating field, inheriting its dynamics from that of the underlying fermions, even in the

absence of other interactions. In the Schwinger model the effect of the interaction with the

gauge potential leads to the boson acquiring a mass M2 = e2/π, but the fermion pairing

into a boson state occurs even in the limit e → 0 of infinitesimally small coupling to the

gauge field.

In the Fock space operator approach to the Schwinger model, after careful definition of

the fermion vacuum and normal ordering, there is a non-zero anomalous equal time commu-

tator (Schwinger term) of currents [24]. It is worth noting that although the Schwinger term

occurs in the commutator [j0, j1] of apparently non-anomalous vector current components,

this non-zero commutator can be viewed as a direct result of the chiral anomaly, and the

boson degree of freedom it describes by fermion pairing. Indeed since the fermion current

is linear in the chiral boson field, the Schwinger commutator term in the currents may be

mapped precisely into the canonical equal time commutator of the boson, itself composed

of fermion pairs, showing that the boson field is a true propagating degree of freedom.

Having reconsidered and rederived the standard results of the Schwinger model from

the vantage point of its chiral anomaly, we proceed to apply the same methods to the

conformal trace anomaly of the fermion stress-energy tensor. We show that most of the

same features associated with the chiral anomaly reappear in the case of the conformal

anomaly. In particular, correlation functions involving the stress-energy tensor of massless

fermions again exhibit an isolated massless 1/k2 pole, with finite residue determined by

the anomaly. There is again an ultraviolet sum rule for the corresponding spectral function
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which becomes a δ-function in the massless limit [22]. The −1 propagator in the non-

local Polyakov action of the conformal anomaly [25] can be rewritten in terms of a local

scalar field ϕ that becomes a bona fide propagating scalar, inheriting its dynamics from the

underlying fermions of which it is composed. The anomalous equal time commutators or

Schwinger terms of the stress-energy tensor, i.e. the central terms in the Virasoro algebra,

may also be recognized as equivalent to canonical equal time commutation relations of the

scalar composite boson, which therefore must be treated as a dynamical degree of freedom

in its own right.

A new feature of the conformal trace anomaly of the stress-energy tensor is that the

local scalar field ϕ has its own quantum stress-energy tensor containing terms that are both

linear and bilinear in ϕ, and hence its own quantum anomaly. This would shift the anomaly

coefficient of N fermions from N to N + 1, if uncompensated. Complete equivalence with

the original N fermion theory can be achieved in one of two different ways. If ϕ is treated as

a full quantum field participating in internal loops, then a compensating shift of N to N−1

in the ϕ effective action must be introduced, so that the one less fermion degree of freedom

is replaced by one boson degree of freedom. Alternately, if one is interested only in the

correlation functions of the fermions, one can treat the unshifted anomaly induced effective

action of the N fermions as a purely tree-level effective action for the scalar ϕ in a gravita-

tional field. By thereby forbidding the scalar ϕ from participating in internal loops, there is

no shift in N to be compensated for, and it is possible to identify the fermion stress-energy

tensor at the operator level with only those terms in the bosonic stress-energy tensor linear

in the quantum ϕ field, analogous to the chiral bosonization of the Schwinger model [26–28].

This second approach also makes it possible to prove a remarkable theorem relat-

ing the correlation functions of an arbitrary number of fermion stress-energy tensors

〈Tµ1ν1(x1) . . . Tµnνn(xn)〉 at one-loop level to pure linear tree diagrams of the boson ϕ. The

two-fermion intermediate states in the quantum correlation functions of the stress-energy

tensor of the fermions are therefore identical to the single boson states of the corresponding

bosonic tree diagrams for any number of stress-energy tensor insertions. This amounts to

an alternative bosonization scheme for coupling to gravity, different from the usual chiral

bosonization coupling to electromagnetism in the Schwinger model.

Once fermions are paired into an effective boson field, the bosons can condense and

non-vanishing condensates are possible. In the simplest case of free fermions with anti-

periodic boundary conditions on the finite spatial interval [0, L], the quantum Casimir

energy of the fermions can be described as a finite condensate ϕ̄ = 〈ϕ〉 of the boson field.

The value of this boson condensate can be obtained from simple geometric considerations

of a conformal transformation from flat R2 (assumed to have vanishing vacuum energy) to

R× S1, appropriate for the periodically identified finite interval. This shows an interesting

connection of the anomalous action of the boson and its condensate to the topology of

spacetime. In the axial case there is a corresponding relationship to the topological winding

number of the gauge field and its vacuum structure [11, 29–31].

This paper is organized as follows. After reviewing the path integral, dispersive and

Fock space approaches to the Schwinger model in section 2, we proceed in section 3 to

couple the fermion theory to gravity. The effective action of the conformal anomaly is first
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found by the functional integral method in section 3.1. The two-point correlation function

of stress-energy tensors, spectral function, UV finite sum rule and 1/k2 pole is considered in

section 3.2, the Fock space operator representation and Schwinger terms in section 3.3, the

boson condensate and Casimir energy in section 3.4, the canonical field representation in

section 3.5, and saturation of the intermediate state sum in 〈TT 〉 by the boson in section 3.6.

In section 4 we show that the fermion pairing into the boson ϕ associated with the conformal

anomaly implies a complete equivalence between one-loop quantum correlation functions of

arbitrary numbers of fermion stress-energy tensors 〈TT . . . T 〉 to a set of bosonic linear tree

diagrams, in which the intermediate boson states are precisely the fermion pairs. Section 5

contains a summary of our conclusions and discussion of how these results may extend

to d > 2 dimensions. There are two appendices. The Fock space algebra of currents is

computed first for the standard chiral bosonization of charge currents in appendix A, and

then secondly for the Virasoro algebra of stress-energy tensor moments in appendix B.

2 Fermion pairing and bosonization in the Schwinger model

2.1 Covariant path integral and effective action

Perhaps the best known example of the phenomenon of fermion pairing associated with an

anomaly in relativistic QFT is the Schwinger model, i.e. massless QED in d = 2 dimensional

flat spacetime [5, 6]. We generalize this slightly and consider the action for N identical

Dirac fermion species (flavors), and rescale the coupling e2 → e2/N , so that we consider

the theory described by the classical action

Scl = Sf [ψ,ψ;A] +
N

e2
Sg[A] = i

∫
d2x

N∑
j=1

ψj γ
µ(
↔
∂µ −iAµ)ψj −

N

4e2

∫
d2xFµνF

µν . (2.1)

As usual Fµν = ∂µAν − ∂νAµ is the field strength tensor, whose only non-vanishing com-

ponent in d = 2 is the electric field F01 = −E = −F 01. At certain points below we shall

extend the model to include a fermion mass term Scl → Scl +
∫
d2xmψψ, but our primary

focus is on the massless case.

The Dirac matrices obey the anti-commutation relations

γµγν + γνγµ = 2 diag (+,−) = −2 ηµν (2.2)

in the flat metric ηµν with η00 = −1. In two dimensions, these are satisfied in the 2 × 2

chiral representation in terms of the Pauli matrices by

γ0 = σ1 =

(
0 1

1 0

)
, γ1 = −iσ2 =

(
0 −1

1 0

)
, γ5 = γ0γ1 = σ3 =

(
1 0

0 −1

)
(2.3)

with ψ = ψ†γ0, and γ0 = (γ0)† Hermitian. Thus a free Dirac fermion in 1 + 1 dimensions

may be represented as a two-component complex spinor

ψ =

(
ψ+

ψ−

)
, ψ± =

1

2
(1± γ5)ψ (2.4)
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with (1 ± γ5)/2 projecting out the right- and left-handed (right moving and left moving)

single component Dirac fields ψ± respectively. For massless fermions these two components

propagate independently.

A special property of the Dirac matrices in two dimensions is

γµγ5 = γν ε
νµ (2.5)

where εµν = −ενµ is the anti-symmetric symbol, defined so that ε01 = +1 = −ε01, obeying

εµλενρ = −δµνδλρ + δµρδ
λ
ν , εµνενρ = δµρ . (2.6)

Because of (2.5), the vector coupling of the Dirac fermions can equally well be expressed

as a chiral coupling to the dual gauge field

Ãµ ≡ ηµλελνAν , Aµ = ηµλε
λνÃν , i.e. Ã0 = A1 , Ã1 = A0 (2.7)

according to

γµAµ = γµε ν
µ Ãν = γνγ5Ãν . (2.8)

This also implies that the vector and axial vector currents

jµ ≡ δSf
δAµ

=

N∑
i=1

ψiγ
µψi , jµ5 ≡

δSf

δÃµ
=

N∑
i=1

ψiγ
µγ5ψi (2.9)

are related by

jµ = jν5 ε
µ
ν , jµ5 = jνε µν . (2.10)

For free fermions, e = 0, each of these currents is classically conserved, corresponding to

the invariance of fermion action Sf in (2.1) under both U(1) vector gauge symmetry

ψi → eiαψi (2.11a)

Aµ → Aµ + ∂µα (2.11b)

and the UA(1) axial transformation

ψi → eiβγ5ψi (2.12a)

Ãµ → Ãµ + ∂µβ . (2.12b)

The global versions of these symmetries would be sufficient to guarantee conservation of

the Noether currents (2.9) in the free theory. As is well known, the vector and axial sym-

metries (2.11) and (2.12) cannot both be preserved at the quantum level, and conservation

of (at most) only one of the two classical currents (2.9) can be maintained together with

Lorentz invariance. Since as soon as e 6= 0, the gauge field action Sg[A] is invariant only

under the local vector symmetry (2.11), enforcing the choice of U(1) vector gauge invariance

∂µj
µ = 0 (2.13)
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leads necessarily to a well-defined anomalous divergence of the axial current [32]

∂µj
µ
5 =

N

π
F̃ = −δΓeff [β]

δβ
(2.14)

where the pseudoscalar dual of the field strength tensor is

F̃ ≡ 1

2
εµνFµν = E . (2.15)

The second relation of (2.14) indicates that through the chiral anomaly the effective ac-

tion of the fermions Γeff [β] necessarily acquires a non-vanishing dependence upon a UA(1)

rotation (2.12) by β.

In any number of dimensions the decomposition of a vector field into its parallel and

transverse components is

Aµ = A‖µ +A⊥µ (2.16a)

A‖µ = ∂µ
−1(∂νAν) ≡ ∂µα (2.16b)

A⊥µ = (δ ν
µ − ∂µ −1∂ν)Aν , ∂µA

⊥µ = 0 (2.16c)

where −1 is the Green’s function of the scalar wave operator . The decomposition (2.16)

is unique up to zero modes of (which we neglect for present purposes), and implies that

the gauge invariant information resides in the transverse component A⊥µ . A special property

of two dimensions is that the transverse component can be written as the Hodge dual of a

scalar gradient A⊥µ = εµν∂νβ [33]. Hence starting from Aµ = 0, an arbitrary gauge poten-

tial is composed of a combined U(1) and UA(1) transformation (2.11) and (2.12) in the form

Aµ = ∂µα+ ηµλε
λν∂νβ (2.17)

and we obtain from this, (2.7) and (2.15) that

F̃ = εµν∂µA
⊥
ν = ∂µÃ

µ = β . (2.18)

Inserting this relation into (2.14) gives

δΓeff [β]

δβ
= −N

π
β (2.19)

which being linear in β, allows for immediate integration to the one-loop effective action

Γeff [β] = −N
2π

∫
d2xβ β (2.20)

quadratic in β. This action is exact (up to zero modes and an additive constant which we

may set to zero at β = 0) and entirely determined by the chiral current anomaly.

Using (2.18) again to formally solve for β = −1F̃ allows us to express the anomalous

effective action (2.20) in the non-local gauge invariant form [34]

Γeff [β] = −N
2π

∫
d2x

∫
d2x′ F̃x ( −1)xx′ F̃x′ = −N

2π

∫
d2xA⊥µA

⊥µ ≡ Sanom[A] . (2.21)
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Thus the effect of integrating out the massless fermions in the functional integral [34, 35] is

Z
(N)
f [A] =

∫ N∏
i=1

[Dψi][Dψi] exp{iSf [ψ,ψ;A]} = [detF (/∂)]N exp{iSanom[A]} (2.22)

with Sanom[A] given by (2.21). In the functional integral approach the breaking of

chiral symmetry and the axial anomaly (2.14) may be ascribed to the non-invariance

of the fermionic functional measure
∏N
i=1[Dψi][Dψi] under the axial UA(1) transforma-

tion (2.12a) [36–39].

That all the gauge invariant information resides in A⊥µ which, owing to (2.17), is gen-

erated by a UA(1) axial transformation by β of the fermion determinant in two dimensions,

and that this dependence upon β in (2.19) is only linear through the axial anomaly (2.14)

so that the effective action (2.21) is purely quadratic in A⊥ are the essential points leading

to the Schwinger model being exactly soluble.

The appearance of the massless scalar propagator ( −1)xx′ in the one-loop effective

action (2.21) is the first indication that an effective scalar boson degree of freedom is

associated with the chiral anomaly. Indeed a pseudoscalar boson field χ may be introduced

so as to rewrite the result for the non-local effective action in (2.21)–(2.22) in the form

Z
(N)
f [A] = [detf (/∂)]N [detB(− )]

1
2

∫
[Dχ] exp {iSanom[χ;A]} (2.23)

with the local bosonic action

Sanom[χ;A] ≡ N

π

∫
d2x

(
1

2
χ χ− F̃ χ

)
(2.24)

accounting for the anomaly. By varying this action the local field χ satisfies the eq. of

motion

χ = F̃ = β (2.25)

while performing the Gaussian integral over χ simply reproduces (2.22), when account is

taken of the [detB(− )]
1
2 prefactor in (2.23). Thus the pseudoscalar boson field χ is a

completely gauge invariant local field equivalent to the pre-potential β determining the

transverse gauge invariant part of the vector potential, up to homogeneous solutions of the

two dimensional wave equation.

Varying (2.24) with respect to the vector potential Aµ or its dual Ãµ yields the vector

and axial vector currents (2.9) in terms of the effective boson field χ as

jµ =
δSanom

δAµ
= −N

π
εµν∂νχ and jµ5 =

δSanom

δÃµ
=
N

π
∂µχ (2.26)

so that the axial anomaly (2.14) is recovered by the eq. of motion for χ (2.25)

∂µj
µ
5 =

N

π
χ =

N

π
F̃ (2.27)

and the Maxwell eq. is

∂νF
µν = −εµν∂ν( β) =

e2

N
jµ = −e

2

π
εµν∂νχ (2.28)
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with current conservation (2.13) becoming a topological identity, equivalent to the single-

valuedness of χ.

Because F̃ is a total derivative, cf. (2.18), its integral
∫
d2x F̃ = 2πν is a topological

invariant, ν being the Pontryagin index, and the action (2.24) is invariant up to a surface

term under the shift of χ by a spacetime constant. This leads to the existence of a Noether

current

Jµ5 ≡ jµ5 −
N

π
εµνAν ≡ jµ5 + 2NKµ (2.29)

which is gauge dependent but conserved, ∂µj
µ
5 [A] = 0 by (2.14) and (2.15). Note also

that (2.28) can be immediately integrated and implies

E = β =
e2

π
χ+ E0 (2.30)

where E0 is a spacetime independent integration constant, that can be regarded as an

external constant electric field. Since E0 can be eliminated by shifting χ → χ − πE0/e
2,

reference to (2.24) shows that this is equivalent to adding to the action a topological term

θNν, with the arbitrary θ vacuum parameter of the Schwinger model given by E0 = e2θ/2

in the present units [40].

The complete solution of the Schwinger model is achieved by making use of (2.23)

together with the classical action in (2.1) to integrate over the inequivalent gauge orbits of

the vector potential Aµ by means of the gauge invariant functional measure [41]

[DA]

Vol [U(1)]
= [detB(− )]

1
2 [DA⊥] = detB(− ) [Dβ] (2.31)

again up to zero modes. In these relations the determinants in the functional measure are

Jacobians of the transformations from Aµ to A⊥µ to β. These Jacobians and in particular the

last determinant in (2.31) are responsible for cancelling the contributions of the apparent

ghost in the gauge field action Sg[A] = −1/4
∫
d2xFµνF

µν = 1/2
∫
d2x( β)2 in the latter

higher derivative form expressed in terms of the gauge invariant chiral pre-potential β. The

Gaussian integral over A⊥µ = ε νµ ∂νβ has a saddle point at F̃ = e2χ/π and yields

Z(N) =

∫
[DA]

Vol [U(1)]
exp

{
iN

e2
Sg[A]

}
Z

(N)
f [A]

= [detf (/∂)]N [detB(− )]
1
2

∫
[Dχ] exp

{
iN

2π

∫
d2x

(
χ χ− e2

π
χ2

)}
. (2.32)

We have retained the determinants in (2.22) and (2.23) in order to keep track of the

number of local degrees of freedom, starting with N local fermionic degrees of freedom

(and none originally in the vector potential, which is fully constrained by Gauss’ Law

in two dimensions). Since a Dirac fermion with anti-periodic boundary conditions is

equivalent to a single scalar with periodic boundary conditions in two dimensions, the

functional determinants satisfy [38]

detf (/∂) = [detB(− )]−
1
2 (2.33)
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so that for N = 1 one obtains from (2.32) with (2.33)

ZSchw = Z(N=1) =

∫
[Dχ] exp

{
i

2π

∫
d2x

(
χ χ− e2

π
χ2

)}
(2.34)

which is exactly the expression for a single real propagating pseudoscalar boson field χ

with mass M2
χ = e2/π, recovering the well-known result for the Schwinger model [6, 7].

Because of relation (2.33), for N > 1 (2.32) defines a theory of a single massive boson

with mass M2
χ = e2/π and N − 1 massless bosons [10, 18, 42, 43].

It is clear from the final form (2.34) for N = 1 that one has traded the original

single fermion degree of freedom for a single boson degree of freedom χ, which is a bona

fide propagating field in its own right, with its kinetic term χ χ generated by the axial

anomaly. The number of overall local degrees of freedom is conserved. Comparing the

expressions for the currents (2.9) and (2.26), it is also clear that the boson field χ is bilinear

in ψ and ψ, and hence is made up of a fermion/anti-fermion pair. This is a relativistic

version of the Cooper pairing phenomenon familiar in non-relativistic many-body theory,

and the BCS theory of superconductivity [1].

We conclude this section with a few additional remarks. First, the anomaly may also

be regarded in effect as giving rise to a gauge invariant mass term A⊥µA
⊥µ for the gauge field

in (2.21), as the functional integral of the Schwinger model may also be written in the form

ZSchw =

∫
[DA⊥µ ] exp

{
iN

2e2

∫
d2x

(
A⊥µ A⊥µ − e2

π
A⊥µA

⊥µ
)}

(2.35)

when use is made of (2.21), (2.31) and (2.33). However, this interpretation of a propagating

massive boson makes sense only because the anomaly through fermion pairing has rendered

the gauge field into an effective propagating degree of freedom, whereas it was totally

constrained by Gauss’ Law in the classical theory. Notice also that this interpretation

does not require fixing a gauge, and as use of the gauge invariant measure (2.31) makes

clear, the mass term is fully gauge invariant. This gauge invariant mass generation for

a gauge field is basically the Stueckelberg mechanism [44, 45] for mass generation which

would serve as a prototype for the Higgs mechanism in the Standard Model. In the

limit of vanishing coupling e → 0, the gauge field remains massless. The gauge field

propagating mode with a finite screening length is a relativistic version of collective

excitations familiar in many-body systems, induced e.g. in superconductors (Meissner

effect) and finite temperature plasmas (Debye screening).

Next we note that had we performed the functional integral in the opposite order,

integrating first over the vector potential, we would have obtained the gauge invariant result

Z(N) =

∫ N∏
i=1

[Dψi][Dψi]
∫

[DA]

Vol [U(1)]
exp

{
iSf [ψ,ψ;A] +

iN

e2
Sg[A]

}
(2.36)

=

∫ N∏
i=1

[Dψi][Dψi] exp

i
N∑
j=1

∫
d2xψj γ

µ
↔
∂µψj−

ie2

2N

∫
d2x

∫
d2x′ jµx ( )−1

xx′ jµx′
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which is a theory of N massless fermions with a four-fermion current-current interaction

between them. Except for its non-locality this is again similar to the starting point for

BCS theory [1].

Due to the conservation of the charge current jµ, its space and time components are

not independent, and j1 = −(∂x)−1ρ̇, so that

1

2

∫
d2x

∫
d2x′ jµx

(ηµν )
xx′

jνx′ = −1

2

∫
dt

∫
dx

∫
dx′ ρ(t, x)

1

∂2
x

ρ(t, x′) (2.37)

is in fact a instantaneous Coulomb interaction between the two charge densities ρ = j0

at spatial positions x and x′. It is remarkable that this apparently non-local (but also

apparently non-anomalous) theory of massless fermions interacting by their mutual long

range Coulomb interaction becomes the local theory of a single non-interacting but massive

boson χ, together with N − 1 free fermions in (2.32) via the previous route of the axial

anomaly. For strictly zero coupling e = 0, the free fermion and free boson representations

are equivalent. However as soon as e 6= 0, no matter how small its magnitude, the attractive

Coulomb interaction between the fermions and anti-fermions destabilizes the free massless

fermion ground state, and leads to the ground state or vacuum of a massive bound state

boson instead, again reminiscent of the Cooper instability and pairing phenomenon [1].

Finally we note that the effect of functionally integrating over the chiral boson in (2.23)

is up to the boson determinant and use of the saddle point eq. (2.25) equivalent to the

previous form (2.22), so that we may equally well write

Z
(N)
f [A] = [detf (/∂)]N exp{iSanom[χ;A]}

∣∣∣
χ = F̃

. (2.38)

This shows that the one-loop generating functional of axial or electromagnetic current

correlators in the original free N -fermion quantum theory is mapped (up to a multiplicative

constant independent of Aµ) to the tree diagrams of the classical bosonic action (2.24), with

the chiral boson field sourced by F̃ according to (2.25). The equivalence of the quantum

one-loop fermion theory to tree level boson will be shown explicitly in current correlation

functions in the next section.

2.2 Correlation functions of currents, spectral function and sum rule

The exact quantum effective action (2.21) resulting from integrating out the fermions arises

entirely from the one-loop diagram in figure 1a, which in Fourier space is

i

∫
d2x eik·x 〈0|T jλ5 (x)jν(0)|0〉 = −ελµ Π ν

µ (k)
∣∣
m=0,d=2

(2.39)

where T denotes time-ordering and

Πµν(k) =
2N

(2π)
d
2

Γ

(
2− d

2

)(
kµkν − k2ηµν

) ∫ 1

0
dxx(1− x) [k2x(1− x) +m2]

d
2
−2 (2.40)

is the vacuum polarization in general d dimensions for N fermions of mass m. For d = 2

this is finite, and for massless fermions m = 0 it becomes simply

Πµν(k)
∣∣
m=0,d=2

=
(
kµkν − k2ηµν

) N

πk2
. (2.41)
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Multiplying (2.39) by ikλ and substituting (2.41) gives the axial anomaly eq. (2.14). The

anomaly for massless fermions is thus intimately connected to the pole at k2 = 0 in (2.41).

The 1/k2 massless pole in (2.41) in the one-loop fermion polarization corresponds

to the physical propagator of the single effective bosonic degree of freedom χ which is

massless in the absence of electromagnetic interactions, becoming massive in the Schwinger

model according to (2.34). Comparing (2.9) and (2.26), it is clear that the pseudoscalar

effective boson field χ is related to fermion bilinears. Indeed substituting (2.26) the

one-loop fermion vacuum polarization Πµν(k) can be written in terms of a tree amplitude

for the boson χ according to

Πµν(k) = i

∫
d2x eik·x 〈0|T jµ(x)jν(0)|0〉

=
N2

π2
εµλενρkλkρ

∫
d2x eik·x i〈0|T χ(x)χ(0)|0〉

=
N2

π2
εµλενρkλkρ

π

Nk2

=
(
kµkν − k2ηµν

) N

πk2
(2.42)

where we have used the normalization of the χ propagator from (2.32). The 1/k2 pole is

the signal of a propagating (pseudo)scalar degree of freedom in the quantum theory not

present in the classical action (2.1). It is a quantum effect of the fermion pairing in the

two-particle fermion sector involving the correlation of two currents, hence four fermion

operators, which may be re-expressed in terms of an effective single particle bosonic theory

and tree amplitude (in which ~ is a parameter). It is clear from (2.39)–(2.42) that for mass-

less fermions m = 0 and in the limit of vanishing coupling to the electric field, e→ 0, the

pairing of fermions to form a massless boson and the massless pole in (2.41) is associated

with the axial anomaly, quite apart from the classical gauge field action Sg[A], and in this

limit the boson in (2.34) or the propagating electric potential in (2.35) remains massless.

Indeed considering the full gauge field inverse propagator function, cf. (2.35) with (2.16c),

(D−1)µν(k) = (D−1
0 )µν(k)−Πµν(k) = −N(kµkν − k2ηµν)

[
1

e2
+

1

πk2

]
(2.43)

we observe that when e2 > 0, the massless 1/k2 pole combines with the classical contri-

bution 1/e2 so that D−1 vanishes at −k2 = M2
χ = e2/π. This corresponds to a propagator

(e2/N)(k2 + M2
χ)−1 with a pole at this value of k2, which is that of a massive boson.

The massless anomaly pole in the polarization (2.41) indicates a propagating bosonic

excitation, but only when the classical gauge field action Sg[A] is added to the fermion

theory with a finite dimensionful coupling e2 in (2.32) or (2.43) does this boson couple to

the gauge field and is a finite mass for it generated.

The equality of the massless fermion loop (2.41) and massless boson tree ampli-

tude (2.42) (with e → 0) is illustrated diagrammatically in figure 1. Notice that because

of the linear dependence of the currents upon χ in (2.26), and the absence of any Aµ
dependence of the χ propagator itself, figure 1 is the only diagram generated by the tree
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j5 j

(a) The one-loop fermion polariza-

tion diagram.

(b) The pseudoscalar tree diagram.

Figure 1. Equivalence of one-loop fermion polarization diagram with pseudoscalar tree.

effective action in (2.38). Correspondingly the correlation function of two currents is the

only connected correlation function in the theory, and the full equivalence of fermion loop

to scalar tree is contained in only the diagrams represented in figure 1.

It is interesting to examine what happens to the massless 1/k2 pole if the theory is

deformed away from exactly zero fermion mass. Considering again the vacuum polarization

with massive fermions in (2.40), we may introduce the spectral representation by inserting

within the Feynman parameter integral in (2.40) the identity

1 =

∫ ∞
0

ds δ

(
s− m2

x(1− x)

)
(2.44)

and interchanging the s and x integrals to obtain

Πµν(k)
∣∣
d=2

= (kµkν − k2ηµν)

∫ ∞
0

ds
%J(s)

k2 + s
(2.45)

with

%J(s) ≡ N

π

∫ 1

0
dx δ

(
s− m2

x(1− x)

)
=

2N

π

m2

s2

1√
1− 4m2

s

θ(s− 4m2) . (2.46)

This spectral function is illustrated in figure 2.

As is clear from its definition (2.46) or by direct integration, in d = 2 dimensions the

spectral function %J(s) obeys the ultraviolet finite sum rule∫ ∞
0

ds %J(s) =
N

π
(2.47)

for any m2 ≥ 0. On the other hand from (2.46), when m→ 0, %J(s) vanishes for all s > 0.

This is consistent with the sum rule only by %J(s) becoming a δ(s) function distribution

in the limit of zero fermion mass. Indeed from the first expression in (2.46) we see that

lim
m→0

%J(s) =
N

π

∫ 1

0
dx δ(s) =

N

π
δ(s) . (2.48)

Substituting this into (2.45) recovers (2.41) in the massless limit. Thus the effect of the

fermion mass perturbation is to spread the infinitely sharp δ(s) peak in the spectral function
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m
2
ρ
(s

)

s/m2

Figure 2. The spectral function (2.46) for finite fermion mass m as a function of s/m2, shown

here for N = 1. The area under the curve %J(s) shown in gray obeys the finite sum rule (2.47).

to a distribution in center of mass energy s over a few times m2 above the threshold

s > 4m2. The ultraviolet sum rule expresses the fact that the pseudoscalar boson degree of

freedom remains in the two-particle fermion sector for any positive fermion mass, becoming

however a resonance rather than an isolated pole if m > 0. The fermion pairing due to

the axial anomaly does not disappear even for finite fermion mass, and because of the sum

rule (2.47) the boson field χ becomes the appropriate description again when s� 4m2.

The Schwinger term in the commutator of currents is also directly related to the axial

anomaly and sum rule. The expectation value of the commutator of two currents is given

by the discontinuity of the polarization tensor from k0 + iε to k0 − iε , i.e.

i
〈[
jµ(t, x), jν(t′, x′)

]〉
= i

∫
d2k

(2π)2
e−ik

0(t−t′)+ik1(x−x′) 2 Im
[
Πµν(k0 + iε, k1)

]
= i

∫
d2k

2π
e−ik

0(t−t′)+ik1(x−x′) (kµkν − k2ηµν)

∫ ∞
0

ds %J(s) sgn(k0) δ
(
− (k0)2 + (k1)2 + s

)
= (ηµν − ∂µ∂ν)

∫ ∞
0

ds %J(s)D(t− t′, x− x′; s) (2.49)

where

D(t, x; s) = i

∫
d2k

2π
e−ik

0t+ik1x sgn(k0) δ
(
− (k0)2 + (k1)2 + s

)
(2.50)

=

∫ ∞
−∞

dk1

2π
eik

1x sin
(
t
√

(k1)2 + s
)√

(k1)2 + s
=

1

2
sgn(t) θ(t2 − x2) J0

(√
s(t2 − x2)

)
is the Pauli-Jordan commutator function for a scalar field of mass

√
s in two dimensions.

Since D(t, x; s) is an odd function of t and satisfies

∂tD(t, x; s)
∣∣
t=0

= δ(x) but ∂2`
t D(t, x; s)

∣∣
t=0

= 0 (2.51)
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for any even number of time derivatives and any s, only the µ 6= ν term with one time deriva-

tive in (2.49) survives when evaluated at t = t′, and we find the equal time commutator〈[
j0(t, x), j1(t, x′)

]〉
= −i ∂x δ(x− x′)

∫ ∞
0

ds %J(s) = − iN
π
∂x δ(x− x′) (2.52)

as a consequence of the sum rule (2.47). This is the expectation value of the anomalous

Schwinger equal time commutator [46] for N identical fermions of any mass.

In fact the Schwinger anomalous commutator (2.52) is exact at the operator level as

may be seen from the boson field representation of the currents in (2.26), since

[
j0(t, x), j1(t, x′)

]
= −N

2

π2
[∂xχ(t, x), ∂tχ(t, x′)] = − iN

π
∂x δ(x− x′) (2.53)

as a consequence of the equal time canonical commutation relation of the χ field,

i
[
χ̇(t, x′), χ(t, x)

]
=

π

N
δ(x− x′) (2.54)

normalized as in (2.32). For massless fermions the unequal time commutation function of

currents becomes simply[
jµ(t, x), jν(t′, x′)

]∣∣∣
m=0

= − iN
π

(ηµν − ∂µ∂ν)D0(t− t′, x− x′) (2.55)

where

D0(t, x) ≡ D(t, x; s = 0) =
1

2
sgn(t) θ(t2 − x2) (2.56)

is the commutator function for a massless scalar in two dimensions.

Thus the 1/k2 pole in the correlation function of massless fermion currents (2.41), the

ultraviolet sum rule for the spectral function (2.47), the Schwinger term in the equal time

commutator of currents (2.52), and the fermion pairing and bosonization formulae (2.9)

and (2.26) are all related to and derivable from the axial anomaly (2.14). The effects of

the axial anomaly persist in the sum rule and Schwinger term even if the fermions are

massive, although only if they are massless does the chiral boson pairing field χ describe

a pseudoscalar state with a mass sharply defined by δ-function support only at k2 = 0,

rather than a broader resonance as in figure 2, and only in the case of massless fermions is

the theory exactly soluble.

2.3 Boson operators and the Schwinger term

The previous treatment of the Schwinger model by functional integral and covariant meth-

ods readily shows all of its essential features. Fermion pairing in the Schwinger model may

be realized explicitly also by canonical boson operators in Fock space [47–49]. We review

this standard operator bosonization related to the axial anomaly in order to compare and

contrast it with the corresponding pairing and effective scalar related to the 2D conformal

anomaly in the next section.

Let us first consider the case of a single fermion (N = 1). The Dirac eq. in the chiral

representation gives

(∂t ± ∂x)ψ± = 0 (2.57)
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for the single component right and left moving massless chiral fields. Thus each may be

expanded in Fourier modes,

ψ±(t, x) =
1√
L

∑
q≥ 1

2

(
b(±)
q e−ik̃q(t∓x) + d(±)†

q eik̃q(t∓x)
)

(2.58)

where

k̃q =
2πq

L
(2.59)

and q is a half-integer for anti-periodic boundary conditions on the interval x ∈ [0, L]. The

fermion Fock space operators obey the anti-commutation relations{
b(±)
q , b

(±)†
q′

}
+

= δq,q′ =
{
d(±)
q , d

(±)†
q′

}
+

(2.60)

and the free fermion vacuum is defined by

b(±)
q |0〉 = d(±)

q |0〉 = 0 . (2.61)

To simplify notation somewhat one can define

c
(±)

q≥ 1
2

≡ b(±)
q , c

(±)

q≤− 1
2

≡ d(±) †
−q (2.62)

so that

ψ±(t, x) =
1√
L

∑
q∈Z+ 1

2

c(±)
q e−ik̃qt e±ik̃qx (2.63)

and the anti-commutation relations{
c(±)
q , c

(±)†
q′

}
+

= δq,q′ ,
{
c(±)
q , c

(±)
q′

}
+

=
{
c(±)†
q , c

(±)†
q′

}
+

= 0 (2.64)

hold, for all (both positive and negative) half-integers q ∈ Z + 1
2 .

Bearing in mind that normal ordering of the fermion operators is defined with respect

to the fermion vacuum (2.61), and c
(±) †
q≤− 1

2

as defined by the Hermitian conjugate of (2.62)

is an annihilation operator, the normal ordered fermion charge density operator for a

single fermion

j0 = :ψ(t, x)γ0ψ(t, x) : = :ψ(t, x)γ1γ5ψ(t, x) : = :ψ†+ψ+ : + :ψ†−ψ− : (2.65)

and the current density operator

j1 = :ψ(t, x)γ1ψ(t, x) : = :ψ(t, x)γ0γ5ψ(t, x) : = :ψ†+ψ+ : − :ψ†−ψ− : (2.66)

can be expressed in terms of the fermion bilinears via

:ψ†±ψ± : =
1

L

∑
n∈Z

ρ(±)
n e−iknt e±iknx (2.67)

with

ρ(±)
n ≡

∑
q∈Z+ 1

2

:c
(±)†
q−n c

(±)
q : ≡

∑
q≥ 1

2

c
(±) †
q−n c

(±)
q −

∑
q≤− 1

2

c(±)
q c

(±) †
q−n . (2.68)
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Note that

kn =
2πn

L
(2.69)

so that ρ
(±)
n is defined by (2.68) for all integers n, and is periodic on the interval x ∈ [0, L].

From the hermiticity of (2.67) or from (2.68) it follows (by shifting q → q + n and

regrouping terms) that

ρ(±) †
n = ρ

(±)
−n ∀n ∈ Z . (2.70)

Note that for n > 0 ρ
(±)
n may also be written in terms of the physical fermion creation and

annihilation operators in the form

ρ
(±)
n>0 =

n− 1
2∑

q= 1
2

d
(±)
n−qb

(±)
q +

∞∑
q=n+ 1

2

b
(±)†
q−n b

(±)
q −

∑
q≤− 1

2

d
(±)†
−q d

(±)
n−q . (2.71)

The n = 0 densities

ρ
(±)
0 = Q± =

∫ L

0
dx :ψ†±ψ± : =

∑
q∈Z+ 1

2

:c(±)†
q c(±)

q : =
∑
q≥ 1

2

c(±)†
q c(±)

q −
∑
q≤− 1

2

c(±)
q c(±)†

q (2.72)

are total charge operators for right and left moving fermions respectively.

It is clear that the mixed commutator of left and right movers [ρ
(∓)
n , ρ

(±)
n′ ] = 0, while a

short calculation, cf. appendix A, shows that

[ρ(±)
n , ρ

(±)
n′ ] = n δn,−n′ so that [ρ(±)

n , ρ
(±) †
n′ ] = n δn,n′ . (2.73)

This finite non-zero commutator for the Fourier moments of the charge densities is anoma-

lous, since a naive computation ignoring the normal ordering in (2.68) and freely shifting

the q indices in the unregulated sums gives zero. With proper normal ordering with respect

to the fermion vacuum, the expectation value of the equal time commutator currents is

instead from (2.65)–(2.67) and (2.73)

[j0(t, x), j1(t, x′)]
∣∣
N=1

=
1

L2

∑
n∈Z

neikn(x−x′) − 1

L2

∑
n∈Z

ne−ikn(x−x′)

=
1

πL

∑
n∈Z

kne
ikn(x−x′) = − i

π
∂xδ(x− x′) (2.74)

for a single fermion (N = 1). Thus (2.52) for the expectation value is verified to be an

exact result, valid at the operator level, as is also expected from (2.53).

Since the anomalous commutator (2.73) is a c-number, the current algebra for n > 0

is isomorphic to the canonical algebra of a bosonic field operator, which we now construct

as follows. Let us define

a(±)
n ≡ − i√

|n|
ρ(±)
n , n 6= 0 , N = 1 (2.75)

which, for n strictly positive, obey the canonical commutation relations,

[a(±)
n , a

(±)†
n′ ] =

1√
nn′

[ρ(±)
n , ρ

(±) †
n′ ] = δn,n′ (2.76)
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and construct the boson field operators

φ±(t, x) =

∞∑
n=1

1√
4πn

(
a(±)
n e−ikn(t∓x) + a(±)†

n eikn(t∓x)
)

+ φ0
±(t, x) (2.77)

where φ0
± is the contribution of the n = 0 mode, which must be treated separately. Since

from (2.75) a
(±)†
n = −a(±)

−n , the mode sum in (2.77) may also be expressed as a sum over

all the non-zero integers, but as we wish to keep track of positive and negative energies in

what follows, we keep n ≥ 0. The interpretation of the bosonic operators an and a†n for

n > 0 in (2.75) is that they either move a fermion from an occupied state to an unoccupied

state, or they create (or destroy) a particle-hole state. Since these operations do not

change the fermion number, an and a†n commute with Q±, and the Fock space they span

has fixed charges Q± or total numbers of left and right movers [11–13, 48, 49]. Hence the

bosonization of the full fermion Fock space is incomplete without inclusion of the n = 0

modes, which as we now show involves the raising and lowering operators of right and left

moving fermion number.

The form of the zero mode completion of φ± is determined by the following consider-

ations. First, the φ0
± are linearly independent and each must be a function only of t ∓ x.

Second, a limiting process kn → 0 of the mode functions in (2.77) shows that they can

be at most only linear functions of the variable t ∓ x. Third, relations (2.67) and (2.72)

determine the coefficients of the linear dependence of φ0
± on t∓ x in terms of Q±. Finally,

the normalization of the constant terms, to be called R±, can be chosen so that

φ0
± =

1

2
√
π
R± +

√
π

L
Q±(t∓ x) (2.78)

with the canonical commutation relations

[R±, Q±] = i , [R±, Q∓] = 0 (2.79)

between the Hermitian ‘coordinates’ R± and the corresponding ‘momenta’ Q± for the right

and left moving fields respectively. Thus the R± are the fermion number changing operators

needed to span the original full fermion Hilbert space. Moreover since

[φ0
±, φ̇

0
±] =

i

2L
(2.80)

it is now easily verified that with the inclusion of the zero modes the equal time canonical

commutation relations

[(φ+ ± φ−)t,x , (φ̇+ ± φ̇−)t,x′ ] =
i

L

∑
n∈Z

eikn(x−x′) = i δ(x− x′) (2.81)

are fulfilled on the finite interval [0, L]. Note that the n = 0 term in this sum comes

from the zero mode commutators (2.80), which is necessary to complete the delta function

coming from the non-zero mode Fock space. Thus, with the zero modes (2.78) included, the

sum or difference of the right and left moving field operators (2.77) each define complete

canonical local boson fields, the sum a scalar and the difference a pseudoscalar field.
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Taking the derivatives of the boson field operators (2.77) with respect to x and t, and

using the definition (2.75), as well as (2.67), (2.69), (2.70), and (2.78), (2.65) and (2.66)

become

j0 =
1√
π
∂x
(
φ+ − φ−

)
(2.82a)

j1 = − 1√
π
∂t
(
φ+ − φ−

)
, (N = 1) (2.82b)

in terms of the full quantum pseudoscalar field including its zero mode contributions. Thus

the fermion current components can be expressed in terms of the pseudoscalar boson, as

expected by our previous consideration of the axial anomaly. The description of the current

components in terms of derivatives of the scalar sum φ+ + φ− is suited instead to the

inequivalent dual theory in which the vector current is anomalous and the chiral symmetry

is maintained at the quantum level. The commutator of current components (2.55) again

follows as does the Schwinger anomalous equal time commutator (2.53) directly from the

canonical commutation relation (2.81) and (2.82) at the operator level.

When N > 1, the anomalous commutator (2.74) acquires a factor of N . Hence the

currents themselves in (2.82) must acquire a factor of
√
N in order for the pseudoscalar

boson φ+ − φ− to remain canonically normalized by (2.81), i.e.

j0 =

√
N

π
∂x
(
φ+ − φ−

)
(2.83a)

j1 = −
√
N

π
∂t
(
φ+ − φ−

)
. (2.83b)

Dividing by
√
N this is equivalent to defining the canonical Fock space operators in (2.75) by

a(±)
n ≡ − i√

|n|N
ρ

(±)
n,N , n 6= 0 (2.84)

with ρ
(±)
n,N the Fourier moments of the currents j0 ± j1 for N fermions (recall eqs. (2.65)–

(2.67)).

Comparing the rescaled currents with those in the functional integral representa-

tion (2.32) in (2.26), we see that the field χ of the previous section is related to the

canonically normalized quantum pseudoscalar operator field of this section by

χ =

√
π

N

(
φ+ − φ−

)
(2.85)

for N identical fermions, consistent with the normalization of the commutation rela-

tion (2.54). The scaling of the currents (2.83) or (2.84) with
√
N as opposed to linearly in

N is due to the fact that whereas classical currents in (2.26) scale linearly with the total

number of particle species, the quantum fluctuations in these currents encoded in (2.74)

and the commutation relations (2.81) are suppressed with respect to these by
√
~/N . The

effective loop expansion parameter is therefore ~/N . A classical condensate of φ± would
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be larger than the quantum fields in (2.77) by a factor of
√
N/~, and give a classical χ of

order N0 and currents in (2.26) of order N .

This establishes the complete equivalence of the covariant functional integral approach

of section 2, and the Fock space operator description of this section. In the latter approach

the normal ordering prescription which takes proper account of the filled Dirac sea is

critical to obtaining correct finite results consistent with the covariant anomaly encoded in

the amplitude (2.39) and Schwinger commutator (2.74). Indeed the anomaly itself may be

regarded as a consequence of the Dirac sea filled to an infinite depth [46].

An interesting point to notice about the construction of the boson operators (2.77) is

that whereas the non-zero modes are strictly periodic on the interval, the zero modes (2.78)

are not. Instead only the exponential operators exp (2i
√
πφ±) are periodic in the represen-

tation where Q± are diagonal and take on integer values. The operators U± = exp(iR±)

and U † = U−1 = exp(−iR±) are the raising and lowering operators needed to change

the right and left moving fermion numbers Q± by one unit. Together with the n > 0

bosonic Fock space operators in (2.75) they span the entire original fermionic Fock space,

thereby completing the bosonization and making it fully invertible in terms of exp (2i
√
πφ±)

(‘re-fermionization’). In the condensed matter literature the exponentials of the zero

modes (2.78) are referred to as Klein factors [48].

In the field theory context these zero modes are called winding modes [11, 35], because

the fixed Q± sectors of the Hilbert space are sectors of fixed Chern-Simons winding number

NCS ≡
∫
Kµ dΣµ = − 1

2π

∫
εµνAνdΣµ =

1

2π

∫ L

0
A1dx (2.86)

given by the time component of the topological current Kµ = − 1
2π ε

µνAν integrated over the

spatial interval [0, L]. The Chern-Simons number (2.86) is invariant under gauge trans-

formations periodic on the interval, but changes by an integer NCS → NCS + ` under

‘large’ gauge transformations A1 → A1 − iU−1
` ∂xU` where U`(x) = exp(2πi`x/L) is the

holonomic winding of the U(1) phase ` times as x varies over [0, L]. The electric charge

Q+ + Q− is conserved, but the axial charge Q5 = Q+ − Q− changes by 2N` units under

such a transformation. The winding sectors are in one-to-one correspondence with the

integers characterizing the topologically distinct mappings of the U(1) Wilson loop phase

exp(i
∫ L

0 dxA1) = exp(i
∮
dxµAµ) winding around the non-contractible loop of spatially

periodic interval [0, L] with its endpoints identified, which is the mapping S1 → S1 with

fundamental group Π1(S1) = Z. The phase of the Wilson loop may also be recognized as

the Aharonov-Bohm phase of the non-contractible loop around the spacetime tube R× S1

thought of as a ‘solenoid’ threaded by a quantized magnetic flux in the three-dimensional

flat spacetime in which the two-dimensional cylinder can be embedded.

2.4 Intermediate pair states of 〈jj〉

In order to see explicitly how the fermion pairing into an effective bosonic degree of freedom

works in detail, and how the fermion loop can be represented as a boson tree as in fig-

ure 1, we consider next the intermediate Fock states that contribute to the current-current

correlation function (2.41) in both the massless fermionic and bosonic representations.
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In the original fermionic representation the vacuum polarization (2.41), given by the

one-loop diagram of figure 1a implies that the cut intermediate states are two-particle

fermion states. Considering first the case of N = 1, the general on-shell normalized two-

fermion state is

|q, s; q′, s′〉 ≡ b(s)†q d
(s′)†
q′ |0〉 (2.87)

in the representation (2.58), where the indices s, s′ = ± distinguish left and right moving

fermions. The half-integer indices q, q′ ≥ 1
2 are to be summed over all allowed positive

values and s, s′ = ± in the intermediate state sum.

On the other hand, in the bosonic representation the on-shell normalized single boson

state is

|n, s〉 = a(s)†
n |0〉 = − i√

n

n− 1
2∑

q= 1
2

b(s)†q d
(s) †
n−q|0〉 (2.88)

which is a particular coherent superposition of two-fermion states (2.87). Thus it is not

obvious a priori that the sum over this very different restricted set of intermediate states

will yield the same result for 〈jj〉 as the that of summing over all two-fermion states (2.87)

with no restrictions. We will now show that nevertheless the sum over the coherent boson

states (2.88) coincides with the sum over unrestricted two-fermion states (2.87).

For the sum over general two-fermion intermediate states we first note that

〈0|jµ(t, x)|q, s; q′, s′〉 = exp
[
−i t E(q, q′) + i x ps,s′(q, q

′)
]
〈0|jµ(0, 0)|q, s; q′, s′〉 (2.89)

where

E(q, q′) =
2π

L
(q + q′) , ps,s′(q, q

′) =
2π

L

(
sq + s′q′

)
(2.90)

is the energy and momentum respectively of the two-particle state (2.87). Because the two

chiralities do not mix in the massless fermion limit, cf. (2.65)–(2.66), the only non-zero

matrix elements of (2.89) involve

〈0|ψ†±ψ±(0)|q, s; q′, s′〉 =
1

L
δs,± δs′,± (2.91)

and therefore only states with the same helicity s = s′ will contribute to the intermediate

state sum. In that case from (2.90) the matrix element (2.89) depends only upon n = q+q′.

Then at fixed n ≥ 1, the sum over q = n− q′ ranges from 1
2 to n− 1/2. The sum over the

complete set of two-fermion intermediate states (2.87) gives

〈0|j0(t, x) j0(t′, x′)|0〉 = 〈0|j1(t, x) j1(t′, x′)|0〉
=
∑
s,s′=±

∑
q,q′≥ 1

2

〈0|j0(t, x)|q, s; q′, s′〉〈q, s; q′, s′ |j0(t′, x′)|0〉

=
1

L2

∑
s=±

∞∑
n=1

n− 1
2∑

q= 1
2

exp[−ikn(t− t′)] exp[iskn(x− x′)]

=
1

L2

∞∑
n=1

n e−ikn(t−t′)
[
eikn(x−x′) + e−ikn(x−x′)

]
(2.92)
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since
n− 1

2∑
q= 1

2

1 = n . (2.93)

Likewise we obtain

〈0|j0(t, x) j1(t′, x′)|0〉 =
1

L2

∞∑
n=1

n e−ikn(t−t′)
[
eikn(x−x′) − e−ikn(x−x′)

]
(2.94)

for the 〈j0j1〉 matrix element.

On the other hand, beginning with the single boson intermediate state (2.88) we find

the matrix element

〈0|j0(t, x)|n, s〉 = − i

2π

kn√
n

exp [−i kn(t− sx)] 〈0|a(s)
n a(s) †

n |0〉

= − i
√
n

L
exp [−i kn(t− sx)] (2.95a)

〈0|j1(t, x)|n, s〉 = − is
2π

kn√
n

exp [−i kn(t− sx)] 〈0|a(s)
n a(s) †

n |0〉

= − is
√
n

L
exp [−i kn(t− sx)] (2.95b)

by (2.76), (2.77), and (2.82). Hence the sum over single boson intermediate states is

〈0|j0(t, x)j0(t′, x′)|0〉 = 〈0|j1(t, x)j1(t′, x′)|0〉 =
∑
s=±

∞∑
n=1

〈0|j0(t, x)|n, s〉〈n, s|j0(t′, x′)|0〉

=
1

L2

∑
s=±

∞∑
n=1

n exp[−ikn(t− t′)] exp[iskn(x− x′)]

=
1

L2

∞∑
n=1

n e−ikn(t−t′)
[
eikn(x−x′) + e−ikn(x−x′)

]
(2.96)

and likewise

〈0|j0(t, x)j1(t′, x′)|0〉 =
1

L2

∞∑
n=1

n e−ikn(t−t′)
[
eikn(x−x′) − e−ikn(x−x′)

]
(2.97)

which coincide with the results obtained with the arbitrary two-fermion states in-

serted, (2.92) and (2.94) respectively. Naturally, the same result is obtained if we use

the explicit fermion pair representation of the single boson state (2.88) defined by (2.71)

and (2.75), if again the sum (2.93) is used.

By either method the results for the current-current correlator may be summarized as

〈0|jµ(t, x)jν(t′, x′)|0〉 = − iN
π

(ηµν − ∂µ∂ν)G >
0 (t− t′, x− x′) (2.98)

where

G >
0 (t− t′, x− x′) = i

〈(
φ+ − φ−

)
t,x

(
φ+ − φ−

)
t′,x′

〉
nonzero

=
i

4π

∞∑
n=1

1

n
e−ikn(t−t′)

[
eikn(x−x′) + e−ikn(x−x′)

]
(2.99)
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is the Wightman function of the canonically normalized massless pseudoscalar field φ+−φ−
defined in the previous section in the periodic interval [0, L], with the zero mode removed,

since it does not contribute to (2.98). For N identical species of fermions we have multiplied

by N to obtain (2.98). The commutator and Schwinger term in the continuum limit is

as before, cf. (2.52). If the time-ordered product of currents is considered instead, the

Feynman Green’s function

G0(t− t′, x− x′) = θ(t− t′)G>0 (t− t′, x− x′) + θ(t′ − t)G>0 (t′ − t, x− x′) (2.100)

for the free massless boson is obtained, whose Fourier transform is 1/k2 in the continuum

limit. This shows the complete equivalence between the two-fermion massless intermediate

states contributing to the vacuum polarization Πµν = i〈T jµ(x)jν(x′)〉 loop diagram (2.41),

and the fermion paired single boson intermediate states contributing to the corresponding

tree diagram in figure 1.

3 Fermion pairing and scalar boson of the conformal anomaly

3.1 Covariant path integral and effective action in curved spacetime

In addition to chiral symmetry the action Sf of (2.1) for massless fermions also has an

apparent conformal symmetry. To make this explicit it is useful to generalize the fermionic

action to curved spacetime with general spacetime metric gµν(x). This is the external field

taking the place of the gauge field in this case. With the usual minimal coupling to the

local zweibein frame field eaµ(x) the fermion action in curved spacetime reads

Sf [ψ,ψ; g,A] = −
N∑
j=1

∫
d2x [det eaµ] ψj(−iγaEµa

↔
∇µ +m)ψj (3.1)

where Eµa(x) ≡ ηab gµν(x)ebν(x) is the inverse of eaµ(x), and

↔
∇µ≡

↔
∂µ +ωµ − iAµ =

1

2

( →
∂µ −

←
∂µ
)

+ ωµ − iAµ (3.2)

is the double edged covariant derivative. This is defined in terms of the curved spacetime

spin connection

ωab µ = Eν[aηb]c∇µecν by ωµ =
1

2
Σabωab µ =

1

2
ΣabEνaηbc∇µecν (3.3)

in the absence of torsion, where Σab = 1
4 [γa, γb] and anti-symmetrization of any two tensor

indices is defined by t[ab] ≡ (tab − tba)/2. We have included a fermion mass m in (3.1),

although we are primarily interested in massless fermions m = 0. The zweibein and its

inverse satisfy

eaµ(x) ebν(x) ηab = gµν(x) , eaµ(x)Eµb(x) = δab , det eaµ =
√−g =

√
−det gµν (3.4)

where the Greek curved spacetime indices must now be distinguished from the tangent

space Latin indices, and the tangent space Dirac matrices γa may be taken to be the
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same as those in flat spacetime of the previous section, eq. (2.3), with this replacement of

spacetime indices µ, ν, . . . by tangent space indices a, b, . . .

The variation of (3.1) with respect to the zweibein produces a stress tensor with both

symmetric and anti-symmetric terms. The anti-symmetric term is proportional to the

divergence of spin density of the fermions which couples to torsion in the Cartan approach

to gravity. Since in this paper we do not consider torsion, we restrict ourselves to the

symmetrized Tµνf . This symmetrized fermion stress-energy tensor is given by

Tµνf =
ηabEµb

[det ecρ]

δSf
δeaν

∣∣∣∣
sym.

=
N∑
j=1

(
−iψjγ(µ

↔
∇ ν)ψj − gµνψj(−iγλ

↔
∇λ +m)ψj

)
(3.5)

which is classically both covariantly conserved

∇µTµνf = 0 (3.6)

and traceless gµνT
µν
f = Tµµ f = 0 for m = 0, by use of the eqs. of motion. These

express the invariance of Sf under both general coordinate transformations and conformal

transformations

ψ → e−σ/2ψ , E µ
a → e−σE µ

a , gµν → e2σgµν , det eaµ → e2σ det eaµ (3.7)

in the massless case [39].

Just as in the case of vector and chiral invariance for m = 0 in flat spacetime, both of

these classical invariances cannot be maintained at the quantum level and at least one must

be abandoned. The Equivalence Principle requires (3.6) for consistent coupling to gravity,

with the result that once enforced at the quantum level, one finds that conformal invariance

must be violated. In a general curved spacetime background the conformal anomaly is [2–4]

〈
Tµµ
〉
f

=
N

24π
R (3.8)

in terms of the Ricci curvature scalar R. Since

δSf =
1

2

√−g Tµνf δgµν =
√−g Tµµ f δσ (3.9)

under a conformal transformation, and

√−g R =
√−ḡ R̄− 2

√−ḡ σ (3.10)

is linear in σ when the metric is parameterized in the form

gµν = e2σ ḡµν (3.11)

with ḡµν is a fixed fiducial metric, the anomaly eq. (3.8) gives

δΓeff

δσ
=
√−g Tµµ f =

N

24π

(√−ḡ R̄− 2
√−ḡ σ

)
(3.12)
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which is linear in σ, and thus may be integrated directly in a manner analogous

to (2.14)–(2.22), to obtain the quantum effective action quadratic in σ,

Γeff [σ; ḡ] =
N

24π

∫
d2x
√−ḡ

(
−σ σ + σR̄

)
. (3.13)

Then, solving (3.10) for σ and using the conformal invariant property of the wave operator

in two dimensions,
√−ḡ =

√−g , we obtain

Γeff [σ; ḡ] = Sanom[g]− Sanom[ḡ] (3.14)

in terms of the non-local but fully covariant effective action [25, 50]

Sanom[g] = − N

96π

∫
d2x
√−g

∫
d2x′

√
−g′R(x)( −1)xx′R(x′) . (3.15)

Since all two dimensional metrics are locally conformally flat, the fiducial metric ḡµν = ηµν
may be taken to be flat, R̄ = 0, and its action Sanom[ḡ], viewed as an integration constant

of the variation (3.12), may be set to zero (up to possible contributions from the non-trivial

topology of ḡµν). Thus the effect of integrating out the massless fermions is [51]

Z
(N)
f [g]=

∫ N∏
i=1

[Dψi][Dψi] exp{iSf [ψ,ψ; g,A=0]}=[detf (−i/∂)]N exp{iSanom[g]} (3.16)

in a general background metric gµν(x), with the background gauge potential Aµ set to zero.

The similarity between the axial and conformal anomalies and their effective ac-

tions, (2.21) and (3.15) is striking. The appearance of the massless scalar propagator

( −1)xx′ again suggests an effective massless boson field is associated with this anomaly.

Indeed in a similar manner to the introduction of the pseudoscalar boson field χ in the

axial anomaly case, one may introduce a scalar boson field ϕ, with the local effective action

Sanom[ϕ; g] =
N

48π

∫
d2x
√−g

(
1

2
ϕ ϕ+Rϕ

)
(3.17)

so that ϕ satisfies the eq. of motion

− ϕ = − 1√−g∂µ
(√−g gµν ∂νϕ) = R (3.18)

and has the massless propagator∫
d2x eik·x i〈T ϕ(x)ϕ(0)〉 =

48π

N

1

k2
. (3.19)

Integrating out the ϕ boson field returns the action (3.15), allowing us to write

Z
(N)
f [g] = [detf (−i/∂)]N [detB(− )]

1
2

∫
[Dϕ] exp {iSanom[ϕ; g]} . (3.20)

This form of the generating functional with (3.17) is quite analogous to the local form (2.23)

with (2.24). Note also that as the chiral anomaly term F̃ is a topological density, so too is
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the conformal anomaly term R, the spacetime integral of which is a topological invariant,

proportional to the Euler characteristic of a manifold with Euclidean signature. Thus the

Einstein action in two dimensions is a topological invariant, analogous to the θF̃ term in the

Schwinger model, and the ϕ field remains massless unless a term proportional to R2, anal-

ogous to the F̃ 2/2 = −FµνFµν/4 Maxwell term, is added to the gravitational action. As in

the chiral case the conformal anomaly
√−gR is a topological density and a total derivative,

√−gR = ∂µ
(√−gΩµ

)
with Ωµ = 2EµaE

ν
b ω

ab
ν = 2gλ[µEν]

c∇νecλ (3.21)

in d = 2. The topological nature of
√−gR as the Euler density leads to invariance of the

scalar action (3.17) under constant shifts ϕ→ ϕ+ ϕ0 with [50]

Jµ =
1

4π

(
∇µϕ+ Ωµ

)
=

1

4π

(
gµν∂νϕ+ Ωµ

)
(3.22)

the corresponding gauge (i.e. frame) dependent Noether current, which is analogous

to (2.29). It is covariantly conserved ∇µJµ = 0 by virtue of (3.18) and (3.21).

We note next an important difference between the cases of the axial and conformal

anomalies. Whereas in (2.23) all the dependence on the background Aµ is contained in

Sanom[χ;A] given by the local action (2.24), in (3.20) the boson determinant detB(− )

still contains dependence upon the metric gµν through the Laplace-Beltrami wave operator

in (3.18). This is a reflection of the fact that whereas in the axial case, the effective boson

field χ is neutral, and does not itself carry either a vector or axial charge, the ϕ field has

an energy-momentum in the gravitational field, given explicitly by

TµνB [ϕ; g] =
2√−g

δSanom[ϕ; g]

δgµν
=

N

24π

(
∇µ∇νϕ− gµν ϕ+

1

2
∇µϕ∇νϕ− 1

4
gµν∇λϕ∇λϕ

)
(3.23)

with a non-linear coupling to the metric. Note also that unlike the currents (2.26) which de-

pend only linearly on the boson field χ, the stress-energy current (3.23) contains quadratic

terms in ϕ. As a result, if ϕ is treated as a bone fide quantum field in its own right, and

functionally integrated over as in (3.20), it has its own conformal anomaly, which would

effectively shift N in (3.8) to N + 1. This is taken account of in (3.20) by the fact that

the boson determinant detB(− ) also depends on the metric, and cancels the shift of N

to N + 1, thereby restoring equality to the original fermion functional integral (3.16).

If N > 1 the correction of the bosonic determinants dependence upon gµν could be

handled by replacing the full detB(− ) by its flat spacetime counterpart, detB(− ),

while simultaneously replacing N by N − 1 in Sanon. The conformal anomaly of (3.23)

then shifts N − 1 back to N . Notice however, that the fermion and boson flat spacetime

determinants only cancel when N = 1 due to (2.33), and if N = 1 the action for the ϕ

field multiplied by N − 1 would vanish identically.

This difficulty can be avoided if we consider a scalar field Φ which is defined by

Φ =

√
N

48π
ϕ (3.24)

– 25 –



J
H
E
P
1
2
(
2
0
1
4
)
1
5
3

and hence is canonically normalized independently of N . In terms of Φ the anomaly

effective action (3.17) becomes

Seff [Φ; g] =

∫
d2x
√−g

(
1

2
Φ Φ +

√
N

48π
RΦ

)
. (3.25)

If N is now shifted to N − 1 to compensate for the anomaly of the Φ field itself, we obtain

Z
(N)
f [g] = [detf (−i/∂)]N−1

∫
[DΦ] exp

{
i

∫
d2x
√−g

(
1

2
Φ Φ +

√
N − 1

48π
RΦ

)}
(3.26)

where we have used (2.33) for the flat spacetime determinants. Varying the exponential

in (3.26) with respect to the metric gives the canonically normalized bosonic stress-energy

tensor

TµνΦ = ∇µΦ∇νΦ− 1

2
gµν∇λΦ∇λΦ +

√
N − 1

12π

(
∇µ∇νΦ− gµν Φ

)
(3.27)

which should be identical to the fermion expression (3.5) at the operator level, after ap-

propriate regularization.

Note that if N = 1, the linear RΦ coupling in (3.26) vanishes entirely and we obtain

simply

Z
(N=1)
f [g] =

∫
[DΦ] exp

{
i

2

∫
d2x
√−gΦ Φ

}
(3.28)

completely re-expressing the original free fermionic functional integral (3.16) in terms of

a free bosonic one for N = 1. The stress-energy tensor of the boson (3.27) now lacks a

term linear in Φ and is simply given by the stress-energy tensor of a single canonically

normalized boson, which is nothing else than the stress-energy tensor of the massless

boson of the usual N = 1 Schwinger model (with coupling e = 0). In the absence of

any coupling to the gauge field the chiral anomaly vanishes and the same result for the

stress-energy tensor is obtained if either the scalar or pseudoscalar linear combination of

left and right movers in (2.81) is used.

The equality of the fermion and boson stress-energy tensors for N = 1 is somewhat

non-trivial, since Φ is composed of fermion bilinears and TµνΦ apparently contains four-

fermion operators. However, after normal ordering, these four-fermion terms can be shown

to vanish identically due to Fermi-Dirac statistics, and equality of the remaining terms in

the stress-energy tensors of one fermion and one boson was shown explicitly in [52]. The two

stress-energy tensors clearly have the same conformal anomaly in curved spacetime because

a single boson has the same anomaly as a single fermion in two dimensions. Thus in this

approach nothing has been either gained or lost in replacing a single quantum fermion by a

single quantum boson. If N > 1 treating the boson Φ as a bona fide full canonical quantum

field with a linear
√

(N − 1)/48π coupling to the scalar curvature should continue to work

for all correlation functions involving the stress-energy tensor. However when N > 1 there

are terms both linear and quadratic in Φ in the stress tensor and it is no longer obvious

how to identify the scalar boson with fermion pairs.
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There is an alternate approach to handling the bosonization and stress-energy tensor

correspondences which is in some ways closer in spirit to the chiral bosonization and purely

linear relation of the currents (2.26) to the boson field. Since in that case the chiral boson χ

carries no U(1) vector or UA(1) axial charge, it does not contribute its own term to the axial

anomaly when quantized, as ϕ does, accounted for by the dependence of the determinant

[detB(− )]
1
2 upon the metric gµν . However, if we simply drop the functional integral

over the quantum field ϕ, then there is no need for the compensating boson determinant

in (3.20), and no need to shiftN . This amounts to neglecting all scalar boson loop diagrams,

and treating ϕ instead as an effectively classical field satisfying (3.18) and contributing only

to tree diagrams, in which case the axial and conformal cases are more similar. Then

Z
(N)
f [g] = [detf (−i/∂)]N exp {iSanom[ϕ; g]}

∣∣∣
ϕ=−R

= const.× exp {iSeff [Φ; g]}
∣∣∣

Φ=−
√

N
48π

R
(3.29)

with Φ treated as an independent field, the variation of Seff with respect to which leads to

its eq. of motion Φ = −
√

N
48πR. This approach may also be obtained from (3.26) in the

large N approximation, in which the quantum effects of a single ϕ boson, and the prefactor

[detB(− )]
1
2 are of order one, and hence suppressed by 1/N in comparison to N � 1

fermions. However, (3.29) is valid for any N , including N = 1, since the functional integral

over Φ and the [detB(− )]
1
2 prefactor in (3.26) precisely cancel each other. The analogous

equivalence can be seen in the chiral case from eqs. (2.21)–(2.22) by substituting the eq.

of motion (2.25) for the chiral boson field χ in (2.24). Since the effective tree action in the

chiral case is exactly quadratic in Aµ, and the currents are purely linear in χ, this generates

only the single tree graph of figure 1b. As we shall see, in the gravitational case (3.29) is

closest to the chiral bosonization in the Schwinger model in that only the terms linear in

the quantum Φ field in the stress-energy tensor (3.23) need to be considered to identify the

boson field (3.24) as composed of fermion pairs, analogous to the currents (2.26) linear in

χ, but in addition, it leads to the remarkable result that the arbitrary variations of (3.29)

with respect to the metric gµν generate all one-loop correlation functions of quantum stress-

energy tensors of the fermions by tree graphs of the scalar boson field (3.24).

3.2 Correlation functions, spectral function and sum rule

We illustrate the second approach in terms of scalar tree graphs first with the simplest

non-trivial correlation function of the one-loop stress-tensor polarization function of the

fermions

Πµναβ(k) ≡ i

N

∫
d2x eik·x 〈T Tµνf (x)Tαβf (0)〉 (3.30)

in flat spacetime illustrated in figure 3.

In d = 2 dimensions the tensor structure of this polarization is completely determined

by the conservation law (3.6) and Ward identities following from it. The result for massive

fermions is [55]

Πµναβ(k)
∣∣
d=2

=
N

4π
(ηµνk2 − kµkν)(ηαβk2 − kαkβ)

∫ 1

0
dx

x(1− x)(1− 2x)2

[k2x(1− x) +m2]
. (3.31)
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Tµν Tαβ ↔

Figure 3. The one-loop fermion 〈TT 〉 polarization.
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Figure 4. The area under the curve %T (s) (shown here for N = 1) obeys the sum rule (3.34), and

in the limit m→ 0 becomes a δ-function according to (3.35).

Using once more the identity (2.44) and interchanging the s and x integrals we obtain

Πµναβ(k)
∣∣
d=2

= (ηµνk2 − kµkν)(ηαβk2 − kαkβ)

∫ ∞
0

ds
%T (s)

k2 + s
(3.32)

where

%T (s) ≡ N

4π

∫ 1

0
dx (1− 2x)2 δ

(
s− m2

x(1− x)

)
=
N

2π

m2

s2

√
1− 4m2

s
θ(s− 4m2) . (3.33)

As in the previous case of the current spectral function (2.46)–(2.47), the stress-tensor

spectral function (3.33) obeys a UV finite sum rule, in this case∫ ∞
0

ds %T (s) =
N

4π

∫ 1

0
dx (1− 2x)2 =

N

12π
(3.34)

which is illustrated in figure 4.

In the massless case m = 0, the representation (3.33) shows that %T (s) becomes a

δ-function concentrated at s = 0,

lim
m→0

%T (s) =
N

4π

∫ 1

0
dx (1− 2x)2 δ(s) =

N

12π
δ(s) (3.35)
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corresponding to

Πµναβ(k)
∣∣
m=0,d=2

= (ηµνk2 − kµkν)(ηαβk2 − kαkβ)
N

12πk2
(3.36)

which like (2.41) exhibits a massless scalar pole.

Hence as in the case of the axial anomaly, a correlated boson state appears in the

correlation function of two fermions associated with the anomalous current. Both the

anomaly and the bosonic excitation associated with it survive when the theory is deformed

away from its conformal limit of m = 0. The boson is broadened into a resonance as

in figure 4 obeying an ultraviolet finite sum rule (3.34) for any mass. The anomalous

contribution of the correlation function is also easily separated from the non-anomalous

contribution by writing the trace of (3.32) in the form

Πµ αβ
µ (k)

∣∣
d=2

= k2 (ηαβk2 − kαkβ)

∫ ∞
0

ds
%T (s)

k2 + s

= (ηαβk2 − kαkβ)

[∫ ∞
0

ds %T (s)−
∫ ∞

0
ds %T (s)

s

k2 + s

]
=

N

12π
(ηαβk2 − kαkβ)

[
1− 6m2

∫ ∞
4m2

ds

s (k2 + s)

√
1− 4m2

s

]
. (3.37)

The first term in this last expression, in which numerator and denominator cancel and the

sum rule (3.34) is used, is the anomalous contribution independent of m, while the second

term is the finite non-anomalous contribution, expected even classically for the trace when

m > 0, but which vanishes for m = 0.

The expectation value of the commutator of two fermion stress-energy tensors can be

written as a weighted spectral integral

i
〈[
Tµνf (t, x), Tαβf (t′, x′)

]〉
=

N

12π

(
ηµν −∂µ∂ν

)(
ηαβ −∂α∂β

)∫ ∞
0
ds %T (s)D(t− t′, x−x′; s)

(3.38)

analogous to (2.49). Here and for the remainder of section 3, will denote the flat

Minkowski space wave operator. Using the properties of the commutator function

D (2.50)–(2.51), only the terms with an odd number of time derivatives survive at equal

times t = t′, so that from (3.32) and the sum rule (3.34) we obtain the anomalous

commutator expectation values〈[
T 00
f (t, x), T 01

f (t, x′)
]〉

=
〈[
T 11
f (t, x), T 01

f (t, x′)
]〉

=
iN

12π
∂3
x δ(x− x′) (3.39)

for any m, all other equal time commutators vanishing. This is the expectation value of

the Schwinger term for the stress-energy tensor commutators in two dimensions [53–55],

which is independent of fermion mass.

When the fermion mass vanishes, we now compare the result (3.36) and (3.38) with

their counterparts in the bosonic theory. Because the boson stress-energy tensor (3.23)

has terms both quadratic and linear in ϕ, there will be both a one-loop and tree level

contribution to the 〈TT 〉 bosonic correlation function. The loop contribution which is
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of order N0 gives rise to the boson quantum anomaly contribution which has the effect

of shifting N by one, as discussed in the previous section 3.1. In order to avoid this

shift and match the fermion loop to a boson tree diagram with a single fermion pair

intermediate state, we neglect the ϕ loop, and compute only the tree level contribution from

the terms linear in the ϕ stress-energy tensor, consistent with (3.29). For the correlation

function (3.30) this amounts to considering only the term linear in the boson field, i.e.

TµνΦ lin =
N

24π

(
∂µ∂ν − ηµν

)
ϕ =

√
N

12π

(
∂µ∂ν − ηµν

)
Φ (3.40)

which gives

Πµναβ
Φ lin (k) = i

∫
d2x eik·x 〈T TµνB lin(x)TαβB lin(0)〉

=

(
N

12π

)(
ηµνk2 − kµkν

)(
ηαβk2 − kαkβ

) ∫
d2x eik·x i〈T Φ(x)Φ(0)〉

= (ηµνk2 − kµkν)(ηαβk2 − kαkβ)
N

12πk2
(3.41)

after use is made of the canonical normalization of the Φ field in (3.24). The result (3.41)

coincides with (3.36). Likewise, if we compute the commutators appearing in (3.39) we

obtain agreement at the operator level from the equal time commutator function of the

massless scalar ϕ field, normalized according to (3.19), neglecting any anomalous commu-

tator of the quadratic ϕ stress-energy tensor itself, according to (3.29).

3.3 Stress-energy tensor, Virasoro algebra and Schwinger term of fermions

In order to determine the precise form of the fermion pairing into a boson related to the

conformal anomaly in the operator representation, we return to the Fock space represen-

tation for the fermions introduced in section 2.3, starting with a single fermion: N = 1.

Using the Dirac equation (2.57), we find

T 00
f = T 11

f =
i

2

(
ψ†+∂tψ+ − ∂tψ†+ψ+ + ψ†−∂tψ− − ∂tψ†−ψ−

)
(3.42a)

T 01
f = T 10

f =
i

2

(
ψ†+∂tψ+ − ∂tψ†+ψ+ − ψ†−∂tψ− + ∂tψ

†
−ψ−

)
(3.42b)

for the (unregularized) fermion stress-energy tensor. Upon inserting the Fock space ex-

pansion (2.63), normal ordering, and using the regularization described in section 3.4 to

subtract the zero-point energy in the infinite domain 1/L→ 0, leading to the finite Casimir

energy density (3.49), we obtain (for N = 1)

T 00
f = T 11

f =
2π

L2

∑
n∈Z

(
L(+)
n e−iknteiknx + L(−)

n e−iknte−iknx
)
− π

6L2
(3.43a)

T 01
f = T 10

f =
2π

L2

∑
n∈Z

(
L(+)
n e−iknteiknx − L(−)

n e−iknte−iknx
)

(3.43b)
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where the fermionic Virasoro generators are defined by [56]

L(±)
n =

∑
q∈Z 1

2

(
q − n

2

)
:c

(±)†
q−n c

(±)
q : =

∑
q≥ 1

2

(
q − n

2

)
c

(±)†
q−n c

(±)
q −

∑
q≤− 1

2

(
q − n

2

)
c(±)
q c

(±)†
q−n (3.44)

for the left and right moving fermions respectively. Note that the Virasoro generators

satisfy L
(±)†
n = L

(±)
−n and have zero vacuum expectation value 〈0|L(±)

n |0〉 = 0 due to normal

ordering, which affects only L
(±)
0 .

The commutator of two Virasoro generators yields the Virasoro algebra, cf. appendix B,[
L(±)
n ,L

(±)
n′

]
= (n− n′)L(±)

n+n′ +
n(n2 − 1)

12
δn,−n′ (3.45)

for the right and left moving fermions separately. As in the case of the current moments

ρ
(±)
n , normal ordering with respect to the fermion vacuum and its filled Dirac sea leads to

an anomalous commutator, the central term in the Virasoro algebra above. For N fermions

we have

L
(±)
n,N ≡

N∑
j=1

L(±),j
n =

N∑
j=1

∑
q∈Z 1

2

(
q − n

2

)
:c

(±),j†
q−n c(±),j

q : (3.46)

and hence [
L

(±)
n,N ,L

(±)
n′,N

]
= (n− n′)L(±)

n+n′,N +
N

12
n(n2 − 1)δn,−n′ (3.47)

which now features a factor N in the central extension. Converting this relation to position

space and taking account of the finite shift of the Casimir term in (3.43a) gives the equal

time commutator[
T 00
f (t, x), T 01

f (t, x′)
]

= −i
(
T 00
f (t, x) + T 00

f (t, x′) +
π

3L2

)
∂x δ(x− x′)

+
i

12π
∂x

(
∂2
x +

4π2

L2

)
δ(x− x′)

= −i
(
T 00
f (t, x) + T 00

f (t, x′)
)
∂x δ(x− x′) +

iN

12π
∂3
x δ(x− x′) , (3.48)

showing the relation to the Schwinger contact term. The sign of the Schwinger term here

agrees with earlier work [53, 54] but apparently disagrees with [55].

3.4 Classical scalar condensate and quantum Casimir energy

In the axial case considered previously we remarked on the possibility of a classical con-

densate current scaling with N . However, with no sources for this current we were free to

set it and the expectation value of χ to zero in the interval [0, L]. On the other hand in

the gravitational case, in the finite interval [0, L], N massless fermions with anti-periodic

boundary conditions have a finite Casimir energy density [4]

〈0|T00 f |0〉R = − πN
6L2

(3.49)

proportional to N . In the fermion representation this can be computed from the quantum

stress-energy tensor of the fermions (3.5) by introducing a cutoff in the sum over modes
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and subtracting the cutoff dependent contribution in the infinite L limit, effectively setting

the quantum zero point energy to be zero in that limit. For finite L this subtraction leaves

behind the finite energy density (3.49) as the cutoff is removed [4]. It may also be computed

by ζ-function methods, as follows by substituting the mode expansion (2.63) in (3.42a).

We obtain the unrenormalized, infinite sum

〈0|T00 f |0〉 = 〈0|T11 f |0〉 = −2N

L

∑
q≥ 1

2

k̃q = −4πN

L2

∑
q≥ 1

2

q . (3.50)

The generalized Riemann ζ function is defined by

ζR(s, a) =
∞∑
n=0

(n+ a)−s , Re(s) > 1 (3.51)

which defines a function which can be analytically continued to s = −1, so the sum over

half-integers in (3.50) has a finite part which can be defined by

∞∑
n=0

(
n+

1

2

)−s ∣∣∣
s=−1

= ζR

(
−1,

1

2

)
= −1

2
B2

(
1

2

)
= −1

2

(
1

4
− 1

2
+

1

6

)
=

1

24
(3.52)

where B2(a) = a2−a+ 1
6 is the second Bernoulli polynomial. Substituting (3.52) into (3.50)

gives (3.49).

In the boson representation the Casimir energy (3.49) is a leading order in N effect,

corresponding to a condensate ϕ̄ and may be calculated from the stress-energy tensor of

the boson field (3.23) by purely classical means. To find the correct classical condensate

field ϕ̄ for the periodically identified space on the finite interval [0, L], we recognize first

from (3.11), (3.13) and (3.17) that eϕ = e2σ may be thought of as the conformal factor that

transforms a fixed fiducial metric ḡµν to the metric gµν of interest. Then we note that the

infinite R2 plane may be mapped to the cylinder by the following conformal transformation.

Introducing polar coordinates (r, θ) in infinite Euclidean R2 gives

dτ̄2 + dx̄2 = dr2 + r2dθ2 = r2
0 e

2η(dη2 + dθ2) (3.53)

where η = ln(r/r0) ranges from −∞ to ∞, and θ ∈ [0, 2π], which describes a cylinder.

Relabelling θ = 2πx/L and analytically continuing (3.53) to η = 2πit/L, τ̄ = it̄ allows us

to write the line element for the real Lorentzian time cylinder as a conformal transformation

of Lorentzian infinite flat spacetime by

− dt2 + dx2 = eϕ̄ (−dt̄2 + dx̄2) (3.54)

with

ϕ̄ = −4iπt

L
(3.55)

after identifying r0 = L/2π. Therefore, taking the fixed fiducial metric to be that of

infinite Lorentzian flat spacetime to have vanishing energy density as before, the stress-

energy tensor in the periodically identified domain [0, L] may be computed by substituting

– 32 –



J
H
E
P
1
2
(
2
0
1
4
)
1
5
3

the classical condensate ϕ̄ of (3.55) into TµνB [ϕ̄] of (3.23) to obtain

Tµν ≡ Tµν B[ϕ̄] =
N

96π

(
2 ∂µϕ̄ ∂νϕ̄− ηµνηαβ∂αϕ̄ ∂βϕ̄

)
= − πN

6L2

(
2 δ0

µ δ
0
ν + ηµν

)
(3.56)

which is a traceless stress-energy tensor, T
µ
µ = 0 with T00[ϕ̄] = 〈0|T00 f |0〉 of (3.49).

Thus, the quantum Casimir energy of the fermions may be computed from the stress-

energy tensor of the scalar boson ϕ, viewed as a classical condensate with value (3.55)

obtained by a conformal transformation from infinite flat spacetime. Being a linear function

of t, the condensate (3.55) satisfies

ϕ̄ = 0 (3.57)

consistent with (3.18) in a spacetime with zero curvature, R = 0. If L → ∞ for fixed t,

ϕ̄ → 0. For finite L periodicity, the linear growth of (3.55) without bound as t → ±∞ is

analogous to the linear time dependence of the winding modes (2.78) in the usual chiral

bosonization of the Schwinger model in states for which the background charges Q± 6= 0.

Indeed, (3.55) should be viewed as a solution of (3.57) only in the distributional sense,

with source ‘charges’ at t = ±∞.

That the non-trivial conformal transformation (3.54) does indeed give rise to the equiv-

alent of the Chern-Simons number (2.86) but for the Euler characteristic, viz.

QCS =
1

4π

∫
ΩµdΣµ (3.58)

follows by direct calculation from (3.21) in the general conformal frame eaµ = exp(σ) δaµ
and gµν = exp(−2σ) ηµν , related to the flat fiducial metric of R2. Then (3.21) gives

Ωµ = −2 gµν ∂νσ (3.59)

and

QCS
∣∣
R×S1 = − 1

2π

∫
gµν∂ν σ̄ dΣµ = − i

L

∫ L

0
dx = −i (3.60)

when evaluated for the conformal transformation σ̄ = ϕ̄/2 = −2πit/L in the (t, x)

coordinates of the cylinder (3.54) on the periodic interval x ∈ [0, L], for which g00 = −1

and dΣ0 = dx.

In this case the Chern-Simons charge corresponding to the conformal anomaly is

one-to-one with the holonomic windings of the zweibein frame field eaµ in the SO(2) ' U(1)

tangent space as x varies over the interval [0, L]. This is again the mapping S1 → S1

with homotopy group Π1(S1) = Z. The imaginary unit charge (3.60) is the result of

analytically continuing the definition of the conserved topological Euler number and

its corresponding secondary Chern-Simons form defined on Riemannian manifolds to

the pseudo-Riemannian signature metric (3.54) of Lorentzian spacetime. The physical

interpretation of this background conformal charge is that the fermion vacuum defined

on the anti-periodically identified finite interval [0, L] may be regarded as being filled

uniformly with a classical scalar condensate (3.55) of fermion pairs, whose density is

determined by topology or global boundary conditions on R × S1, with a finite negative

energy density and pressure ρ = p = −πN/6L2, equal to its quantum Casimir energy.
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3.5 The scalar boson of the conformal anomaly: canonical field

In the case of the electric current algebra and axial anomaly, the anomalous Schwinger

term is the only non-trivial commutator, and being a c-number, the algebra of the Fourier

components of the current density (2.73) is easily mapped to the canonical algebra of a

bosonic field by a simple rescaling with
√
n through (2.75)–(2.76), which becomes

√
nN for

N fermions. In the case of the stress-energy tensor and conformal anomaly, the Virasoro

algebra is non-abelian already at the classical level, and the stress-energy tensor (3.23)

or (3.27) also contains terms quadratic in the scalar boson field ϕ or Φ. As already

remarked, these quadratic terms in TµνB or TµνΦ lead to the scalar boson field having its

own conformal anomaly and shifting the coefficient of the central term by one unit. Note

that the canonical bosonic representation (3.27) makes it clear that the fermion stress-

energy tensor does not have a simple homogeneous scaling with N but rather is a sum of

terms with different scalings. Finally the boson field has a classical imaginary expectation

value or condensate ϕ̄ of (3.55) to account for the Casimir energy in the finite interval

[0, L], so that a simple Hermitian boson field construction of the kind found in the charge

current case also cannot be appropriate here.

These apparent roadblocks to a construction of a boson-fermion operator correspon-

dence are related, and are all removed by identification of the boson field with that part of

the fermion stress-energy tensor that scales with
√
N . We note that although from (3.46)

one might expect the Virasoro generators L
(±)
n,N to scale linearly with N , and indeed the

c-number contribution in (3.43a) corresponding to the Casimir energy (3.49) and the con-

densate ϕ̄ does scale linearly with N , the commutator in (3.47) quadratic in L
(±)
n,N itself

scales at most linearly with N . Thus the quantum operator part of the Virasoro generators

that give rise to the central term in (3.47) scale only as
√
N , just as the currents do in (2.83),

and it is this part that we can identify with the part of the boson stress-energy tensor (3.27)

linear in the canonically normalized Φ field that scales in the same way as
√
N .

In order to make this identification of terms in the fermion and boson stress-energy

tensor that scale as
√
N , we need first to subtract the condensate part which scales linearly

with N . Therefore let us first define the quantum field ϕ̂ by the shift

ϕ = ϕ̄+ ϕ̂ (3.61)

with ϕ̄ the condensate (3.55), and substitute this into the stress-energy tensor Tµν B for

the boson field (3.23) obtaining

Tµν B[ϕ̄+ ϕ̂] = Tµν B +
N

48π

(
2 ∂µ∂νϕ̂+ 2 ˙̄ϕ δ0

(µ∂ν)ϕ̂+ ηµν ˙̄ϕ ˙̂ϕ
)

+
N

96π

(
2 ∂µϕ̂ ∂νϕ̂− ηµν ∂λϕ̂ ∂λϕ̂

)
(3.62)

where we have used the fact that ϕ̄ = ϕ̂ = 0, and Tµν B is the condensate contribu-

tion (3.56). Thus at finite L in the presence of the scalar condensate ϕ̄ the term linear in

the quantum field ϕ̂ becomes

Tµν B lin =
N

48π

(
2 ∂µ∂νϕ̂+ 2 ˙̄ϕ δ0

(µ∂ν)ϕ̂+ ηµν ˙̄ϕ ˙̂ϕ
)

(3.63)

instead of (3.40).
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If we introduce boson operators

Φ±(t, x) =
∞∑
n=1

1√
4πn

(
a(±)
n e−ikn(t∓x) + a

(±)
−n e

ikn(t∓x)
)

+ Φ0
±(t, x) ,

Φ0
±(t, x) =

1

2
√
π

R± +

√
π

L
(t∓ x) Q± (3.64)

analogous to those introduced previously in the chiral bosonization (2.77), and require the

commutation relations

[a(±)
n ,a

(±)
−n′ ] = sgn(n) δn,n′ , [R±,Q±] = i (3.65)

then Φ+ + Φ− is a canonically normalized scalar field independent of N . As we shall see

shortly, it is important that we do not assume that Φ± is Hermitian, so that unlike in

the chiral case, a−n 6= a†n. Because of the normalization in the anomaly action (3.17),

the quantum scalar field ϕ̂ is related to the canonically normalized scalar field defined

through (3.64) by

ϕ̂ =

√
48π

N

(
Φ+ + Φ−

)
=

√
12

N

∑
±

∑
n6=0

1√
|n|

a(±)
n e−ikn(t∓x) + R± +

2π(t∓ x)

L
Q±

 . (3.66)

Thus it is clear that the terms linear in ϕ̂ in the anomaly boson energy-momentum ten-

sor (3.62) are proportional to N/
√
N =

√
N and dominate in the large N limit over the

terms quadratic in ϕ̂ in (3.62) which are of order N/(
√
N)2 = 1. The

√
N leading order

terms linear in ϕ̂ in (3.62) give

T 00
B,lin ± T 01

B,lin =
N

24π

(
∂t −

2πi

L

)(
∂t ∓ ∂x

)
ϕ̂

= −4π

L2

√
N

12

∑
n6=0

n(n+ 1)√
|n|

a(±)
n e−ikn(t∓x) + iQ±

 (3.67)

after substituting for ϕ̄ and ϕ̂ from (3.55) and (3.66) respectively. Comparing (3.67) to the

corresponding fermion terms from (3.43) we find that

a(±)
n = −

√
12 |n|

n(n+ 1)

L
(±)
n,N√
N

∀ n 6= 0,−1 (3.68)

to leading order in N � 1. In this limit the shift of N by one unit and the quantum

contributions of the quadratic terms in the Φ stress-energy tensor (3.27) can be neglected,

corresponding at the operator level to the neglect of the non-abelian terms in the Vira-

soro algebra. Indeed since a
(±)
n are canonically normalized independent of N , under the

identification (3.68), L
(±)
n,N scales as

√
N and the classical non-abelian terms in (3.47) are

suppressed relative to the central term scaling linearly in N . Thus in this limit the canon-

ically normalized boson field Fock space operators are given by the Virasoro generator
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moments of the fermion stress-energy tensor, in analogy with the corresponding identifica-

tion of the chiral boson with the moments of the electromagnetic current densities for N

fermions in (2.84).

Following the discussion at the end of section 3.1, the relation (3.68) can also be

regarded as an exact relation identifying the canonical boson field operator for any N ,

provided that all Wick contractions of the Φ field leading to loop diagrams are neglected.

This follows from the fact that the effective loop expansion parameter is ~/N and neglecting

loops in the boson tree effective action Seff of (3.29) corresponds precisely to neglecting the

non-anomalous commutator of the Virasoro generators (3.47).

The n = 0,−1 modes are not defined by (3.68). Together with the n = +1 Virasoro

generator, the L
(±)
n,N for n = 0,±1 form an SL(2,C) global sub-algebra with vanishing

central term in (3.47). Hence it clearly is not possible to identify these generators with

boson particle modes. They are instead analogous to the collective coordinate or coherent

n = 0 total charge mode in the chiral bosonization of section 2.3, and must hence be treated

separately. Indeed these modes are related to the condensate ϕ̄, since changing its sign

ϕ̄ → ϕ̄∗ = −ϕ̄, which gives the same condensate energy density has the effect of shifting

the subtlety from the n = −1 mode to the n = +1 mode.

An SL(2,C) transformation on the n = ±1 Fock space bosonic operators takes the form(
a1

a−1

)
=

(
A B

C D

)(
a′1
a′−1

)
, AD −BC = 1 (3.69)

and preserves the canonical commutation relation (3.65). The parameters A,B,C,D

satisfying AD−BC = 1 can always be chosen to depend on n in such a way that the limit

lim
n→−1

{(1 + n)an} = lim
n→1
{(1− n)a−n} = lim

n→1

{
(1− n)(Ca′n +Da′−n)

}
(3.70)

is finite, e.g.

A = B +
(1− n)

α
=
β

2
+

(1− n)

α
, C = D =

α

1− n (3.71)

for any α, β remaining finite as n→ 1. Then (3.68) gives

lim
n→−1

{
(1 + n) a(±)

n

}
= α(±) (a

(±) ′
1 + a

(±) ′
−1 ) = −

√
12

N
L

(±)
−1,N (3.72a)

lim
n→1

{
(1 + n) a(±)

n

}
= β(±) (a

(±) ′
1 + a

(±) ′
−1 ) = −

√
12

N
L

(±)
1,N (3.72b)

to leading order in large N . These expressions remain finite in the n → ∓1 limits

respectively provided the a′±1 are finite. Since by this (singular) SL(2,C) transformation

L
(±)
−1,N becomes proportional to L

(±)
1,N , they commute with each other.

The n = 0 constant mode of the boson is identified with L
(±)
0,N according to (3.43)

and (3.67)

Q± = i

√
12

N
L

(±)
0 (3.73)
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to leading order in large N . Since the Virasoro generators are Hermitian this implies that

the Q± are anti-Hermitian. Note also that with the identification (3.68)

a(±)†
n =

n− 1

n+ 1
a

(±)
−n (3.74)

the non-zero modes of scalar boson field ϕ̂ also are not Hermitian, due to the finite imag-

inary shift of the condensate ϕ̄. In the continuum limit L → ∞ where the condensate

ϕ̄→ 0, equivalent to |n| � 1 in (3.74), the quantum field ϕ̂ becomes Hermitian.

As with the n 6= 0,±1 modes, the identifications (3.72) and (3.73) may be regarded as

exact for any finite N , provided the loops of the quantum Φ field are neglected with respect

to tree diagrams, corresponding to neglect of all the mutual commutators of L
(±)
0,N ,L

(±)
±1,N .

3.6 Intermediate pair states of 〈TT 〉

We have seen in section 3.2 that the one-loop 〈TT 〉-correlator of fermionic quantum fields is

given exactly by the tree graph of stress-energy tensors in terms of the scalar ϕ in the local

form of the Polyakov action corresponding to the conformal anomaly (3.17). Thus we ex-

pect that the intermediate states of fermion bilinear pairs described by ϕ will reproduce the

fermion intermediate states of the 〈TT 〉-correlator, similarly to the situation in section 2.4.

Considering first the case of N = 1, and inserting once more a complete set of the

general on-shell two-fermion states (2.87), this time into the polarization (3.36), requires

the evaluation of

〈0|Tµνf (t, x)|q, s; q′, s′〉 = exp
[
−i t E(q, q′) + i x ps,s′(q, q

′)
]
〈0|Tµνf (0, 0)|q, s; q′, s′〉 (3.75)

where energy and momentum are given in (2.90). Since the two chiralities do not mix for

massless fermions, we only have contributions for s = s′, i.e.

〈0|T 00
f (0, 0)|q, s; q′, s′〉 = 〈0|T 11

f (0, 0)|q, s; q′, s′〉 =
1

2L
(k̃q − k̃q′) δss′ (3.76a)

〈0|T 01
f (0, 0)|q, s; q′, s′〉 = 〈0|T 10

f (0, 0)|q, s; q′, s′〉 =
s

2L
(k̃q − k̃q′) δss′ . (3.76b)

Thus, defining as before n = q + q′ ≥ 1, so that

k̃q − k̃q′ =
4π

L

(
q − n

2

)
(3.77)

we find

〈0|T 00
f (t, x)T 00

f (t′, x′)|0〉 =
∑
s,s′=±

∑
qs,q′s′≥

1
2

〈0|T 00
f (t, x)|q, s; q′, s′〉〈q, s; q′, s′ |T 00

f (t′, x′)|0〉

=

(
2π

L2

)2 ∑
s=±

∞∑
n=1

n− 1
2∑

q= 1
2

(
q − n

2

)2
exp[−ikn(t− t′)] exp[iskn(x− x′)] +

( π

6L2

)2

=
4π2

L4

∞∑
n=1

n(n2 − 1)

12
e−ikn(t−t′)

[
eikn(x−x′) + e−ikn(x−x′)

]
+
( π

6L2

)2

= 〈0|T 11
f (t, x)T 11

f (t′, x′)|0〉 = 〈0|T 01
f (t, x)T 01

f (t′, x′)|0〉 (3.78)
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where we have used
n− 1

2∑
q= 1

2

(
q − n

2

)2
=
n(n2 − 1)

12
. (3.79)

The constant shift is due to the (square of the) Casimir energy (3.49). Likewise we obtain

〈0|T 00
f (t, x)T 01

f (t′, x′)|0〉=
(

2π

L2

)2∑
s=±

s

∞∑
n=1

n− 1
2∑

q= 1
2

(
q−n

2

)2
exp[−ikn(t−t′)] exp[iskn(x−x′)]

=
4π2

L4

∞∑
n=1

n(n2 − 1)

12
e−ikn(t−t′)

[
eikn(x−x′) − e−ikn(x−x′)

]
(3.80)

for the mixed 〈T 00T 01〉 = 〈T 11T 01〉 matrix element with a complete set of arbitrary two-

fermion states inserted.

On the other hand from the bosonic viewpoint the only intermediate states which

should contribute to these matrix elements are the single boson states

|n,±〉 =

√
n+ 1

n− 1
a(±)†
n |0〉 = −

√
12

n(n2 − 1)

1√
N

N∑
j=1

∑
q∈Z 1

2

(
q +

n

2

)
:c

(s),j†
q+n c(s),j

q : |0〉 ∀n > 1

(3.81)

consisting of the coherent fermion pair described by (3.44) and (3.68). The normalization

factor is required due to (3.74) so that 〈n,±|n,±〉 = 1 is properly normalized. The only

term needed in the tree diagram is the term linear in the quantum field ϕ̂ given by (3.63),

for which

T 00
B ,lin = T 11

B ,lin =
N

48π
(2 ¨̂ϕ+ ˙̄ϕ ˙̂ϕ) =

N

24π

(
∂t −

2πi

L

)
∂tϕ̂ , (3.82a)

T 01
B ,lin = − N

48π
(2 ∂t∂xϕ̂+ ˙̄ϕ∂xϕ̂) = − N

24π

(
∂t −

2πi

L

)
∂xϕ̂ . (3.82b)

Substituting then (3.66) we obtain

〈0|T 00
B ,lin(t, x)|n, s〉 =

1

2π

√
N

12n

(
−ikn −

2πi

L

)
(−ikn) e−ikn(t−sx)

√
n− 1

n+ 1

= −2π

L2

√
N

12

√
n(n2 − 1) e−ikn(t−sx) , (3.83a)

〈0|T 01
B ,lin(t, x)|n, s〉 = − 1

2π

√
N

12n

(
−ikn −

2πi

L

)
(iskn)e−ikn(t−sx)

√
n− 1

n+ 1

= −2πs

L2

√
N

12

√
n(n2 − 1) e−ikn(t−sx) . (3.83b)

Thus from the linear terms in the boson stress-energy tensor we find the matrix elements

and intermediate state sum

〈0|T 00
B ,lin(t, x)T 00

B ,lin(t′, x′)|0〉 =
∑
s=±

∞∑
n=1

〈0|T 00
B ,lin(t, x)|n, s〉〈n, s|T 00

B ,lin(t′, x′)|0〉
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=
4π2N

L4

∞∑
n=1

n(n2 − 1)

12
e−ikn(t−t′)

[
eikn(x−x′) + e−ikn(x−x′)

]
+

(
πN

6L2

)2

= 〈0|T 11
B ,lin(t, x)T 11

B ,lin(t′, x′)|0〉 = 〈0|T 01
B ,lin(t, x)T 01

B ,lin(t′, x′)|0〉 (3.84)

while

〈0|T 00
B ,lin(t, x)T 01

B ,lin(t′, x′)|0〉 =
∑
s=±

∞∑
n=1

〈0|T 00
B ,lin(t, x)|n, s〉〈n, s|T 01

B ,lin(t′, x′)|0〉 (3.85)

=
4π2N

L4

∞∑
n=1

n(n2 − 1)

12
e−ikn(t−t′)

[
eikn(x−x′) − e−ikn(x−x′)

]
which coincide with the two-fermion intermediate state results of (3.78) and (3.80) respec-

tively.

Thus the results for the 〈TT 〉 matrix elements of summing over a complete set of two-

fermion states (2.87) in the fermion loop is identical to that obtained by saturating the in-

termediate state sum by the particular fermion pair state represented by the coherent state

boson (3.81) and (3.68) with only the linear term in the boson stress-energy tensor (3.63)

in a tree amplitude. This is exactly analogous to the chiral boson coherent intermediate

state in the 〈jj〉 correlator of section 2.4, computed in the tree amplitude of figure 1.

By either method the results for the stress-energy tensor correlator may be written in

terms of the free scalar function G>0 of (2.99) in the form

〈0|T 00(t, x)T 00(t′, x′)|0〉 =
−iN
12π

(
∂4
x +

4π2

L2
∂2
x

)
G>0 (t− t′, x− x′) (3.86a)

〈0|T 00(t, x)T 01(t′, x′)|0〉 =
iN

12π

(
∂t∂

3
x +

4π2

L2
∂t∂x

)
G>0 (t− t′, x− x′) (3.86b)

so that the only equal time commutator which is non-zero is

〈0|
[
T 00(t, x)T 01(t, x′)

]
|0〉 =

iN

12π

(
∂3
x +

4π2

L2
∂x

)(
1

L

∑
n∈Z

eikn(x−x′)

)

=
iN

12π

(
∂3
x +

4π2

L2
∂x

)
δ(x− x′) , (3.87)

the n = 0 constant mode vanishing under the derivatives. This is in agreement with the

Schwinger term computed in (3.48).

In the limit of infinite L we may also write the results (3.86) in the covariant form

i〈0|Tµν(t, x)Tαβ(t′, x′)|0〉 → N

12π

(
ηµν − ∂µ∂ν

)
(ηαβ − ∂α∂β)G>0 (t− t′, x− x′) (3.88)

in agreement with (3.36), when time-ordering is taken into account and the Wightman

function G>0 is replaced by the Feynman massless boson propagator (2.100) whose Fourier

transform is 1/k2.
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Since the time-ordered Feynman propagator is the analytic continuation of the Eu-

clidean propagator, we can express the Euclidean stress-energy tensor correlation function

in the form〈
Tµν(x)Tαβ(y)

〉
E

=
N

12π

(
δµν∂2 − ∂µ∂ν

)(
δαβ∂2 − ∂α∂β

)
GΦ(|x− y|)

∣∣∣
M→0

(3.89)

where

GΦ(|x|) =

∫
d2P

(2π)2

eiP ·x

P 2 +M2
=

1

2π
K0

(
M |x|

)
→ − 1

2π
ln
(
M |x|

)
+ const. (3.90)

is the Euclidean propagator for a massive scalar field in d = 2 dimensions, satisfying

(−∂2 +M2)GΦ(|x|)→ −∂2GΦ(|x|) = δ(2)(x) . (3.91)

Here x and y denote Euclidean 2-vectors with norm |x| =
√
xµxµ, and ∂2 ≡ δµν∂µ∂ν

denotes the Laplacian. The mass M is inserted as an infrared regulator. In the limit

M → 0 the propagator (3.90) becomes a logarithm and the mass dependence drops out

under the derivatives in (3.89) or (3.91), so that the limit to zero mass can be safely taken.

Thus in Euclidean space the correlation function of two stress-energy tensors of massless

fermions (or in fact any conformal field in d = 2) becomes

〈
Tµν(x)Tαβ(y)

〉
E

= − N

24π2

(
δµν∂

2 − ∂µ∂ν
)(
δαβ∂

2 − ∂α∂β
)

ln
(
|x− y|

)
(3.92)

These results show the complete equivalence between the fermion loop and the bosonic tree

calculations of all components of the 〈TT 〉 correlator, where only the linear term (3.63) of

the boson stress-energy tensor is retained, after the finite shift in the finite spatial interval

[0, L]. This correspondence between fermion loops and bosonic trees can be extended to

arbitrary numbers of stress-energy tensor correlations in Euclidean space next.

4 Stress tensor correlators: fermion loops and scalar trees

In section 3.2 we showed that the one-loop correlation function 〈TT 〉 of N fermions can

be represented by the simple two-point linear tree diagram illustrated in figure 3. The

intermediate states of fermion pairs in the one-loop correlation function are exactly the

correlated pairs of the single boson (3.81). In the chiral bosonization of section 2.3 there

are no connected diagrams of correlation functions with more than two currents, so that

the mapping of fermion to boson intermediate states needs to be checked only in the

case of 〈jj〉. For the stress tensor on the other hand, correlation functions of arbitrary

numbers of stress-energy tensors appear, due to the essentially non-abelian, non-linear

coupling of the metric to matter. The purpose of this section is to demonstrate that

the correlation functions of arbitrary numbers of stress-energy tensors 〈TT . . . T 〉 of the

fermions at one-loop order are mapped to scalar linear tree diagrams with exactly the

same boson intermediate states as found for the two-point function in section 3.6.
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(a) The fermion one-loop effective action (4.1), in

a background gravitational field.

R R

(b) The scalar tree effective action,

with the propagator in a background

gravitational field represented by a

bold dashed line.

Figure 5. Effective action for fermion loops and scalar trees.

4.1 〈TT . . . T 〉 correlators: Ward identities

To establish this equivalence between fermion loops and scalar trees for arbitrary n-point

functions of the stress-energy tensor, we shall make extensive use of the Ward identities

these correlation functions obey. Formally computing the functional integral over the N

massless fermion fields in a general fixed background metric gµν as in section 3.1 gives the

effective action

SE[g] = ~N Tr ln
(
− iγaE µ

a

↔
∇µ

)
(4.1)

illustrated in figure 5a after continuation to Euclidean space. On the other hand, computing

the effective action explicitly yields the non-local Polyakov action (3.15), or by (3.29), the

local form (3.25) in terms of the canonically normalized scalar Φ. The one-loop fermion

and boson tree versions of the Euclidean effective action are illustrated in figures 5a and 5b

respectively. The ~N loop factor in (4.1) and figure 5a is taken into account in (3.25) by

(
√
~N)2 from the two factors of the quantum anomaly coefficient in the source of Φ from

each end of the tree diagram in figure 5b.

The one-point and general n-point gravitational vertex functions are defined in Eu-

clidean space by

Γµν(x) =
〈
Tµν(x)

〉
=

2√
g(x)

δSE [g]

δgµν(x)
(4.2a)

Γµ1ν1...µnνn(x1, . . . , xn) =
2n√

g(x1) . . .
√
g(xn)

δnSE [g]

δgµ1ν1(x1) . . . δgµnνn(xn)
(4.2b)

which are represented by connected one-loop diagrams in the fermion theory, because SE
is the generating functional of connected one-particle irreducible (1PI) diagrams. In (4.2)

and the remainder of this section we drop the subscript E on the correlation functions,

since we work entirely in Euclidean space R2. The multiple variations with respect to the

metric in (4.2b) produce connected n-point functions of fermion stress-energy tensors at

different points, as well as local contact terms from varying the explicit dependence of the

stress-energy tensor itself upon the metric,

Γµ1ν1...µnνn(x1, . . . , xn) =
〈
Tµ1ν1(x1) . . . Tµnνn(xn)

〉
c

+
2√
g(x1)

〈δTµ2ν2(x2)

δgµ1ν1(x1)
Tµ3ν3(x3) . . . Tµnνn(xn)

〉
c

+ . . . (4.3)
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where the ellipsis contains all possible multiple local variations of the stress-energy tensor

insertions. If all the points are distinct, xi 6= xj for all i 6= j, then these latter contact

terms are absent, and Γµ1ν1...µnνn is simply the connected Euclidean correlation function

(denoted simply by the subscript c) of n stress-energy tensors at n different points in the

first line of (4.3).

Since SE [g] is a scalar invariant which incorporates the conformal anomaly, the product√
g(x)〈Tµν(x)〉 satisfies the local conservation and trace identities

√
g ∇ν

〈
Tµν

〉
= ∂ν

(√
g 〈Tµν〉

)
+ Γµλν

(√
g 〈T λν〉

)
= 0 (4.4a)

gµν
(√
g
〈
Tµν

〉)
=

N

24π

√
g R (4.4b)

in an arbitrary background metric gµν(x), where Γµλν is the Christoffel connection. By

varying these fundamental identities multiple times one arrives at the Ward identities

satisfied by the general n-point correlation functions (4.2), which when evaluated finally in

the flat metric gµν = ḡµν are

∂ν1Γ̄µ1ν1...µnνn(x1, . . . , xn) = −
(

n∑
i=2

δ(2)(x1 − xi) ∂µ1xi

)
Γ̄µ2ν2...µnνn(x2, . . . , xn) (4.5a)

δµ1ν1Γ̄µ1ν1...µnνn(x1, . . . , xn) = −2

(
n∑
i=2

δ(2)(x1 − xi)
)

Γ̄µ2ν2...µnνn(x2, . . . , xn)

+
N

24π

2n−1δn−1
(√

g(x1)R(x1)
)

δgµ2ν2(x2) . . . δgµnνn(xn)

∣∣∣∣
gµν=δµν

(4.5b)

where we have used Cartesian coordinates in which the flat space metric ḡµν = δµν .

Eqs. (4.5) are distributional identities that vanish as any point is removed to infinity (so that

total derivatives of δ-function terms may be dropped). It is important to note that the Ward

identities we used for our derivations enforce covariance at the expense of the trace anomaly.

As an example let us derive the n = 2 case of (4.5b). Using (4.2a), we can write (4.4b)

as

2gµν(x)
δSE [g]

δgµν(x)
=

N

24π

√
g R. (4.6)

Now let us take the variation with respect to gαβ(x′) to obtain

2gµν(x)
δ2SE [g]

δgµν(x)δgαβ(x′)
+ 2δ(2)(x− x′) δSE [g]

δgαβ(x′)
=

N

24π

δ
(√

g(x)R(x)
)

δgαβ(x′)
. (4.7)

One only needs to multiply this expression by a factor of 2/
√
g, use the definitions (4.2),

and evalute the resulting expression in flat space to obtain the desired result. Applying this

procedure iteratively, (4.5b) can be shown to hold for any value of n. Similar manipulations

are needed to obtain (4.5a) from (4.4a), where now the terms in the right-hand side of (4.5a)

come from variations of the Christoffel symbol in (4.4a).

The latter trace identity (4.5b) simplifies due to the fact that the variation of
√
gR

vanishes for n > 2. To prove this note first that in d = 2 dimensions an arbitrary metric
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variation can be written as a conformal transformation plus a diffeomorphism

δgµν = δσgµν + δξgµν ≡ 2σgµν +∇µξν +∇νξµ . (4.8)

Since
√
gR is a scalar density which is invariant under diffeomorphisms up to surface

terms, its local variation with respect to δξgµν vanishes and it is sufficient to consider

only conformal deformations of the metric δσgµν . With the conformal parameterization

of (3.11), the relation (3.10) evaluated for ḡµν the Euclidean flat space metric is

√
g R = −2

√
ḡ σ = −2 δµν∂µ∂νσ = −2 ∂2σ (4.9)

in flat Cartesian coordinates. Eq. (4.9) shows that
√
gR depends only linearly on the

conformal metric variation δσgµν = 2σδµν . Hence all higher order variations of
√
gR

around flat space beyond the first must vanish identically, i.e.

δn−1
(√

g(x)R(x)
)

δgµ2ν2(x2) . . . δgµnνn(xn)

∣∣∣∣
gµν=δµν

= 0 , n > 2 , d = 2 . (4.10)

For n = 2 the first variation is given by

δ
(√

g(x)R(x)
)

δgαβ(y)

∣∣∣∣
gµν=δµν

=
(
−δαβ∂2 + ∂α∂β

)
δ(2)(x− y) (4.11)

in Cartesian coordinates of flat space, so that for the two-point function, the Ward identi-

ties (4.5) are [57–61]

∂xν
〈
Tµν(x)Tαβ(y)

〉
= 0 , (4.12a)

δµν
〈
Tµν(x)Tαβ(y)

〉
=

N

12π

(
−δαβ∂2 + ∂α∂β

)
δ(2)(x− y) , (4.12b)

where we have used 〈Tαβ(y)〉 = 0 in flat space.

We may use the identity (4.5b) recursively together with (4.10) to derive identities for

correlation functions with multiple insertions of traces T (xj) ≡ δµνTµν(xj), obtaining〈
T (x1) . . . T (x`)T

µ`+1ν`+1(x`+1) . . . Tµnνn(xn)
〉

(4.13)

= (−2)`
[ ∏̀
k=1

( n∑
ik=k+1

δ(2)(xk − xik)
)]〈

Tµ`+1ν`+1(x`+1) . . . Tµnνn(xn)
〉
, n > `+ 1 ≥ 2

while in the special case n = `+ 1,〈
T (x1) . . . T (xn−1)Tαβ(xn)

〉
= (−2)n−2

[ n−2∏
k=1

( n∑
ik=k+1

δ(2)(xk − xik)
)] N

12π

(
−δαβ∂2 + ∂α∂β

)
δ(2)(xn−1 − xn) (4.14)

which reduces to (4.12b) for n = 2 and x1 = x, x2 = y.
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4.2 The holomorphic representation in coordinate space

To compare the fermion loops to scalar trees it will be particularly convenient to work in

Euclidean time τ = it and the complex coordinates [59, 62]

z = x+ iτ , z̄ = x− iτ , (4.15)

so that the Euclidean flat line element and non-zero components of the metric are given by

ds2 = dτ2 + dx2 = dz dz̄ , ḡzz̄ =
1

2
, ḡzz̄ = 2 . (4.16)

In these complex coordinates the fermion energy momentum tensor (3.43) has components1

Tzz = − i
2

(
:ψ†+(z)∂zψ+(z) : − :∂zψ

†
+(z)ψ+(z) :

)
(4.17a)

Tz̄z̄ =
i

2

(
:ψ†−(z̄)∂z̄ψ−(z̄) : − :∂z̄ψ

†
−(z̄)ψ−(z̄) :

)
(4.17b)

while the mixed component Tzz̄ vanishes on shell upon using the Dirac equations of motion

∂zψ− = 0 = ∂z̄ψ+. These components satisfy the conservation law

∂zTzz̄ + ∂z̄Tzz = 0 , ∂z̄Tzz̄ + ∂zTz̄z̄ = 0 , (4.18)

since Tzz depends only on z while Tz̄z̄ depends only on z̄.

The fermion propagators are

〈ψ+(z1)ψ†+(z2)〉 =
i

2π

1

z1 − z2
≡ S+(z1 − z2) (4.19a)

〈ψ−(z1)ψ†−(z2)〉 = − i

2π

1

z̄1 − z̄2
≡ S−(z̄1 − z̄2) (4.19b)

in this notation (for one fermion). These are Green’s functions of the chiral Dirac operator

since, e.g.

− iγ0γµ
∂

∂xµ1
S+ = −2i∂z̄1S+ =

1

π
∂z̄1

1

z1 − z2
= −4∂z̄1∂z1GΦ = δ(2)(z1 − z2) (4.20)

where

GΦ(z1 − z2) = − 1

2π
ln (M |z1 − z2|) = − 1

4π

[
ln(z1 − z2) + ln(z̄1 − z̄2)

]
+ const. (4.21)

is the Euclidean scalar propagator (3.90) and we have used = 4∂z̄∂z in complex coordi-

nates.

Using (4.17b) and (4.19b), and keeping track of signs for the anti-commutation of

fermion fields, we find for the one-loop two-T correlator of N fermions〈
Tz1z1Tz2z2

〉
= −N

4

[
2∂z1S+(z1 − z2) ∂z2S+(z1 − z2)− 2S+(z1 − z2) ∂z1∂z2S+(z1 − z2)

]
1We drop the subscript f in the fermion stress-energy Tf in this section for notational simplicity.
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=
N

2(2π)2

1

(z1 − z2)4
. (4.22)

For the canonically normalized boson field Φ associated with the effective action of

the conformal anomaly (3.25), the energy momentum tensor components in complex coor-

dinates of flat space are

Tzz[Φ] =

√
N

12π
∂z∂zΦ + :∂zΦ∂zΦ : (4.23a)

Tzz̄[Φ] = −
√

N

12π
∂z̄∂zΦ (4.23b)

with the anti-holomorphic Tz̄z̄ obtained from Tzz by replacing z by z̄. Its Euclidean prop-

agator is given by (3.90) or (4.21). Note that the scaling of the linear term in Φ with√
N implies that exactly two insertions of the linear vertex is necessary to match the N

scaling of the fermion loop correlations functions. For the two-point function this is just

the simple tree diagram of figure 3, already computed in section 3, cf. (3.92), which in

complex coordinates is〈
Tz1z1Tz2z2

〉
c

=
N

12π

〈
∂2
z1Φ(z1)∂2

z2Φ(z2)
〉

=
N

12π
∂2
z1∂

2
z2GΦ(z1 − z2) =

N

2(2π)2

1

(z1 − z2)4

(4.24)

which coincides with (4.22), and corresponds to (3.36) Fourier transformed to Euclidean

position space in complex coordinates, where all four indices are z. The massless pole

of (3.36) is nothing else but the scalar propagatorGΦ, and the projection operators (ηµνk2−
kµkν) in coordinates (4.16) become four derivatives ∂4

z of GΦ.

Taking one trace in the two-point function yields〈
4Tz1z̄1Tz2z2

〉
c

=
N

12π
∂2
z2δ

(2)(z1 − z2) (4.25)

no matter whether it is computed via a fermion loop or from a tree using (3.23). How-

ever this contribution arises in each representation in quite a different way, which merits

some comment. In the fermion loop computation in position space the result (4.22) is

well-defined if the points z1 6= z2 are distinct. The possible local contribution at z1 = z2 is

undefined without further information. That information comes from the requirement of

covariance, or equivalently, the enforcement of the Ward identity (4.12b). In covariant lan-

guage the conservation eq. (4.12a) forces the tensor structure of the two-point function to

be proportional to the projector in (3.36) or (ηµν∂
2−∂µ∂ν)(ηαβ∂

2−∂α∂β) in position space.

This tensor structure determines the trace in terms of the non-trace components so that the

trace is obtained by replacing ∂2
z1 by −∂2 = −4∂z∂z̄, which because of (3.91) or (4.20) gives

a well-defined contact term at z1 = z2. If one had chosen the trace anomaly to be absent, at

the price of the loss of the covariant conservation eq. (4.12a), this contact term would be ab-

sent. In contrast, in the tree effective action of the boson field Φ, covariant conservation at

the non-zero trace anomaly has already been imposed, and the non-zero trace (4.25) follows

from the explicit non-zero trace contribution of the term linear in Φ (4.23b) inserted at the

endpoints of the simple tree diagram in figure 3, canceling the scalar propagator by (3.91)
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z2

z3 =

z1
z1

z2

z3

+

z3

z1

z2

+

z2

z3

z1

Figure 6. Equivalence of fermion loop to scalar Φ trees for n = 3.

and leading to a well-defined contact term consistent with the anomalous trace Ward iden-

tity (4.25). The scaling with N of loops and trees also arises in different ways, and helps to

understand how a quantum loop proportional to ~ can be equivalent to scalar tree diagrams.

This is possible because the anomaly effective action for Φ has a linear ΦR vertex which is

itself proportional to ~ from the quantum anomaly it encodes. Two insertions of this vertex

and one Φ propagator canonically normalized yield a factor of N~2/~ = N~, exactly the

same factor in the quantum one-loop diagram of N fermions. Additional insertions of the

stress-energy tensor vertex always bring with them the same number of additional propaga-

tors in either the loop or tree representation, so that this factor of N~ is unchanged for the

arbitrary n-point correlation function, once the two-point function is fixed by the anomaly.

For the higher n-point functions, we start with the simplest case of purely holomorphic

Tzz components. For three insertions of Tzz, whether the N fundamental quantum fields

are fermions or bosons we find [58, 59, 63, 64]:〈
Tz1z1Tz2z2Tz3z3

〉
c

= N
[
∂z1∂z2GΦ(z1 − z2)

][
∂z2∂z3GΦ(z2 − z3)

][
∂z3∂z1GΦ(z3 − z1)

]
= − N

(2π)3

1

(z1 − z2)2 (z2 − z3)2 (z3 − z1)2

= − N

3(2π)3

[
1

(z2 − z1)3 (z1 − z3)3 +
1

(z1 − z2)3 (z2 − z3)3 +
1

(z2 − z3)3 (z3 − z1)3

]
(4.26)

where the last line follows from the algebraic identity

3 (z1 − z2) (z2 − z3) (z3 − z1) = (z1 − z2)3 + (z2 − z3)3 + (z3 − z1)3 . (4.27)

This identity is just what is needed for the identification with three tree graphs in Tzz[Φ] as

depicted in figure 6, where the middle point containing the one Tzz[Φ] vertex insertion that

is quadratic in Φ is z1, z2 and z3 respectively. Thus, for example the first term corresponds

to the tree graph

N

12π

〈
∂2
z1Φ(z1) :∂z2Φ(z2)∂z2Φ(z2) :∂2

z3Φ(z3)
〉
c
=
N

6π

[
∂2
z1∂z2GΦ(z1−z2)

][
∂z2∂

2
z3GΦ(z2−z3)

]
=− N

3(2π)3

1

(z1 − z2)3 (z2 − z3)3 (4.28)

after taking account of the two allowed Wick contractions and substituting (4.21). Sum-

ming the three contributions represented in figure 6 and using (4.27) gives (4.26).

The case of n = 3 shows that equality of loops and trees can be achieved upon summing

over permutations of all allowed graphs in each case with the proper symmetry factor(s),
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and only after a decomposition expressed by the algebraic identity (4.27) is utilized. For the

general case of n holomorphic stress-energy tensor correlators at distinct points, (z1, . . . , zn)

there are n! permutations of the positions of the zi on the fermion loop. Due to cyclic

symmetry of the one-loop graphs, n of them lead to the same expression, and furthermore

the mirror reflection of any loop gives again the same expression. Thus for the n-point

correlator there are (n− 1)!/2 distinct one-loop graphs that one must sum over. For n = 3

this is the single expression (4.26). However on the scalar tree side there is mirror reflection

symmetry but no cyclic symmetry of n points, so that the number of distinct tree diagrams

is n!/2, giving the 3 expressions in the last line of (4.26). Before we turn to a general proof,

it is illustrative to examine one more explicit example of n = 4. The one-loop graph with

the four holomorphic stress-energy tensors of N fundamental fermions or bosons is〈
Tz1z1Tz2z2Tz3z3Tz4z4

〉
c

= N
[
∂z1∂z2GΦ(z1 − z2)

][
∂z2∂z3GΦ(z2 − z3)

][
∂z3∂z4GΦ(z3 − z4)

][
∂z4∂z1GΦ(z4 − z1)

]
+ (1↔ 2) + (1↔ 4)

=
N

(2π)4

1

(z1 − z2)2 (z2 − z3)2 (z3 − z4)2 (z4 − z1)2 + (1↔ 2) + (1↔ 4) . (4.29)

Since (4 − 1)!/2 = 3 there are two additional distinct expressions with 1 ↔ 2 and 1 ↔ 4

interchanged. For the scalar boson Φ tree diagrams there are 4!/2 = 12 distinct permuta-

tions with 2 of the points at the ends with the term linear in Φ in (4.23a) inserted, and the

other 2 points in the interior with the term quadratic in Φ in (4.23a) inserted. A typical

term of this kind from the scalar tree with fixed sequence (1234) is

N

12π

〈
∂2
z1Φ(z1) :∂z2Φ(z2)∂z2Φ(z2) : :∂z3Φ(z3)∂z3Φ(z3) :∂2

z4Φ(z4)
〉
c

=
N

3π

[
∂2
z1∂z2GΦ(z1 − z2)

][
∂z2∂z3GΦ(z2 − z3)

][
∂z3∂

2
z4GΦ(z3 − z4)

]
=

N

3(2π)3

1

(z1 − z2)3 (z2 − z3)2 (z2 − z3)3 . (4.30)

Summing over the 12 distinct terms of this kind from the scalar trees yields (4.29) when

the algebraic identity

1

3

{
1

(z1 − z2)3 (z2 − z3)2 (z3 − z4)3 +
1

(z2 − z3)3 (z3 − z4)2 (z4 − z1)3

+
1

(z3−z4)3 (z4−z1)2 (z1−z2)3 +
1

(z4−z1)3 (z1−z2)2 (z2−z3)3 +(1↔2)+(1↔4)

}

=

{
1

(z1 − z2)2 (z2 − z3)2 (z3 − z4)2 (z4 − z1)2 +
1

(z1 − z3)2 (z3 − z2)2 (z2 − z4)2 (z4 − z1)2

+
1

(z1 − z2)2 (z2 − z4)2 (z4 − z3)2 (z3 − z1)2

}
(4.31)

is used. This relation (4.31) can be checked directly. However the algebraic identity needed

at each order n grows rapidly more complicated with n, making direct verification of the

equivalence of loop and tree graphs for general n impractical.
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In order to prove the equivalence between fermion loops and scalar Φ trees for an

arbitrary number n of holomorphic (or anti-holomorphic) stress-energy tensor insertions

we make use of the following Ward identity [59, 65, 66]

〈
Tz1z1Tz2z2 . . . Tzn+1zn+1

〉
=− 1

2π

n∑
i=1

{
2

(zn+1−zi)2
+

1

(zn+1−zi)
∂

∂zi

}〈
Tz1z1 . . . Tznzn

〉
(4.32)

+
N

2(2π)2

n∑
i=1

1

(zn+1−zi)4

〈
Tz1z1 . . . Tzi−1zi−1Tzi+1zi+1 . . . Tznzn

〉
.

This Ward identity is derived by combining the two Ward identities for conservation and

trace of the stress-energy tensor (4.5), together with an additional identity following from

invariance under Lorentz boosts [59], or alternately from the conformal transformation

properties of the stress-energy tensor under arbitrary holomorphic conformal transforma-

tions [65], which includes the previous three as special cases. The Ward identity (4.32)

holds for any correlation function, connected or not. For n = 1 the entire contribution to

the connected two-point correlator comes from the last anomaly term in (4.32), as veri-

fied by (4.22). However for n ≥ 2 this latter term corresponds to the sum of disconnected

graphs in which Tz1z1 is Wick contracted with any of the other Tzizi . Thus, restricting to the

connected diagrams generated by the 1PI variations of Γeff defined in (4.2), we have simply

〈
Tz1z1Tz2z2 . . . Tzn+1zn+1

〉
c

= − 1

2π

n∑
i=1

{
2

(zn+1 − zi)2
+

1

(zn+1 − zi)
∂

∂zi

}〈
Tz1z1 . . . Tznzn

〉
c

(4.33)

for n ≥ 2. Hence all holomorphic or anti-holomorphic stress-energy tensor connected

correlation functions for n ≥ 2 are determined by the fundamental two-point function

recursively. A similar identity applies for the anti-holomorphic sector by replacing all z by z̄.

The Ward identity (4.33) generates n-point connected correlation functions from n−1

point correlation functions, and must hold for either the loops and the trees separately.

The relation between the two which we shall prove by means of this identity is∑
P[i1,...in]

Γloop
n (zi1 , . . . , zin) =

n

3

∑
P[i1,...in]

Γtree
n (zi1 , zi2 ; z3 . . . , zn−2; zin−1 , zin) (4.34)

where the sum is over all n! permutations of the arguments zi and we define the fundamental

loop and tree expressions by

Γloop
n (z1, . . . , zn) ≡ (−2π)n

〈
Tz1z1 . . . Tznzn

〉
c

=
1

(z1 − z2)2 . . . (zk − zk+1)2 . . . (zn − z1)2

(4.35)

and

Γtree
n (z1, z2; z3 . . . , zn−2; zn−1, zn) ≡ (−2π)n

〈
Tz1z1 [Φ] . . . Tznzn [Φ]

〉
c

=
1

3

1

(z1 − z2)3(z2 − z3)2 . . . (zk − zk+1)2 . . . (zn−2 − zn−1)2(zn−1 − zn)3
(4.36)

respectively, with the endpoints of the linear tree z1 and zn distinguished in the latter case,

the corresponding factors being cubic in the differences rather than quadratic as all the
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other terms. Since 2n of the n! permutations are equal on the loop side, and pairs of terms

are always equal on the tree side, the relative factor becomes just 1/3 if the sums are taken

only over those permutations which yield strictly different expressions.

If we look first at (4.35) we notice that the loop with n+ 1 points can be generated by

inserting an additional point y somewhere in the loop, i.e.

1

(z1 − z2)2 . . . (zk − zk+1)2 . . . (zn − z1)2
→ 1

(z1 − z2)2 . . . (zk − y)2(y − zk+1)2 . . . (zn − z1)2

(4.37)

and this procedure can be performed in n different ways (since the graph has n internal

lines). Summing over all such possibilities takes into account that instead of (n−1)!/2 one

has now n!/2 distinct graphs for Γloop
n+1.

The same expression can be derived using the Ward identity (4.33) as follows. Since zi
appears twice in Γloop

n , every derivative in the curly bracket of (4.33) generates two terms.

Furthermore, there are two different derivative terms in the sum of the curly bracket acting

on any given (zk− zk+1)−2 factor in Γloop
n , i.e. that with i = k and i = k+ 1. It is therefore

convenient to combine subexpressions in the following way. In the sum over i in (4.33)

we select two summands i = k and i = k + 1 corresponding to a line connecting the two

adjacent points zk and zk+1 in Γloop
n . For these particular terms the operator in (4.33) gives{

2

(y−zk)2
+

1

y−zk
∂

∂zk
+

2

(y−zk+1)2
+

1

y−zk+1

∂

∂zk+1

}
1

(zk−1−zk)2(zk−zk+1)2(zk+1−zk+2)2

=

{
2

(y−zk)2
+

2

(y−zk)(zk−1−zk)
− 2

(y−zk)(zk−zk+1)
+

2

(y−zk+1)2
+

2

(y−zk+1)(zk−zk+1)

− 2

(y − zk+1)(zk+1 − zk+2)

}
1

(zk−1 − zk)2(zk − zk+1)2(zk+1 − zk+2)2
. (4.38)

Leaving aside the terms involving the outer points zk−1 and zk+2, and focusing only on

those depending on zk or zk+1, in the last set of curly brackets we collect 1/2 of the terms

involving either one of them in (y− zk)2 or (y− zk+1)2, together with the full contribution

of terms involving both zk and zk+1 through (zk − zk+1) to obtain{
1

(y − zk)2
− 2

(y − zk)(zk − zk+1)
+

1

(y − zk+1)2
+

2

(y − zk+1)(zk − zk+1)

}
1

(zk − zk+1)2

=

{
1

(y − zk)2
+

1

(y − zk+1)2
− 2

(y − zk)(y − zk+1)

}
1

(zk − zk+1)2

=

[
1

(y − zk)
− 1

(y − zk+1)

]2 1

(zk − zk+1)2

=
1

(zk − y)2(y − zk+1)2
(4.39)

which is exactly the result (4.37) of inserting the new point y into the loop graph between

the adjacent points zk and zk+1. The other half of the (y−zk)2 or (y−zk+1)2 terms together

with the terms involving zk−1 and zk+2 are to be combined in the similar subexpressions

corresponding to an insertion of the new vertex at y between zk−1 and zk and between zk+1
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and zk+2 pairwise in the same way. Hence, the sum of all subexpressions generated by the

Ward identity (4.33) corresponds to inserting the new point y on all n possible lines in the

loop, generating n different one-loop graphs with n+ 1 insertions of Tzz from every single

one-loop graph with n insertions of Tzz. Since there are (n − 1)!/2 distinct terms in the

loop diagrams with n insertions of Tzz, there are n!/2 distinct terms with n+ 1 insertions,

as a check of our previous counting.

We will now show that the same result holds for the tree diagrams and Γtree
n . In

order to generate Γtree
n+1 from Γtree

n there are three distinct ways of inserting the extra point

(which again we denote by y):

1. One can insert y as a new end point changing the expression (4.36) by the factor

(z1− z2)/(y− z1)3, if the first endpoint on the left is chosen, or by the factor (zn−1−
zn)/(zn − y)3 if the last endpoint on the right is chosen instead;

2. One can insert y on the line immediately attached to one of the endpoints changing

the expression (4.36) by the factor (z1−z2)3

(z1−y)3(y−z2)2
if on the left, and (zn−1−zn)3

(zn−1−y)2(y−zn)3
if

on the right;

3. Or one can insert y somewhere in the middle of the tree graph, making a change

precisely like in (4.37).

The factors of possibilities (1) and (2) combine to

(z1 − z2)

(y − z1)3

[
1− (z1 − z2)2

(y − z2)2

]
=

(z1 − z2)(y − 2z2 + z1)

(y − z1)2(y − z2)2
(4.40)

for the left side, with an analogous expression for possibilities (1) and (2) on the right side

of the tree.

On the other hand the terms generated by the Ward identity (4.32), with i = 1, 2{
2

(y − z1)2
+

1

y − z1

∂

∂z1
+

2

(y − z2)2
+

1

y − z2

∂

∂z2

}
Γntree(z1, z2; z3, . . . zn−2; zn−1, zn)

=

{
2

(y−z1)2
− 3

(y−z1)(z1−z2)
+

2

(y−z2)2
+

3

(y−z2)(z1−z2)
− 2

(z2−z3)

}
Γntree . (4.41)

Setting aside the term containing the interior point z3, we combine the 3 terms depending

on the endpoint z1 with half of the term depending on (y − z2)2 to obtain the factor

2

(y − z1)2
− 3

(y − z1)(z1 − z2)
+

1

(y − z2)2
+

3

(y − z2)(z1 − z2)

=
2

(y − z1)2
+

1

(y − z2)2
− 3

(y − z1)(y − z2)

=

[
2

(y − z1)
− 1

(y − z2)

] [
1

(y − z1)
− 1

(y − z2)

]
=

(z1 − z2)(y − 2z2 + z1)

(y − z1)2(y − z2)2
(4.42)

which coincides with (4.40). The same relation holds for the combination of possibilities

(1) and (2) on the other end of the tree graph. The remaining terms of (4.41) and its right

side counter part, together with all other terms coming from the interior points of the tree
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Figure 7. Equivalence of the fermion loop with scalar trees for arbitrary T -insertions.

generated by the Ward identity (4.32) combine exactly as in (4.39), thus corresponding

to possibility (3) above, where the additional point y is inserted somewhere on one of the

interior lines of the tree graph, not connected to one of the endpoints.

Since the argument goes through unchanged if the labels on the leftmost points z1, z2

and the rightmost points zn−1, zn are replaced by any permutations of the labels in (4.34),

it follows that the sum of all subexpressions generated by the Ward identity (4.32)

correspond to inserting y at all n + 1 possible locations in each tree graph (including the

new endpoints), thus generating n+ 1 tree graphs with n+ 1 insertions of the holomorphic

Tzz from every single tree graph with n insertions of T . Since there are n!/2 distinct terms

in Γtree
n , there are (n + 1)!/2 such distinct terms in Γtree

n+1, again verifying our previous

counting. Since we have verified the equivalence of loops and trees explicitly for n = 2, 3

and 4, the proof of the equivalence (4.34) for all higher n follows by induction. We have

checked (4.34) explicitly for the cases of n = 5, 6 using Mathematica, the latter case

involving 6!/2 = 360 distinct tree contributions. The algebraic identity relating these 360

terms to the sum of 5!/2 = 60 distinct loop contributions would be difficult to surmise

without the guidance of the Ward identity (4.32).

4.3 Trace insertions and contact terms

So far, we have studied purely holomorphic correlation functions. Their anti-holomorphic

counterparts are straightforwardly derived in the same way by replacing all z by z̄. What

remains, are all those correlators with insertions of Tzz̄ = 1
4 ḡ
µνTµν . These can be easily

generated by the trace Ward identity (4.13) for n > 2, with the two-point function al-

ready treated separately in (4.24) and (4.25). Since the stress-energy tensor has only 3

components in d = 2 dimensions, the trace components together with the holomorphic

and anti-holomorphic components already treated provides complete information of any

components of arbitrary numbers of stress-energy tensor correlators in d = 2.

Starting again with the three point function, with one trace 4Tzz̄ insertion, direct

computation of the tree graphs using (4.23b) yields

〈
4Tz1z̄1Tz2z2Tz3z3

〉
=

N

6(2π)2
δ(2)(z1 − z2)∂2

z2∂
2
z3 ln |z2 − z3|2 + (z2 ↔ z3)

= − N

(2π)2

[
δ(2)(z1 − z2) + δ(2)(z1 − z3)

] 1

(z2 − z3)4
(4.43)
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Figure 8. The contribution to the fermion loop three point function obtained by varying one of

the vertices, represented by the square.

which agrees with (4.13) for ` = 1, n = 3, upon inserting (4.24) for the holomorphic two-

point function. Notice that only two of the distinct three trees in figure 6 contribute

to (4.43), namely the ones with the trace component at z1 at one of the end points, and

this trace is non-zero because of the explicit non-zero contribution of the linear term in the

Φ stress-energy tensor component (4.23b) canceling the scalar propagator GΦ attached to

this point.

From the loop point of view the result (4.43) arises in a different way, namely from

the two contact terms obtained from varying the stress-energy tensor two-point function

〈Tµ2ν2Tµ3ν3〉 with respect to gµ1ν1 , as in (4.3) with the topology of the bubble diagrams

illustrated in figure 8.

Looking at two trace insertions of Tzz̄ components in either the loop or tree represen-

tation we obtain

〈4Tz1z̄1Tz2z24Tz3z̄3〉 = −N
3π
δ(2)(z1 − z2)∂2

z2δ
(2)(z2 − z3) (4.44)

which is now clearly coming from the anomaly contribution to the two-point function (4.25).

Using (4.25) we verify that (4.44) agrees with (4.14), as expected. In both cases above,

one may straightforwardly replace the purely holomorphic components with purely anti-

holomorphic components.

When n ≥ 4 contact terms in the tree diagrams arise also from explicit local variations

of the Tµν vertex at internal points as in (4.3), just as they do in the loop representation

for all n ≥ 3. For the scalar boson this variation is

2
δTµν [Φ](y)

δgαβ(x)

∣∣∣∣
g=ḡ

=
(
−ḡµν∂αΦ∂βΦ + ḡα(µḡν)β ḡκλ∂κΦ∂λΦ

)
δ(2)(y − z) (4.45)

which has the trace

2 ḡµν
δTµν [Φ](y)

δgαβ(x)

∣∣∣∣
g=ḡ

=
(
−2 ∂αΦ∂βΦ + ḡαβ ḡκλ∂κΦ∂λΦ

)
δ(2)(y − z) (4.46)

where only the first term contributes for holomorphic or anti-holomorphic α = β. Thus

for one trace insertion this term contributes a factor of −2δ(2)(y − z) times the usual

holomorphic Tzz vertex quadratic in Φ from (4.23a), which is just what is required to

satisfy the single trace insertion Ward identity (4.5b).

For the quantum loops we are assured by the equivalence of N bosons with N fermions

that the corresponding variation of the fermion stress-energy tensor (3.5) produces all

the contact terms needed to satisfy the multiple trace insertion Ward identities (4.13)
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and (4.14), all such contact terms coming either from explicit vertex variations analogous

to (4.46), or inherited from the anomalous two-point function trace (4.25). For the tree

diagrams the only sources of trace insertions are either the endpoint insertions of linear

terms in Φ (which encode the anomaly through the linear ΦR vertex) or explicit contact

variations of the (4.46) kind at intermediate points of the tree. These latter contributions

must be taken into account for n ≥ 4 (since a non-endpoint must be varied at least once

which is first possible at n = 4).

Considering this first non-trivial case of n = 4 for tree diagrams with one trace insertion

and three holomorphic Tzz insertions, the Ward identity (4.13) with ` = 1 and n = 4 and

the explicit expression for the three point function (4.26) gives

〈
T (y)Tz1z1Tz2z2Tz3z3

〉
= −2

3∑
i=1

δ(2)(y − zi)
〈
Tz1z1Tz2z2Tz3z3

〉
=

2N

3(2π)3

[
δ(2)(y − z1) + δ(2)(y − z2) + δ(2)(y − z3)

]
×
[

1

(z1 − z2)3(z2 − z3)3
+

1

(z2 − z1)3(z1 − z3)3
+

1

(z2 − z3)3(z3 − z1)3

]
(4.47)

totaling nine terms in all. Six of these terms, namely those with δ(2)(y − zi) multiplying

the trees with zi at one of the two endpoints, correspond to correlators with the trace

T (y) coming from the linear term trace contribution (4.23b) at the endpoints canceling the

connecting GΦ propagator as before. For example for the first of the nine terms in (4.47)

− N

3π

〈
∂y∂ȳΦ(y) :∂z1Φ(z1)∂z1Φ(z1) : :∂z2Φ(z2)∂z2Φ(z2) : ∂2

z3Φ(z3)
〉

=
N

3π(4π)2
∂z1δ

(2)(y − z1) ∂z1∂z2 ln(z1 − z2) ∂z2∂
2
z3 ln(z2 − z3)

=
2N

3(2π)3
δ(2)(y − z1)

1

(z1 − z2)3(z2 − z3)3
. (4.48)

The remaining three of nine terms in (4.47) with δ(2)(y − zi) multiplying a contribution

with that zi at the center point of the tree, viz.

2N

3(2π)3

[
δ(2)(y − z2)

1

(z1 − z2)3(z2 − z3)3
+ δ(2)(y − z1)

1

(z1 − z2)3(z3 − z1)3

+ δ(2)(y − z3)
1

(z2 − z3)3(z3 − z1)3

]
(4.49)

are reproduced by the explicit variation of that zi vertex by gαβ(y) (4.46). For example

the first of these three terms comes from varying the z2 vertex by gαβ(y) which gives〈 N

12π
∂2
z1Φ(z1)

[
−2∂z2Φ(z2)∂z2Φ(z2)δ(2)(y − z2)

]
∂2
z3Φ(z3)

〉
= − 4N

12π(4π)2
δ(2)(y − z2)

[
∂2
z1∂z2 ln(z1 − z2)

] [
∂z2∂

2
z3 ln(z2 − z3)

]
=

2N

3(2π)3
δ(2)(y − z2)

1

(z1 − z2)3(z2 − z3)3
(4.50)

with the correct factors.
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In a similar manner multiple trace insertions in either the loop diagram or at inter-

mediate points of the tree diagrams require additional variations of Tµν with respect to

the metric, which generates products of δ-functions at coincident points, according to the

general trace Ward identities (4.13) and (4.14). Generalizing both the loop and tree dia-

grams in this way to allow for multiple variations and contact terms allows us to extend the

identity (4.34) to the case of mixed Tzz̄ components, respectively with arbitrary numbers

of trace insertions. This completes the proof of the equivalence of one-loop correlators

of arbitrary numbers of stress-energy tensor insertions of any kind with the linear tree

diagrams generated by the effective action (3.25) of the scalar boson field Φ.

5 Summary and conclusions

Our main purpose in this paper has been to demonstrate that fermion pairing into a bosonic

degree of freedom in relativistic quantum field theory is a general phenomenon associated

with an anomaly. The remarkable features of the Schwinger model are a consequence of

the chiral anomaly of the fermions, which leads directly to the existence of a chiral boson

composed of fermion pairs. We showed that with some interesting differences most of this

analysis may be extended to the conformal trace anomaly of the stress-energy tensor in d =

2 spacetime dimensions. In particular, the physical Fock space representation of the scalar

boson associated with the stress-energy tensor conformal anomaly as a certain correlated

fermion pair related to the Virasoro generators through (3.68) defines a ‘bosonization’

distinct from that in the Schwinger model and coupling to the electric field.

The quickest path to the boson description is via the functional integral method and

the effective actions obtained by integration of the anomaly by (2.19)–(2.21) in the case of

the chiral anomaly, and (3.12)-(3.15) in the case of the conformal anomaly. In both cases

this leads immediately to a gauge (or coordinate) invariant non-local action in terms of

field strengths with a propagator −1 that signals propagation of a massless boson field

not present in the classical theory. In both cases this propagating boson field may be made

explicit in the local form of the quadratic effective action (2.24) or (3.17) with a kinetic

term. By keeping track of degrees of freedom through the functional determinants it is

easy to see that the propagating boson is one collective degree of freedom of the original N

fermion theory in the singlet channel, leaving N − 1 fermion states, so that no net degrees

of freedom are gained or lost by the fermions pairing into an effective boson.

A second clear signature of the fermion pairing phenomenon may be seen in the appear-

ance of a massless boson 1/k2 pole in correlation functions, such as the two-point current

polarization tensor (2.42) or the stress-energy polarization tensor (3.36). In each case the

existence and residue of this pole is determined by the anomaly. In each case, deforming

the system away from exactly zero mass fermions shows that corresponding spectral func-

tions obey a UV finite sum rule, which collapses to a δ(k2) in the massless limit. These

behaviors of correlation and spectral functions are closely related to the anomalous com-

mutator or Schwinger terms in the current algebras (2.53) and (3.48), which in turn are

consequences of proper definition of the fermion vacuum with a filled Dirac sea and normal

ordering definition of the currents. In the Fock space operator description the Schwinger
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anomalous commutator terms become nothing else than the canonical commutators of the

boson fields (2.75)–(2.77) and (3.64)–(3.68) composed of fermion pairs verifying again that

the boson is a bona fide propagating quantum field in its own right.

In both the chiral and conformal bosonization schemes there is an interesting con-

nection to the topology of the field configuration space. The zero mode in the chiral

bosonization scheme describe winding modes in the field configuration space related to the

Chern-Simons number, the Wilson-Aharonov-Bohm phase and the breaking of chiral sym-

metry in the Schwinger model. The zero mode in the conformal bosonization scheme and

analogous Chern-Simons charge derived from the Euler characteristic describes the con-

formal mapping of R2 to the cylinder R× S1 and the background conformal charge (3.60)

of the dilation current. The Casimir energy of the fermions on the cylinder with anti-

periodic boundary conditions on the spatial interval [0, L] is thereby related to topology

and a condensate (3.55) in the bosonic description.

The appearance of the fermion pairing may be seen explicitly in the current and stress-

energy correlation functions in that the sum over arbitrary two-fermion intermediate states

in each coincides with the sum over scalar boson intermediate states which are a specific

coherent superposition of fermion pairs. This is verified for the two-point correlation func-

tions in sections 2.4 and 3.6. For the currents the effective action (2.21) is quadratic in the

gauge potentials and there are no further connected correlators to be considered. For the

conformal anomaly the effective action (3.15) contains all higher metric variations, so that

connected correlators of arbitrary numbers of stress-energy tensors are non-vanishing.

In section 4 the equivalence between fermion pairs and bosons has been extended to the

one-loop correlation functions of arbitrary numbers of fermion stress-energy tensors, which

are mapped precisely to the set of linear tree diagrams, generated by the boson effective

action (3.25): cf. eq. (4.34) and figure 7. This proof involves some non-trivial combinatoric

identities among polynomials, which are made transparent only by use of the general n-

point Ward identities, including the general anomalous trace Ward identities in (4.5). Since

all the propagator lines in the tree diagrams are precisely those of the same boson field Φ

in (3.25), the equivalence (4.34) of the fermion loop and boson tree diagrams shows that all

intermediate states of these arbitrary higher order n-point stress-energy tensor amplitudes

involve exactly the same correlated fermion pair states of the boson field as that of the

basic two-point 〈TµνTαβ〉 amplitude.

The close association between the phenomenon of fermion pairing into bosons and

quantum anomalies has been studied here exclusively in d = 2 dimensions, in order to keep

matters as simple as possible and all formulae explicit. However, it should be clear that

many of the same features of this close association carry over to higher even dimensions,

with appropriate modifications. In particular the bosonic effective action for both the

conformal and chiral anomalies in d = 4 have been discussed in [50] and [22], with the

massless 1/k2 pole and UV finite sum rule explicitly exhibited in the latter case. The

principal differences in higher dimensions are that the anomalous amplitudes appear first

in higher n-point correlation functions than n = 2 in d = 2, and the effects of the anomaly

and pairing phenomenon are present only in special tensor combinations, in particular

kinematic limits, the other tensor combinations being non-anomalous and determined by

other model dependent considerations.
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A Commutator algebra of fermion charge density

In this appendix, we compute explicitly the commutator relations for the fermion density

operator defined in eq. (2.68). It is clear that the mixed commutator of left and right

movers [ρ
(∓)
n , ρ

(±)
n′ ] = 0, while [ρ

(+)
n , ρ

(+)
n′ ] = [ρ

(−)
n , ρ

(−)
n′ ], so that we can drop the chirality

index in order to compute this commutator. To that end let us first evaluate

[cq, cq′c
†
q′−n] = cqcq′c

†
q′−n − cq′c

†
q′−ncq = −cq′ δq,q′−n (A.1a)

[c†q, cq′c
†
q′−n] = c†qcq′c

†
q′−n − cq′c

†
q′−nc

†
q = δq,q′ c

†
q′−n (A.1b)

so that

[cq, ρn] = cq+n , [c†q, ρn] = −c†q−n . (A.2a)

Therefore for n > 0, n′ < 0

[ρn, ρn′ ] =

( ∑
q≥−n′+ 1

2

c†q−ncq+n′ −
∑

q≥n+ 1
2

c†q−n−n′cq +
∑

1
2
≤q≤n− 1

2

cqc
†
q−n−n′

−
∑

1
2
≤q≤−n′− 1

2

cq+n′c
†
q−n +

∑
q≤− 1

2

cqc
†
q−n−n′ −

∑
q≤− 1

2

cq+n′c
†
q−n

)

=
∑

1
2
≤q<n+ 1

2

(
c†q−n−n′cq + cqc

†
q−n−n′

)
=

∑
1
2
≤q<n+ 1

2

δn,−n′ = n δn,−n′ (A.3)

which is also valid for n > 0, n′ > 0, when it vanishes. Using then also (2.70) we find

that (A.3) is valid for all n, n′ 6= 0. In order to obtain this result it is crucial to use the

correctly fermion normal ordered definition (2.68), which gives rise to a finite range of n

values of q contributing in (A.3).

This non-zero commutator simply expresses the anomalous commutator of cur-

rents (2.52), showing it to be an exact result, valid at the operator level, since

[j0(t, x), j1(t, x′)] =
1

L2

∑
n6=0

neikn(x−x′) − 1

L2

∑
n 6=0

ne−ikn(x−x′)

=
1

πL

∑
n∈Z

kne
ikn(x−x′) = − i

π
∂xδ(x− x′) . (A.4)
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B Virasoro algebra of fermion energy density

For completeness we also provide a direct computation of the commutator of two Virasoro

generators of the fermions, highlighting the importance of the definition of the fermion vac-

uum by the normal ordering prescription. Suppressing the ± chirality indices for notational

simplicity and using

[cn,Ln′ ] =

(
n+

n′

2

)
cn+n′ , [c†n,Ln′ ] = −

(
n− n′

2

)
c†n−n′ (B.1)

yields

[Ln,Ln′ ] = −
− 1

2∑
q=−∞

(
q − n

2

)
[cqc

†
q−n,Ln′ ] +

∞∑
q= 1

2

(
q − n

2

)
[c†q−ncq,Ln′ ]

= −
− 1

2∑
q=−∞

(
q − n

2

)(
cq[c

†
q−n,Ln′ ] + [cq,Ln′ ]c

†
q−n

)
+
∞∑
q= 1

2

(
q − n

2

)(
c†q−n[cq,Ln′ ] + [c†q−n,Ln′ ]cq

)

=

− 1
2∑

q=−∞

(
q−n

2

)(
q−n−n

′

2

)
cqc
†
q−n−n′−

n′− 1
2∑

p=−∞

(
p−n′−n

2

)(
p−n

′

2

)
cpc
†
p−n−n′

+
∞∑

p=n′+ 1
2

(
p−n′−n

2

)(
p−n

′

2

)
c†p−n−n′cp−

∞∑
q= 1

2

(
q−n

2

)(
q−n−n

′

2

)
c†q−n−n′cq (B.2)

where p = q + n′. Using the identity(
q − n′ − n

2

)(
q − n′

2

)
−
(
q − n− n′

2

)(
q − n

2

)
= (n− n′)

(
q − n′ + n

2

)
(B.3)

we find

[Ln,Ln′ ]=−(n−n′)
− 1

2∑
q=−∞

(
q−n+n′

2

)
cqc
†
q−n−n′−

n′− 1
2∑

p= 1
2

(
p−n′−n

2

)(
p−n

′

2

)
cpc
†
p−n−n′

+ (n−n′)
∞∑

q=n′+ 1
2

(
q−n+ n′

2

)
c†q−n−n′cq−

n′− 1
2∑

p= 1
2

(
p−n

′

2

)(
p−n′−n

2

)
c†p−n−n′cp

= (n− n′)Ln+n′ − δn,−n′
n′− 1

2∑
p= 1

2

(
p− n′ − n

2

)(
p− n′

2

)
. (B.4)

Finally, one needs to evaluate the sum

n′− 1
2∑

p= 1
2

(
p− n′

2

)2

=
1

12
n′
(
n′2 − 1

)
(B.5)
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to obtain the algebra

[Ln,Ln′ ] = (n− n′)Ln+n′ +
n(n2 − 1)

12
δn,−n′ . (B.6)
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