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Abstract 

Background: Child undernutrition is persistently high in the central Andes of Peru, and numerous smallholder 
households fail to meet their basic needs of energy, iron and zinc. Food‑based approaches assume household‑level 
nutrition can be improved following agricultural interventions. This study assesses for the first time whether cur‑
rent Andean production systems provide sufficient energy, iron and zinc output to meet household‑level require‑
ments and explores the likely effect of commonly promoted food‑based approaches. Across four communities, we 
determined the crop and livestock production output for each household (n = 165) during one growing season. 
The household‑level nutritional demand or input was calculated as a function of household composition and daily 
requirements of energy, iron and zinc as established by FAO/WHO. We examined five scenarios, current practice or 
status quo and four food‑based interventions: (1) increased potato yield, (2) introduced biofortified potatoes, (3) pro‑
motion of guinea pigs and (4) a mixed strategy combining all of the above.

Results: Under status quo, 86, 62 and 76 % of households obtained sufficient production output to meet energy, 
iron and zinc requirements, respectively. Considering the three parameters simultaneously, 59 % of households were 
able to meet their energy, iron and zinc requirements. The total crop production among households provided more 
than the necessary energy, iron and zinc output to meet the demand of all 165 households. Yet, significant differences 
between households account for individual deficits or surpluses in household‑level output–input balances. Potato 
(Solanum spp.), barley (Hordeum vulgare) and faba (Vicia faba) production was particularly significant in determining 
the energy, iron and zinc output. Livestock did not make a substantial contribution. The main difference between 
households with negative versus positive coverage, in terms of household‑level production output from agriculture 
meeting demand (=input), was available cropping area given household size. None of the explored food‑based inter‑
ventions closed the energy, iron and zinc deficit from production among households with negative coverage.

Conclusions: The smallholder production systems analyzed are only partially capable of providing sufficient produc‑
tion output to cover household‑level energy, iron and zinc demands. Of the four interventions examined, a mixed 
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Background
Agriculture is a vital source of food for farm house-
holds in the central Andes of Peru and a main entry 
point for development interventions aimed at strength-
ening food security and reducing undernutrition. 
Food-based approaches to nutrition, particularly those 
involving enhanced on-farm production to increase 
yields or to incorporate micronutrient dense compo-
nents such as microlivestock (e.g., guinea pigs, chickens), 
biofortified staples or vegetables in smallholder farming 
systems, are frequently considered to be robust and sus-
tainable alternatives to enhance smallholder food secu-
rity [1, 2]. Higher or more stable crop yields are expected 
to influence the availability dimensions of food security, 
while diet quality from micronutrient rich foods can 
directly affect food security through utilization. Impor-
tantly, enhanced on-farm production as a food-based 
approach to improve nutrition is considered sustainable. 
In contrast to non-food-based approaches where nutri-
tional supplementation, for example, must be provided 
in an ongoing way by agents external to the community, 
food-based alternatives can be autonomously maintained 
by farmers.

One underexplored prerequisite for the success of 
food-based approaches relates to the actual capacity of 
the smallholder farming system to provide sufficient food 
or nutrients to cover basic household-level nutritional 
requirements. Empirical assessments of these crop–live-
stock systems’ energy and nutrient outputs are needed. In 
addition, analyses of the actual contribution of selected 
agricultural (food-based) interventions to household-
level nutrient availability are critical to fully understand 
their potential impact.

Undernutrition is still prevalent in the Peruvian Andes, 
disproportionately affecting rural areas [3]. Stunting, or 
low height for age, is particularly widespread and has 
been the main focus of attention for governmental and 
civil society nutrition interventions in Peru. Stunting 
reflects the cumulative effects of undernutrition and poor 
health [4]. It is an indication of poor food and/or envi-
ronmental health and results in long-term restrictions on 
child growth potential. Between 2000 and 2011, stunting 
in Peruvian children younger than 5  years of age went 
down from 31.6 to 19.6 %; anemia dropped from 50.4 to 
30.7 % [5]. For the same period, stunting rates in Peru’s 

highland regions dropped from 43.5 to 30.8  %; anemia 
dropped from 56.2 to 39.9  %. Despite overall progress, 
the prevalence of anemia in children 6–36  months old 
has remained disproportionately high with 41.6 % at the 
national level and 49.6  % in rural areas in 2011 [6]. By 
2013, these figures actually increased to 46.4  % nation-
wide and 51.7 % in rural areas.

The reduction in child malnutrition in Peru is the result 
of increasingly coordinated government and civil society 
actions, e.g., a national poverty reduction strategy prior-
itizing nutrition interventions [7, 8]. Nutrition programs 
in Peru have focused on improving food access and avail-
ability. A conditional cash transfer program (Juntos) for 
women and food supplementation through the “glass 
of milk” and “school breakfast” programs have been at 
the heart of governmental strategies for the last decade 
[8–10]. Fortification of commonly consumed products, 
such as wheat flour, noodles or prepackaged school 
breakfast meals, is also regularly applied in Peru [11, 12], 
but these do not target infant and young children under 
3  years old—the most vulnerable group for nutritional 
deficiencies and their child development consequences. 
On the other hand, the strategy of multi-micronutrient 
powder or sprinkles for children 6–36 months has been 
applied irregularly by the Peruvian government. In addi-
tion, many initiatives have addressed food utilization 
practices, e.g., improved hygiene and sanitation through 
nutrition messaging [13].

Meanwhile, agricultural or food-based approaches in 
the Andes have been predominantly promoted by civil 
society organizations. Interventions include the promo-
tion of small greenhouses, horticulture, microlivestock, 
crop diversification and to a lesser extent biofortified 
crops [14]. In parallel, international development pro-
grams have focused their attention on increasing farmer 
income through inclusive value chain initiatives [15, 16]. 
Food stability is probably the food security dimension 
that is least attended by institutional interventions. Yet, 
Andean practices such as field scattering, mixed crop–
livestock portfolios, planting of varietal combinations are 
still widely used by farmers themselves to maximize sta-
bility [17–19].

Research and development organizations frequently 
assume that agricultural (food-based) interventions 
will effectively translate into significant household-level 

strategy holds most potential for reducing nutrition gaps. Particularly potato yield increases had a positive effect. The 
carrying capacity of high‑altitude Andean farming systems is strained for households with limited land. Food‑based 
approaches to nutrition under scenarios similar to those reported in this study are advised to balance agricultural 
interventions with options to enhance off‑farm access to food.

Keywords: Food and nutrition security, Smallholder farmers, Food‑based approaches, Central Andes, Peru
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nutrition improvements. Different types of social, eco-
nomic or biophysical factors can impede desired out-
comes. On-farm production is taking place in the high 
Andes as smallholder farmers rapidly diversify their 
livelihoods through off-farm employment [20–23]. Male 
farmers are increasingly only part-time involved in agri-
culture, and as women stay behind, a feminization of 
agriculture is becoming a reality in many rural areas [24–
27]. Moreover, while in some places (temporal) migration 
has released some of the pressure on the land’s abil-
ity to sustain food production [28], in others continued 
demographic pressure and landholding fragmentation 
reinforce migration and intensify crop and livestock pro-
duction [29–31].

Particularly where smallholder farming systems may 
face constraints to production, it is imperative to assess 
actual carrying capacity and the potential of currently 
promoted agricultural interventions to enhance it. Carry-
ing capacity defines the balance between land resources 
and human demands [32–40]. Locally, for smallholder 
food security, it translates into the total annual crop–live-
stock output being able to cover household demand for 
food. Sustainable intensification, it is argued, can extend 
the carrying capacity of the land to meet human food 
security needs [41–43]. In Andean agricultural systems, 
intensification options include the promotion of new 
varieties, crop biodiversity, homegardens or better prac-
tices for soil fertility, handling pests and disease, and stor-
age of target crops, among others [44–51]. The desired 
outcome of such efforts is to increase the household-level 
food and nutrient quantity (yield) and quality (diversity, 
micronutrient density) under current landholding sizes.

Presently, Andean farming systems are under great 
strains to provide sufficient output to meet the demands 
of the households that (partially) depend on agriculture 
for food security. Among other influences, land frag-
mentation [52–54], interruption of communal rotation 
designs [55, 56], shortened fallow cycles [30, 55, 57, 58], 
soil degradation manifested as negative macronutrient 
and soil organic matter balances [43, 59–63], pest and 
disease intensity [64, 65], expansion of agricultural activi-
ties into higher altitudes exposed to extreme weather 
[66–68], and higher risk of harvest loss [69] may all com-
promise the basic capacity of agricultural systems and 
common development interventions to meet household-
level nutrients demands. A deepened understanding of 
these intervening factors is beyond the scope of the cur-
rent study. However, by taking the case of selected com-
munities in central Peru, our research contributes with 
a much-needed estimate of current smallholder produc-
tion system carrying capacity in terms of basic energy 
and micronutrient provision from agriculture. Through 
modeled scenarios we present a novel analysis of the 

capacity of specific agricultural interventions, or so-
called food-based approaches, to increase the output of 
energy, iron and zinc from agriculture.

The purpose of our research is to examine whether 
agricultural output under current farming practice actu-
ally provides sufficient energy, iron and zinc output to 
meet household demand or input. We adopt the con-
cept of carrying capacity to measure and compare the 
basic capacity of farming systems to cover household-
level energy and micronutrient (iron and zinc) require-
ments through agriculture. Further, we explore variability 
among households and conditions associated with either 
positive or negative balances. To evaluate the contribu-
tion of food-based approaches to improve household-
level balances, we analyze the effect of four agricultural 
intervention options. The outcome of these analyses are 
household-level balances: on-farm production output 
versus household-level demand for energy, iron and zinc.

The selected food-based interventions correspond to 
the strategies currently pursued by different development 
actors (NGOs and research for development centers): 
(i) enhancing potato yield, (ii) introducing biofortified 
potatoes, (iii) promoting guinea pigs and (iv) a combined 
approach. These interventions aim to eventually enhance 
smallholder household food and nutrition security with 
an emphasis on maternal child nutrition, support healthy 
livelihood outcomes and reduce vulnerability in the 
long-term [8, 70, 71]. The future implementation of such 
interventions would benefit from the present study. By 
providing an empirical assessment of the current carry-
ing capacity of smallholder production systems and mod-
eling specific interventions, our findings offer researchers 
and development practitioners information to feed into 
their nutrition and food security strategies.

Research methods
Research area
This study was conducted in four highland communi-
ties in the Huancavelica region, central Peru: Ccasapata, 
Ccollpaccasa, Sotopampa and Chopccapampa (Fig.  1). 
The communities were representative of the region with 
typical mixed production systems and high rates of child 
malnutrition and anemia. They were part of a McKnight 
Foundation-funded project researching the relationship 
between agrobiodiversity and nutrition and were selected 
on the basis of ethnicity, poverty and importance of agri-
culture. Geopolitically, the communities are part of Yauli 
district, Huancavelica province. Ethnically they belong 
to the so-called Chopcca nation, a Quechua speaking 
self-proclaimed indigenous group of 2000 households 
(9210 people), settled in an ex-hacienda adjudicated to 
them following a land reform in 1969 [72, 73]. Along 
with microfragmentation of landholdings, production 
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Fig. 1 Research site in Huancavelica region, central Peru
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conditions in Chopcca have been exacerbated through 
land degradation [74]. Within the study site, households 
manage mixed crop–livestock systems with fields located 
between 3600 and 4500  m of altitude. All agriculture is 
rain-fed. Important crops include potato (Solanum spp), 
oca (Oxalis tuberosa), olluco (Ullucus tuberosus), mashua 
(Tropaeolum tuberosum), barley (Hordeum vulgare), faba 
(Vicia faba), lupine (Lupinus mutabilis) and oats (Avena 
sativa). Livestock includes cattle, sheep, llama, pig, poul-
try and guinea pig [73, 74].

Huancavelica is one of the most food insecure regions 
in Peru [75, 76]. At the time of this study, stunting 
affected 19.6  % of children under five years old nation-
wide, yet in Huancavelica these figures reached 54.2  %, 
the highest in the country [77]. Stature as indicator of the 
overall nutritional condition among women in reproduc-
tive age was also lowest in Huancavelica at 3  cm under 
the national average [77]. Energy, vitamin A, iron and 
zinc coverage are reported to be lowest in rural areas 
including Huancavelica [78, 79]. In 2012, 49.4 % of chil-
dren under five years of age in the district of Yauli were 
stunted [80]. According to the most recent study in the 
four Chopcca communities, 44.2  % of children under 
3 years old who attended the local health facilities were 
stunted (Z score < −2 SD) and more than 75 % of chil-
dren between 6 and 24  months old did not meet their 
daily recommended iron and zinc requirements [74, 81]. 
Such high incidence of malnutrition coexists with diverse 
crop–livestock portfolios and traditional farming prac-
tices [74, 82, 83].

Data collection
We conducted a detailed structured survey with 185 
households with children between 6 and 36  months of 
age in close collaboration with local stakeholders (village 
authorities, public health posts). The study received eth-
ics approval from the Research Ethics Committee of the 
Instituto de Investigación Nutricional (IIN). Informed 
consent was given verbally by each participant prior to 
the application of the survey. Trained teams implemented 
surveys shortly after the main harvests during the 
months of July and August (2010). All interviewers spoke 
Quechua. The survey was the main tool used to collect 
qualitative and quantitative information on household 
composition, crop–livestock portfolios, cropping areas 
(m2), production output (kg), among other parameters. 
Field sizes were checked through direct measurements. 
Potato yields were determined through direct measure-
ment within 6 m2 unit areas at the field level. Measure-
ments of 251 and 172 fields containing bred and landrace 
potato cultivars, respectively, were taken during the 
2008, 2009 and 2012 growing seasons. These represented 
fields from 165 households. The number of animals for 

cattle, horse, llama, sheep, pig, poultry and guinea pig 
was recorded during the main survey in 2010.

Data calculations
On‑farm production
For each household, the total annual on-farm produc-
tion (=output) and household-level demand (=input) for 
energy in kilocalories (kcal), iron in milligrams (mg) and 
zinc in milligrams (mg) were calculated. Household-level 
output is a function of the number of fields/household, 
crop area/field (m2), crop yields/species (kg/m2) and the 
number of animals annually consumed. Crop and animal 
production totals (kg) were converted into energy (kcal), 
iron and zinc (mg) output based on content values pro-
vided by the Instituto de Investigacion Nutricional (IIN) 
and reported in the Peruvian Food Table [84]. Animal 
production output was based on household-level num-
ber of animals per species and conservative expert-vali-
dated calculations: (1) typical reproductive rates for each 
species; (2) offspring survival rates under the environ-
mental conditions of the study site; (3) total number of 
animals (progenitors and offspring) potentially available 
for household consumption; (4) average meat and vis-
ceral mass in kg, including edible abdominal and thoracic 
organs, per animal for each species (Table 1). Total edible 
and available meat and viscera in kg were generated for 
each species reported per household. Cows and horses 
were not considered in calculations of meat and viscera 
output as these are generally not consumed but rather 
used for milk production and transport, respectively. 
Households’ number of cows therefore translated into 
total kg of cheese produced from average milk output. 
Chicken, apart from roosters, provide eggs (1 unit/day/
chicken for 90 days of the year), meat and visceral mass.

Household demand
Annual household-level requirement for energy, iron 
and zinc is a function of household composition in terms 
of gender and age for each member multiplied by Daily 
Recommended Intakes (DRI) of energy (kcal), iron (mg) 
and zinc (mg) per person for the 365 days of the year [85, 
86]. Daily energy requirements were calculated accord-
ing to an activity level of 1.75 of the basal metabolic rate 
(BMR) for adult women assuming an average weight of 
55 kg and an activity level of 1.90 of the BMR for adult 
men with an average weight of 60  kg, considering farm 
work in both cases. Thus, adult women were attributed 
a daily requirement of 2300 kcal for the 18–29 age range; 
2250 kcal for the 30–59 age range; and 2050 kcal above 
60 years of age. For women with infants under 12 months 
old, there was an additional daily requirement of 505 kcal 
for lactation. For adult men, the daily energy requirement 
was 3050 kcal for the 18–29 age range; 2950 kcal for the 
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30–59.9 age range; and 2450  kcal over 60  years of age. 
Energy requirements for male and female infants during 
the first year of life, and for boys and girls up to 18 years 
of age, were based on FAO/WHO/UNU standards [85]. 
Daily recommended requirements for iron and zinc were 
calculated assuming low (5  %) bioavailability for iron 
and low (15  %) bioavailability for zinc. These bioavail-
ability levels were based on consumption data from the 
same households indicating a largely vegetable-sourced 
diet [74]. Minimal presence of iron-rich animal source 
foods does not support adopting a higher bioavailability 
[86–88]. Recommended requirement levels of iron and 
zinc by gender and age group were based on FAO/WHO 
standards [86].

Nutrition balance
The difference between on-farm production (=output) 
and household demand (=input) for each individual 
household resulted in the nutrition balance for energy, 
iron and zinc. In turn, this balance is an indicator of 
the carrying capacity of the farming system in terms of 
its ability to provision sufficient energy, iron and zinc. 
The total output potentially available for each individual 
household follows a few assumptions. First, the output 
was considered to be readily available for consumption 
by households, without accounting for possible process-
ing or post-harvest losses and produce sold. Second, pro-
duction output as determined at the harvest and survey 
time was considered to be the only moment of food pro-
duction for the household. This is generally true for rain-
fed agriculture in Huancavelica, yet some households 
also obtain modest off-season harvests. Third, nutrition 
balances are solely based on total production output and 
household requirement without considering food hand-
outs from aid programs or foodstuffs acquired through 
barter or monetary purchase. The assumptions are sim-
plifications of the reality, but necessary and reasonable to 
answer the main research question: (i) whether (or not) 

household-level crop–livestock production output is able 
to cover the minimal household-level nutrition require-
ments and (ii) whether commonly promoted agricultural 
interventions potentially make a difference.

Statistical analyses
After screening for missing and incomplete data, 165 
household surveys remained as final dataset. Crop and 
livestock production data, household composition, nutri-
tional demand, energy and micronutrient balances were 
firstly analyzed through descriptive statistics and by 
correlation analysis of all the continuous independent 
variables measured (35 in total) in the study. R package 
FactomineR [89] was used to perform principal compo-
nent analysis (PCA) in order to identify variables that 
contribute the most to the variation in the dataset and to 
detect relationships between them. Multiple and logistic 
regressions were performed in RStudio (version 0.99.902) 
to identify variables that significantly influence energy, 
iron and zinc balances. R Package LEAPS [90] was used 
to assist in the variable selection process for model build-
ing purposes for multiple regressions. Three different 
regression models (wherein energy, iron and zinc were 
treated as dependent variable individually) that consisted 
of variables selected by the “regsubsets” approach in the 
LEAPS package (variables with a high R2 and low Mal-
low’s Cp score) and from the PCA were developed and 
chosen after being statistically tested against the full 
model. Logistic regression was used to identify variables 
that significantly contribute to the odds of a household 
meeting coverage for all nutritional parameters simul-
taneously (energy, iron and zinc) as a binary depend-
ent variable (1  =  household passes three parameters; 
0  =  household fails three parameters). A total of 119 
households that passed (n =  98) or failed (n =  21) this 
criterion were used for logistic regression. A balancing 
methodology employed by ROSE package [91] in R was 
adopted for this analysis, since the number of responses 

Table 1 Livestock reproduction rates and weights in the Chopcca systems of Huancavelica region, central Peru

a Only dairy consumption; 94.5 kg of cheese/cow/year
b 1 offspring every 2 years and not included in calculations
c Includes visceral weight

Species Male-to-female  
ratio

Offspring per  
female per year

Meat weight (kg)  
per animal

Visceral weight (kg) 
per animal

Sheep 1:10 1 12.1 3.5

Cowa 0:1 0.5b – –

Llama 1:10 0.5b 28.9 15.5

Guinea Pig 1:6 5 0.75c –

Chicken 1:3 0 2.6 0.3

Pig 0:1 5 52.5 5.3
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classified under each category (pass all parameters/
fail all parameters) was skewed and imbalanced. Model 
building, selection and significance testing for logistic 
regression was performed on the dataset that was bal-
anced using the ROSE algorithm. A model that was not 
statistically different from a full model, and which had 
a lower AIC score, in addition to obtaining a high area 
under ROC (receiver operating characteristic) curve 
of 0.96 (Additional file  1), with an accurate prediction 
rate of 93  % during validation, was chosen for further 
interpretation.

Agricultural intervention scenarios
Four agricultural (food-based) intervention scenarios 
were analyzed by following the same procedure to calcu-
late the energy, iron and zinc output from household-
level crop–livestock production, household-level 
requirements (=input) and consequent output/input bal-
ances. We assumed successful adoption of practices or 
technologies across all 165 households resulting in: (1) a 
30 % yield increase of landrace and bred potatoes; (2) a 
20  % areal adoption of biofortified potato varieties with 
iron and zinc fresh-weight concentrations1 twice as high 
as currently grown cultivars; (3) an addition of 1 male 
and 9 female guinea pigs in livestock production output; 
and (4) the combination of interventions 1, 2 and 3. For 
intervention 1, the 30 % yield increase was applied sepa-
rately for household’s landrace and bred potato areas, as 
these cultivar groups have different yield levels. For inter-
vention 2, 10  % of landrace and 10  % of bred potato 
household-level areas were assumed to be planted with 
biofortified varieties. For intervention 3, an ideal male-
to-female ratio of 1:9 was chosen for guinea pigs to repro-
duce and generate offspring of which 50  % would be 
destined for household consumption.

Results
Household and crop–livestock system characteristics
Table 2 summarizes household characteristics, and Fig. 2 
shows household member distribution. Standard devia-
tion values in total average cropping area elude to ample 
differences among households (Fig. 3). One extreme con-
cerned two households that did not cultivate any crops, 
yet raised livestock and reported commerce and trans-
portation as off-farm activities. On the other extreme, 
two households by far exceeded the average total crop-
ping areas (2.4 and 2.8 ha). Households from the commu-
nity of Ccasapata had the lowest average total cropping 
area out of the four communities: 5901 (±3460) m2 

1 Fresh-weight, as opposed to dry-weight, iron and zinc concentrations 
were used because potato outputs were weighed in their raw, post-harvest 
state. No significant differences have been found between the iron and zinc 
concentrations of raw versus cooked potatoes [117, 118].

compared to 7342 (±5662) m2 in Chopccapampa, 7718 
(±3851) m2 in Sotopampa and 8399 (±4045) m2 in 
Ccollpaccasa.

Production features by crop species are summarized 
in Table 3. The landrace potatoes were the most diverse 

Table 2 Main household and  crop–livestock system char-
acteristics

a Mean (±SD)

Sample characteristics

Number of households 165

Total number of household members 952

Demographic and socioeconomic characteristics

Household sizea 5.8 (±2.0)

Percentage of female household members (%) 51.2

Percentage of members 0–4 years old (%) 26.1

Percentage of members 5–10 years old (%) 20.4

Percentage of members 11–18 years old (%) 15.8

Percentage of members 19–35 years old (%) 27.4

Percentage of members > 35 years old (%) 10.3

Percentage of households with at least 1 migrant (%) 73.9

Number of months off‑farm for migrating membersa 1.6 (±1.7)

Percentage of households with local commerce as main 
activity (%)

17.6

Percentage of households with handicrafts as main 
activity (%)

32.1

Percentage of households with livestock as main activity 
(%)

63.6

Agricultural characteristicsa

Cultivated fields 9.1 (±3.3)

Crop species 6.0 (±1.5)

Animal species 3.9 (±1.5)

Tubers area (m2) 3605 (±2681)

Cereals area (m2) 2111 (±1496)

Legumes area (m2) 1523 (±1172)

Total cropped area (m2) 7239 (±4253)

0
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)561=
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Fig. 2 Distribution of the total number of household members per 
household (N = 165)
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crop in terms of the number of cultivars being grown, 
with one household growing as many as 160 different 
cultivars. Indeed high infraspecific diversity of the potato 
crop is a distinctive feature of Huancavelica region [75, 
83, 92]. Olluco, mashua and oca cultivars—up to a maxi-
mum of 12, 14 and 10 per household, respectively—are 
frequently grown in close proximity to potato. Most 
households only plant a single variety of barley and oats. 
Among the legumes, one variety of lupine is commonly 
cultivated. Faba, with up to a maximum of 17 distinct 
cultivars grown at the household level, is common.

Households in the study site rise up to seven livestock 
species that serve multiple purposes (Table 4). Livestock 
species, except horses, are a source of food but are also 
used as mode of transport and for fertilizer, fuel, fiber, 
milk and cheese production. Yet households typically 
only slaughter animals on special occasions. Livestock is 
generally kept free-range, and herding is a common task 
of women and children. Use for home consumption in 
Huancavelica is occasional. Bigger livestock such as cat-
tle and sheep represent an important asset that can be 
turned into cash.

Energy, iron and zinc balances under status quo 
management
Figure  4 shows household-level energy, iron and zinc 
balances. We excluded one outlier for compact visu-
alization (164 total bars). The average energy, iron and 
zinc balances across all households were +10,826  kcal, 
+41  mg and +37  mg per day over the average basal 
household-level requirements. While the majority of 
households obtained sufficient energy from their crop–
livestock systems to meet their requirements, the gap 
was wider for iron and zinc. In 13.9, 36.6 and 23.6 % of 
households, production output did not meet the house-
hold-level energy, iron and zinc requirements, respec-
tively, under current crop–livestock management. We 
found household-level energy balances were highly 
correlated with iron (r =  0.79) and zinc (r =  0.92) bal-
ances (p  <  0.001). Ninety-eight (out of 99) households 
who met both their iron and zinc requirements also met 
their energy requirements. Conversely, out of 142 house-
holds who met their energy requirements 98 (69 %) also 
met their iron and zinc requirements. Clearly, meeting 
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Fig. 3 Distribution of the total cropping area per household for the 
predominant agricultural season (N = 165)

Table 3 Crop species production indicators at the household level (N = 165)

a Yields for faba, lupine, barley and oats were calculated in their dry state

Crops Households planting (%) No. of fields Field size (m2) Yielda (ton/ha) No. of cultivars

Ave. SD ± Ave. SD ± Ave. SD ± Ave. SD ±

Landrace potato 96.4 1.8 1.0 1323.1 983.8 14.7 5.3 5.7 4.0

Bred potato 85.5 1.2 0.4 885.6 614.4 23.1 11.3 1.1 0.8

Olluco 79.4 1.0 0.2 260.6 229.8 6.3 5.7 1.6 0.9

Mashua 71.5 1.0 0.1 241.5 240.7 9.1 8.5 1.2 0.6

Oca 23.6 1.0 0.2 220.1 197.7 7.6 7.0 1.8 1.2

Faba 90.3 1.4 1.1 571.1 469.2 1.7 1.3 2.5 1.5

Lupine 73.9 1.3 0.6 918.8 641.7 0.8 1.9 1.0 0.2

Barley 95.2 1.6 0.7 1066.7 667.3 2.3 1.9 1.0 0.2

Oats 68.5 1.2 1.1 724.7 579.7 1.7 1.9 1.0 0.0

Table 4 Species-based characteristics of livestock produc-
tion (N = 165)

Livestock Households raising (%) Total no. of ani-
mals

Ave. SD±

Cattle 78.2 2.6 1.6

Horse 49.7 1.4 0.6

Llama 12.7 5.8 4.3

Sheep 67.3 9.3 8.1

Pig 37.6 2.0 1.9

Poultry 80.6 4.3 3.5

Guinea Pig 63.0 7.0 5.5
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energy demands is more attainable than meeting essen-
tial micronutrients under current crop–livestock pro-
duction systems.

Crop and livestock contribution to energy, iron and 
zinc requirements is presented as a proportion of house-
hold-level requirements (Fig.  5) for those households 
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whose production systems did not meet minimum 
requirements (so-called negative coverage) and house-
holds whose production systems met or surpassed 
minimum requirements (so-called positive coverage). 
Livestock production contributed modestly to house-
hold energy, iron and zinc coverage. Overall, crops as 
compared to livestock accounted for 179, 122 and 144 % 
versus 13, 4 and 12 % of the energy, iron and zinc pro-
duction output from agriculture, respectively, based on 
the average household-level balances. The PCA (Fig.  6) 
further indicated that individual crop outputs and per 
capita cropping areas for main staples (tubers, legumes, 
cereals) were strongly and positively correlated with the 
investigated parameter balances and together accounted 
for most of the variation observed in the dataset, in com-
parison with other variables such as those related to 
livestock and household that were also measured in this 
study.

Multiple regression analysis revealed that household 
size, landrace potato area (m2), bred potato area (m2), 
barley, faba and oats outputs (kg) significantly influence 

each of the balances (Table 5; Added-variable plots pro-
vided as Additional file  2). As expected, household size 
was a negatively correlated predictor across all mod-
els. This anti-correlation was also evident in the PCA, 
where the variable household size is placed in oppo-
sition to (all the) balances in the data space (Fig.  6). 
Household-level landrace and bred potato areas (m2) 
and outputs (kg) were significantly correlated (p < 0.001) 
with respective household energy (r  =  0.78/0.65) and 
zinc balances (r =  0.58/0.55), and less so with iron bal-
ances (r  =  0.38/r  =  0.50). Household-level barley out-
put (kg) was significantly correlated (p < 0.001) with the 
iron (r = 0.75) and zinc balance (r = 0.62) of the house-
holds growing these crops, and less so with the house-
hold-level energy balance (r = 0.48). Faba was modestly 
correlated (p < 0.001) with iron (r = 0.51) and zinc bal-
ance (r =  0.41). Oats and lupine, although still impor-
tant in terms of proportion of households who grow 
them and area coverage per household (Table  3), were 
not significantly correlated with energy, iron and zinc 
balance (r  <  0.35). Mashua was moderately correlated 
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Fig. 6 PCA plot consisting of all the variables (35) measured in this study, showing their relative influence on the variation observed in the dataset, 
which is indicated as  % on the first dimension (Dim 1) and the second dimension (Dim 2). This PCA also gives an indication of the grouping 
between all the variables measured. Variable labels: “Kcal_balance” = energy balance; “Fe_balance” = iron balance; “Zn_balance” = zinc balance; 
“Total_crops_m2” = total cropping area; “m2_person” = total cropping area per capita; “Tubers_m2_pcapita” = per capita area cultivated with 
tubers; “Cereals_m2_pcapita” = per capita area cultivated with cereals; “Legumes_m2_pcapita” = per capita area cultivated with legumes; “No_
migrant” = number of household members migrating; “Mig_months” = number of months off‑farm for migrating members. Livestock labels refer to 
total number of animals. Crop labels refer to total surface area in square meters (m2) and total outputs in kilograms (kg). Arrow length is proportion‑
ate to the contribution made by an individual variable to the variation in the dataset. Directionality relative to other variables illustrates the nature 
of correlations (positive or negative) among variables. Crop outputs and per capita cropping areas (tubers, cereals, legumes) are shown to not only 
be largely driving variation in the data space (long arrows) but to also be positively correlated to energy, iron and zinc balances (same direction). 
The fact that livestock and household (size, migration) parameters are placed relatively far from the remaining variables further suggests that crop 
parameters have the strongest and most influential relations to household balance outcomes
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(p < 0.001) with iron balance (r = 0.59). Our regression 
models showed that cattle and sheep made a positive 
and significant contribution to energy and zinc balances, 
respectively. In terms of iron, livestock sources were not 
detected as significant.

In Table  6, we show results for the logistic regres-
sion model where the binary dependent variable was 
the odds of a household meeting energy, iron and zinc 
requirements given a set of predictor variables. Surpris-
ingly, household size was not a significant predictor of 

the odds ratio of a household meeting its energy, iron 
and zinc requirements through family farming. The odds 
of a household meeting its energy, iron and zinc basal 
requirements decreases by a factor of 0.945 (not sig-
nificant) for every additional family member, whereas 
it significantly increases by a factor of 1.014 (p < 0.001) 
for every square meter of tubers grown, a factor of 1.010 
(p < 0.01) for every square meter of legumes and a fac-
tor of 1.004 (p < 0.05) for every square meter of cereals. 
The highest contribution to tubers area comes from lan-
drace potato, bred potato and mashua. Legumes area is 
mostly represented by lupine and faba, while cereals area 
is mainly attributed to barley. This analysis suggests that 
the likelihood of a household achieving all its basal bal-
ance requirements is positively influenced by increasing 
its per capita cultivated areas for tubers, legumes and 
cereals. Furthermore, these results are in agreement with 
the PCA, which indicates that per capita cropping areas 
(“Tubers_m2_pcapita,” “Cereals_m2_pcapita,” “Legumes_
m2_pcapita” in Fig. 6) make a larger relative contribution 
to variation and are positively correlated with energy, 
iron and zinc balances (“Kcal_balance,” “Fe_balance,” 
“Zn_balance” in Fig. 6).

Household differences behind the nutrition balances
In the previous sections, we presented the factors that 
were most strongly associated with balances in terms of 
a household´s crop–livestock production system meeting 
its energy, iron and zinc requirements. In light of those 
findings, we summarize the main differences between 
households with a negative coverage whose production 
system did not provide sufficient output (n =  21), and 
households with a positive coverage whose production 
system met demand or provided a surplus (n =  98) for 
energy, iron and zinc (Table 7). Why did certain house-
holds cover their needs, while others didn’t? Landrace 
and bred potato outputs, followed by cereals like barley 
and legumes like faba, represent the bulk of households’ 

Table 5 Regression coefficients, standard errors (SE), p val-
ues and  significance under  three models for  energy, iron 
and zinc balance (N = 165)

a Livestock output is in number of animals

* p < 0.05; ** p < 0.01; *** p < 0.001

Predictor Coefficient SE p value Sig.

Energy balance

Intercept 519,107.16 105,978.64 0.000 ***

Household size −809,849.58 18,288.05 <2e−16 ***

Landrace potato (m2) 1720.79 18.92 <2e−16 ***

Bred potato (m2) 2311.17 38.56 <2e−16 ***

Barley (kg) 3957.88 168.97 <2e−16 ***

Faba (kg) 2708.56 357.95 0.000 ***

Lupine (kg) 2430.56 311.17 0.000 ***

Oats (kg) 2992.72 413.65 0.000 ***

Cattlea 173,366.37 20,712.54 0.000 ***

Adjusted R2 0.992

Iron balance

Intercept 6100.00 2600.00 0.018 *

Household size −11,000.00 440.00 <2e−16 ***

Landrace potato (m2) 5.80 0.48 <2e−16 ***

Bred potato (m2) 13.00 0.93 <2e−16 ***

Barley (m2) 3.10 1.10 0.004 **

Mashua (kg) 19.00 7.70 0.017 *

Barley (kg) 98.00 5.10 <2e−16 ***

Faba (kg) 66.00 8.70 0.000 ***

Oats (kg) 31.00 10.00 0.003 **

Adjusted R2 0.943

Zinc balance

Intercept 4677.76 604.52 0.000 ***

Household size −5028.19 104.29 <2e−16 ***

Landrace potato (m2) 5.45 0.11 <2e−16 ***

Bred potato (m2) 7.07 0.22 <2e−16 ***

Barley (kg) 31.85 0.96 <2e−16 ***

Faba (kg) 27.37 2.03 <2e−16 ***

Lupine (kg) 45.66 1.76 <2e−16 ***

Oats (kg) 39.62 2.35 <2e−16 ***

Sheepa 255.16 25.70 <2e−16 ***

Adjusted R2 0.987

Table 6 Balanced (optimal) model of  logistic regression 
with coefficients (odds ratio), standard errors (SE), p values 
and significance levels (N = 119)

a Odds ratio of household meeting all nutritional parameters (energy, iron, zinc)

* p < 0.05; ** p < 0.01; *** p < 0.001

Predictor Coefficienta SE p value Sig.

Intercept 0.001 2.398 0.005 **

Household size 0.945 0.164 0.732

Tubers area per capita (m2)  1.014 0.004 0.001 ***

Cereals area per capita (m2) 1.004 0.002 0.036 *

Legumes area per capita (m2) 1.010 0.003 0.001 **
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production and source of energy, iron and zinc. This is a 
consequence of cropping areas and yield levels. House-
holds with a positive coverage, or those whose produc-
tion systems met minimum parameter requirements, had 
significantly higher cropping areas by individual species 
and as grand total. Household size was not significantly 
different between households with positive and negative 
coverage (p = 0.175). The opposite was true for cultivated 
surface area per household member (area per capita) 
which was significantly different (p < 0.001). Household 
size was generally large across both groups, but house-
holds with a negative coverage for energy, iron and zinc 
from family farming were constrained by small cropping 

areas and consequent limited production outputs per 
household member. In that context—unavailable land—
adding one more mouth to feed to household-level crop–
livestock production will result in a negative nutrition 
balance, as should be expected and was previously made 
evident through the relations of variables in the PCA and 
regressions.

There is some overlap in the range of total cropping 
areas of households with a positive and negative coverage 
of energy, iron and zinc demands from family farming. 
However, their total areas and per capita areas by staple 
group (tubers, cereals, legumes) point to significantly dif-
ferent means. The variable “people per hectare” also reveals 

Table 7 Summary of differences for households with a positive and negative coverage from family farming for all three 
parameters (energy, iron and zinc)

a Does not include 2 households without cropping areas
b Categorical variables calculated as percentage of households in each group (positive/negative coverage)

Variables Households with positive  
coverage for energy, iron and zinc (n = 98)

Households with negative coverage 
for energy, iron and zinc (n = 21)

Mean diff.

Ave. SD± Min. Max. Ave. SD± Min. Max. p value

Household size 5 2 3 10 6 3 2 11 0.175

Landrace potato (kg) 3968 3157 0 20,213 1370 1353 0 3675 0.000

Bred potato (kg) 2519 2557 0 20,213 750 997 0 3609 0.000

Mashua (kg) 133 151 0 900 47 60 0 180 0.000

Olluco (kg) 127 148 0 900 32 26 0 60 0.000

Oca (kg) 32 67 0 360 5 22 0 100 0.002

Barley (kg) 394 249 0 1320 103 118 0 360 0.000

Oats (kg) 80 97 0 480 33 53 0 210 0.003

Faba (kg) 132 133 0 630 37 50 0 160 0.000

Lupine (kg) 64 136 0 1200 20 25 0 84 0.003

Tubers area per capita (ha) 0.08 0.06 0.02 0.38 0.02 0.01 0 0.04 0.000

Cereals area per capita (ha) 0.05 0.03 0.004 0.16 0.01 0.01 0 0.05 0.000

Legumes area per capita (ha) 0.04 0.03 0 0.17 0.01 0.01 0 0.05 0.000

Total crop area (ha) 0.88 0.44 0.24 2.78 0.31 0.21 0 0.78 0.000

Total area per capita (ha) 0.17 0.08 0.05 0.56 0.05 0.02 0.01a 0.10 0.000

People per ha 7 3 2 20 29 37 10a 182 0.000

Cattle no. 2 2 0 9 1 1 0 5 0.021

Sheep no. 7 8 0 41 2 3 0 12 0.000

Llama no. 1 3 0 18 0 1 0 5 0.050

Pig no. 1 2 0 13 0 1 0 2 0.001

Poultry no. 4 4 0 30 2 2 0 5 0.000

Guinea pig no. 5 5 0 29 3 3 0 10 0.035

Migrants per household 1 1 0 3 1 1 0 3 0.602

Months migrating 1.23 1.56 0 12 0.81 0.93 0 3 0.110

Local commerce main actb (%) 15.3 (%) 23.8

Handicrafts main actb (%) 34.7 (%) 19.0

Livestock main actb (%) 63.3 (%) 42.9
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a striking difference for households with a positive and 
negative coverage. Factors such as differences in yield and 
available household labor can affect the household-level 
production output per area unit to sustain more people.

Although livestock sources of energy, iron and zinc 
contributed modestly to households’ overall balance, dif-
ferences between households with positive and negative 
coverage were nonetheless significant for stocks of sheep, 
poultry and pig. This suggests that in addition to land as a 
household asset, households with a positive coverage had 
access to other forms of assets allowing them to sustain 
more livestock, such as time, labor, grazing area, feed or 
monetary resources. Compared to households with nega-
tive coverage, a greater proportion of households with pos-
itive coverage reported livestock raising as a main activity. 
Some households with a positive coverage compensated 
the absence of one crop (min. values of 0 in Table 7) with 
another, thus maintaining an overall positive balance. For 
instance, one family did not cultivate landrace potatoes 
but allocated large areas to bred potato (3750 m2) and bar-
ley (3125 m2). On the other hand, two households with a 
negative coverage did not cultivate any crops but reported 
employment in commerce (local store) and transporta-
tion (inter-provincial driver). Thirty-five percent (35  %) 
of households with a positive coverage were involved in 
artisanal (woven) crafts as source of income, compared to 
19  % of households with negative coverage. When non-
agricultural activities are able to complement households’ 
maintenance of their crop–livestock portfolios, nutrition 
balances can shift positively through food access. Number 
of household migrants and months off-farm were not sig-
nificantly different between households with a positive or 
negative coverage (p values of 0.602 and 0.110 in Table 7), 
nor did they correlate significantly to households’ balance 
outcomes (r < 0.11 and p > 0.15 across all balances). This 
may suggest a lack of reinvestment of migration-based 

income in production and on-farm nutrient provision. 
However, our limited sample, lack of precise income data 
and of dietary measurements of energy, iron and zinc cov-
erage via other, off-farm routes of food access do not allow 
us to further pursue such potential associations.

Nutrition balances under intervention scenarios
Current practices (=status quo) and development inter-
vention scenario outcomes on household-level energy, 
iron and zinc balanced are compared in Table  8. A 
30  % yield increase of potato reduced the total propor-
tion of households with a negative coverage for energy, 
iron and zinc from family farming by 4.8, 7.9 and 7.2 %, 
respectively. While the balance deficit decreased across 
the three nutrition parameters, they remained negative, 
being insufficient to overcome the overall nutrition gap. 
A 20  % areal adoption of biofortified potatoes did not 
modify average energy balance, as it solely involved iron 
and zinc. It resulted, however, in a 3.7 and 3.6 % reduc-
tion of the total proportion of households with a nega-
tive coverage for iron and zinc, while their balances only 
modestly increased. The introduction of 10 additional 
guinea pigs (and offspring during one season) for each 
household has minimal effect on nutrition outcomes. 
Only an additional 1.8 and 1.2 % of households will shift 
to basal iron and zinc coverage, while average balances 
remain negative at nearly the same level as status quo.

Considering energy, iron and zinc (all at once), the 
combined strategy is the most effective. However, nega-
tive household balances are still not overcome. Of 
the first three scenarios seen in isolation, a 30  % yield 
increase of potato was most impactful in terms of reduc-
ing the energy, iron and zinc deficit. Nevertheless, the 
combined scenario is probably a best case scenario of 
what development agencies can achieve even though it is 
still far from eradicating deficits.

Table 8 Energy, iron and zinc balance outcomes in status quo and intervention scenarios

a Calculations based on households with negative coverage targeted by interventions. Minus 484 (−) sign indicates deficit
b 30 % yield increase in bred and landrace potatoes
C Biofortified potatoes adopted on 20 % of potato cropping area
d Introduction and adoption of guinea pigs: 1 male and 9 females

Scenario % Households with negative coverage  
(n = 165)

Average household balance per daya

(n = 21)

Energy Iron Zinc Energy (kcal) Iron (mg) Zinc (mg)

Status quo 13.9 37.6 23.6 −3903 −90 −34

1. Potato yield increaseb 9.1 29.7 16.4 −1999 −77 −27

2. Biofortified potatoesc 13.9 33.9 20.0 −3903 −87 −32

3. Microlivestockd 13.9 35.8 22.4 −3858 −89 −33

4. Combined (1 + 2 + 3) 9.1 26.1 15.2 −1954 −77 −25
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Discussion
Nutrient balances under current crop–livestock systems
Food security encompasses four essential dimensions: 
availability, access, utilization and stability [93, 94]. Fun-
damental in the availability dimension is not only the 
quantity but also the nutritional quality of foods [95]. We 
have conducted an in-depth analysis of the availability 
pillar of food security rather than the access, utilization 
and stability dimensions. Particularly, we have focused on 
the capacity of contemporary high-altitude smallholder 
production systems to cover the energy, iron and zinc 
requirements at the household level. Our results show 
that 86 % of households were able to cover basal energy 
requirements through on-farm production. Yet, the 
farming system’s iron and zinc output would not meet 
basal household-level demand for 37 and 24 % of house-
holds. Considering energy, iron and zinc simultaneously, 
only 59 % of households in the study site would be able 
to cover their requirements based on agricultural output.

The capacity of family farming to provide households 
with their basic nutritional needs varies widely among 
households. Contrasting positive and negative nutrition 
balances at the household-level offer valuable lessons. 
Firstly, differences in household-level cropping area ulti-
mately determined production outputs. Households with 
fewer fields and smaller size fields are less likely to meet 
basal energy, iron and zinc requirements. This clearly 
indicates the limits to the carrying capacity of farming 
systems to potentially cover the nutrient demands of the 
households who depend on family farming as a means of 
(partial) self-sufficiency. Also, the cultivated area avail-
able to households and production outputs are a conse-
quence of land access and the intensive on-farm labor 
implicit and fundamental in these systems, which is not 
equally available to households [96, 97]. Secondly, house-
hold size, although not directly correlated to energy, iron 
and zinc balances, influences the capacity of crop–live-
stock systems to cover requirements among households 
already strained by limited land availability. We demon-
strated this association in our multiple regression mod-
els where household size was a significant predictor of 
the household-level energy, iron and zinc balance. In the 
logistic regression model, although not significant, the 
odds of a household meeting its energy, iron and zinc 
requirements also decreased with increasing household 
size.

Diversity in agricultural production has been associ-
ated with nutritional diversity and improved dietary 
quality, especially in the context of smallholder farm-
ing systems [98–102]. While overall crop and livestock 

production diversity is high in the study area, many 
households would not be able to cover the basal micro-
nutrient (iron and zinc) demand through self-production. 
On-farm species richness does not, according to sev-
eral studies, linearly translate into food security, dietary 
diversity and improved nutrition [103–105]. In addition 
to the effects of landholding and household size, the 
actual energy and micronutrient composition of foods 
determined household balance outcomes. Importantly, 
landrace and bred potatoes, faba and barley were highly 
influential in the context of the cropping portfolios we 
have examined, in terms of their energy, iron and zinc 
provisioning capabilities across all households. The oppo-
site is true of animal-based foods, which are encouraged 
as part of a diverse and nutrient-dense diet that makes 
essential micronutrients like iron and zinc readily avail-
able to people [106–109]. In this study, we have shown 
that, even for households with positive coverage, the con-
tribution of livestock to energy, iron and zinc demands is 
modest compared to crop-based energy, iron and zinc. 
Nevertheless, the significant differences between house-
holds with positive and negative coverage in terms of 
animal stocks underscore assets other than food that are 
likely available to households with a positive coverage, 
such as labor, grazing areas, feed or cash once they are 
sold (i.e., cattle, sheep).

Nutrient balances under intervention scenarios
Keeping cropping areas and household sizes the same, 
even the most commonly promoted intervention sce-
narios were not sufficient to close the gap in energy, 
iron and zinc provision from family farming. The mixed 
intervention strategy that combined yield increase and 
biofortification of potatoes with the introduction of 
microlivestock (i.e., guinea pig) reduced the percent-
age of households with a negative coverage from fam-
ily farming to a minimum of 9.1 % for energy, 26.1 % for 
iron and 15.2 % for zinc. On its own, a bred and landrace 
potato yield increase of 30 % led to results that were com-
paratively low (9.1, 29.7, 16.4 %, respectively). Promoting 
management options for a higher production output per 
area unit for the main staple crops has a higher prob-
able impact on raising the energy, iron and zinc output 
from the system compared to biofortification or promo-
tion of microlivestock given the intervention options 
we have examined. Nonetheless, nutrient provision 
from agricultural interventions underlying food-based 
approaches to nutrition will ultimately depend on actual 
land availability, which is already strained in the region 
of Huancavelica where the research was conducted. It 
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is precisely due to limited production capacity, particu-
larly small and fragmented land holdings, that common 
interventions aimed at yield increases, biofortification 
and/or microlivestock promotion do not significantly 
shift realities. Households with a negative coverage of 
energy, iron and zinc from their farm have fewer produc-
tion assets (land, livestock). Proportionally, the limited 
scale of new technologies or interventions they adopt 
as compared to those households with more sizeable 
assets and surplus production will only contribute mar-
ginally toward improving their nutrition situation. In 
addition to the assumption that smallholder households 
targeted by agricultural interventions toward food-based 
approaches to nutrition have the land capacity to attain 
a positive coverage from family farming, another factor 
that may be overlooked is labor scarcity and the increas-
ing shift of labor responsibilities on women, who are also 
primary caregivers for infants [20, 26, 100]. In the context 
of migratory patterns and intensifying agricultural work-
loads for women, interventions may actually undermine 
household nutrition. From the standpoint of land and 
on-farm labor availability and capacity, the gap in energy, 
iron and zinc provision from agriculture among the most 
resource-poor households is likely to persist, unless 
development organizations seek complementary ways of 
improving food security and nutritional outcomes, for 
example, through combining agricultural interventions 
with off-farm employment opportunities.

Study limitations
In order to pursue the analysis that we have presented in 
this study, assumptions were necessary. Crop production 
outputs were calculated without considering potential 
post-harvest losses, sales or additional, off-season pro-
duction. Livestock were deemed available for consump-
tion assuming that households would not sell or save 
their animal stocks as reserves. In the context of Chopcca 
crop–livestock systems, households generally raise their 
animals for uses other than consumption or prefer to sell 
them for cash thereby increasing their purchasing power 
to access other goods. Thus, even under the conserva-
tive reproductive rates that we derived, our approxima-
tions of livestock production to nutrient output reflect 
an ideal consumption scenario. The energy, iron and zinc 
content of crop and livestock output was assumed to 
remain stable and available to households without taking 
into account preparation, cooking or processing losses 
that could affect the actual micronutrients available for 
consumption.

Our study limited itself to the detailed analysis of 
energy, iron and zinc output from family farming and its 
contribution to meeting household-level demands. It 
thus does not deal with actual food intake, which is 

beyond the scope of the research here reported.2 We 
used DRI assuming low bioavailability for iron and zinc, 
considering the local dietary patterns. This may have 
been an underestimation in some cases, although the 
presence of animal source foods (medium and high iron 
and zinc bioavailability) in the diet was infrequent and 
minimal. How the production of energy and micronutri-
ents is actually allocated at the intra-household level, and 
whether or not they reach the most vulnerable household 
members (i.e., infants) is beyond the scope of this study.

Other factors that we have not explored, such as off-
farm foods, accessible markets, labor migration and 
increasingly non-agricultural and diversified incomes, are 
important drivers of changing food systems and small-
holder diets [23, 103, 105]. In particular, household-level 
information about off-farm food purchases and on-farm 
produce sold would have allowed us to quantify house-
holds’ energy and micronutrient availability from on- and 
off-farm sources more accurately. Considering that the 
primary research objective was to determine crop–live-
stock systems’ energy and micronutrient coverage solely 
based on household-level production, our study has been 
able to make a significant advance to inform agricultural 
strategies underlying food-based approaches to nutrition. 
As an important next step, we recommend investigating 
an additional model to characterize the nutrition inputs 
available to smallholder households as off-farm contri-
butions via agricultural income generation and off-farm 
employment.

Conclusion
Agricultural interventions supporting food-based 
approaches to nutrition are deployed in regions most 
affected by high rates of undernutrition, such as Huan-
cavelica in the central Andes of Peru, under two under-
lying assumptions: (1) Smallholder agriculture has the 
capacity to provision household-level energy and micro-
nutrient needs; (2) innovations can make a substantial 
difference among the most vulnerable households. In 
this study, we have demonstrated that both assumptions 
can either be positively reaffirmed or rejected, depend-
ing to a large extent on the size of land holdings and fam-
ily size. While all households studied managed typical 
smallholder farming systems, not all family farms had the 
carrying capacity to supply sufficient energy, iron and/or 
zinc for the households that depend on them. We dem-
onstrate that for poorer households, the current prac-
tices and even improvement in productive capacity do 
not satisfy household-level demand for energy, iron and 
zinc. Yet, the research also validates the sufficiency of the 

2 Assessment of daily food and nutrient intakes in the children of these fam-
ilies, using the 24-hour recall methodology, is addressed in a different study 
as part of the same McKnight Foundation project [74, 81].
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nutrient and energy output conferred by agriculture and 
the strategy of enhancing local production for resource-
sufficient households.

A negative coverage of iron and zinc from family farm-
ing is a reality for 21  % of the households studied. This 
level of undercoverage from farming is not significantly 
reduced by the most commonly promoted interventions, 
precisely because households with negative coverage do 
not have the assets (land, labor) to generate a big enough 
effect from the key innovations. Balances for production 
output versus household demand for energy, iron and 
zinc remain negative among the most resource-strained 
households across all intervention options. As has been 
assessed in previous studies, well-intentioned interven-
tions aimed at enhancing agricultural production toward 
better food-based nutrition do not necessarily translate 
into positive outcomes [110–112].

For the most resource-poor households, current prac-
tices and an enhancement in productive capacity do not 
satisfy energy and essential micronutrient coverage from 
the family farm. Conversely, more resourceful households 
possess sufficient land to meet, if not surpass, their energy, 
iron and zinc requirements via self-production. Impor-
tantly, these households manage cropping areas that are on 
average 2.8-fold larger compared to households with nega-
tive coverage. Further, these households own more live-
stock which, if not directly consumed, they can maintain 
as capital and future liquid assets. Such sources of mod-
est income, in addition to that provided through off-farm 
employment, could in turn be enhancing the crop produc-
tivity of the households with a positive coverage for energy, 
iron and zinc from family farming through purchases of 
agricultural inputs (i.e., fertilizer, seeds). Access to agri-
cultural and mixed livelihood strategies that include the 
cultivation of key staples, modest livestock reserves and 
non-agricultural sources of household income are impor-
tant conditions for smallholder farmers to meet house-
hold-level energy and micronutrient requirements.

Crop and livestock production systems are still an essen-
tial part of a dynamic and evolving Andean food system. As 
consumption patterns, sources of food, off-farm income 
strategies and markets are changing, the on-farm provi-
sioning of energy and micronutrients from agriculture con-
tinue to be important [105, 113, 114]. Yet, non-traditional 
livelihood activities in the rural Andes, part-time farming 
and feminization of agriculture are also challenging percep-
tions of subsistence agriculture and smallholder reliance on 
agriculture-centered options alone [22, 23, 25, 26, 115, 116]. 
In order for future research and interventions to effec-
tively target nutrition outcomes, we recommend a mixed 
approach and attention to support smallholders’ food and 
nutrition security via the opportunities offered by other 
routes of income diversification and food acquisition.
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